The Analysis of Failure Times in the Presence of Competing Risks

Prentice et al. (1978)

Biostat 572 University of Washington

May 13 2014

Motivations for Competing Risks

- Single cause vs multiple causes for failure process
- Competing Risks analysis on:
 - (1) inference on the effects of treatment/exposure on specific types of failure
 - (2) interrelations among failure types
 - (3) failure rates for some causes given "removal" of some/all other causes
- Example:
 Acute Leukemia Bone marrow transplantation:(i) recurrence, (ii)
 GVHD, (iii) pneumonia

T >= 0, the time of failure, which may be right censored

 $J \in \{1, 2, ...m\}$, the type of failure, which will be unknown if T is censored

 $\mathbf{z} = (z_1, ..., z_p)$, regression vector

Overall hazard function (Cox 1972):

$$\lambda\left(t;\mathbf{z}\right)\tag{1}$$

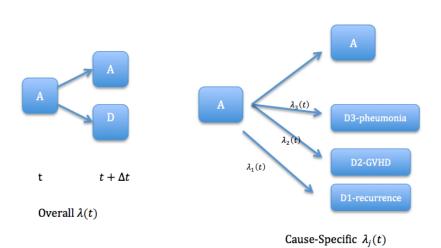
Cause-specific hazard function (Prentice and Breslow 1978):

$$\lambda_{j}\left(t;\mathbf{z}\right)$$
 (2)

(UW)

Conclusion: The likelihood factor for $\lambda_{j}(t;\mathbf{z})$ is precisely the same as

would be obtained by regarding all failure types other than j as censored at the individual's failure time. Thus, any of the standard methods for estimating $\lambda(t; \mathbf{z})$ can be applied for inference on $\lambda_i(t; \mathbf{z})$.


Bone marrow translantation example:

(1) recurrence : j=1;

(2)GVHD: j=2;

(3)pheumonia: j=3

Recurrence-specific Hazard Function $\lambda_1(t; \mathbf{z})$ could be obtained by treating GVHD and pheumonia failure as consored.

Yingying Zhuang Biostat 572

7 / 11

(2) Interrelations among failure types:

- With data of the type (T, J; z), interelation among failure types is nonidentifiable. Therefore, with z time independent, we can not study the interrelation, or even test for independence among competing failure modes.
- One promising approach to study the relationship among failure types involves the definition of risk-indicator variables as time-dependent covariates.

(2) Interrelations among failure types:

Bone marrow translantation example:

Interrelations between GVHD and leukemia recurrence:

Define a GVHD risk-indicator z(t), that takes value 0 between t=0 and diagnosis of GVHD and value 1 after.

 $\widehat{\beta}=-.792$ which suggests that the leukemia relapse rate is reduced by an estimated multiplicative factor $exp(\widehat{\beta})=.45$

(3) Failure rate estimation following cause removal:

Estimation of failure probabilities given the removal of some or all other causes:

- Not well defined until mechanism for cause removal is clearly specified.
- Strong assumptions on study conditions.

(3) Failure rate estimation following cause removal:

Bone marrow translantation example:

 $Mechanism\ to\ remove\ GVHD:\ strengthening\ donor-recipient\ matching\ criteria$

Recurrent leukemia relapse rates would increase.

Mechanism to remove GVHD: treatment to control GVH reaction. If the treatment has antileukemia potential, recurrent leukemia relapse rates would decrease.