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Abstract

Given a population with m heterogeneous subgroups, a method is developed for determining minimal

vaccine allocations to prevent an epidemic by setting the reproduction number to 1. The framework is

sufficiently general to apply to several epidemic situations, such as SIR, SEIR and SIS models with vital

dynamics. The reproduction number is the largest eigenvalue of the linearized system round the local point
of equilibrium of the model. Using the Perron–Frobenius theorem, an exact method for generating solu-

tions is given and the threshold surface of critical vaccine allocations is shown to be a compact, connected

subset of a regular ðm� 1Þ-dimensional manifold. Populations with two subgroups are examined in full.

The threshold curves are either hyperbolas or straight lines. Explicit conditions are given as to when

threshold elimination is achievable by vaccinating just one or two groups in a multi-group population and

expressions for the critical coverage are derived. Specific reference is made to an influenza A model.

Separable or proportionate mixing is also treated. Conditions are conjectured for convexity of the threshold

surface and the problem of minimizing the amount of vaccine used while remaining on the threshold
surface is discussed.

� 2003 Elsevier Science Inc. All rights reserved.

Keywords: Reproduction number; Vaccine efficacy; Next generation matrix; Perron–Frobenius; Regular manifold;
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1. Introduction

Vaccination remains the only means for controlling many infectious diseases [1]. In heteroge-
neous populations, we would like to know what fraction of each subgroup should be vaccinated
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with a vaccine with specific characteristics to eliminate the infectious disease from the whole
population. The critical vaccination fractions are those fractions of each subpopulation that should
be vaccinated to just achieve elimination. Knowledge of the critical vaccination fractions provides
a starting point for disease elimination. These fractions can provide epidemiologists with infor-
mation about the best deployment of limited quantities of vaccine to contain the infectious disease.

Mathematically, we find the critical vaccination fractions by solving for those fractions for
which the reproduction number is 1. There has been a great deal of research carried out on the
basic reproduction number and the reproduction number, going back to Bernoulli in 1766 [2]. We
develop our concepts based heavily on the concept of the next generation matrix as introduced by
Diekmann et al. [3]. We use the control of influenza as our motivating example. In this appli-
cation, we ask the following question: What minimal fraction of each age group should be vacci-
nated to eliminate the possibility of an influenza epidemic in the whole population? [4].

Heterogeneous groups have previously been examined from various perspectives by several
authors. Agur et al. [5] look at the two group case in detail and consider a weighted optimization
problem. Hethcote and van Ark [6] treat the multi-group situation for SIRS systems under the
proportionate mixing assumption. Cairns [7] examines optimal policies for heterogeneous models
in discrete time, continuous time and a deterministic model with natural births and deaths. He also
formulates optimal policies for these models. Becker and Starczak [8] look at household models
and assume proportionate mixing when treating heterogeneity amongst individuals. Britton [9]
has given bounds for the reproduction number for heterogeneous models. He assumes no
knowledge of the next generation matrix and only observation of the final attack rates.

In this paper, we derive explicit conditions which govern when the reproduction number is 1
and investigate the properties of the threshold surface of critical vaccine allocations. In Section 2,
the reproductive number is identified as the spectral radius of a matrix related to the next gene-
ration matrix. In Section 3, a way of generating exact solutions is described, and the threshold
surface is seen to be compact and connected. From a different point of view, the threshold surface
is shown to be a subset of the solution space to a certain determinantal equation from which it
may be deduced that the threshold surface is a regular manifold. These results all rely crucially on
the Perron–Frobenius theory for positive matrices. Explicit threshold curve equations are given in
Section 4 when the population consists of just two groups. For more than two groups, the fea-
sibility of vaccinating just one group is discussed in Section 5, and of vaccinating two groups in
Section 6. A model for influenza A is used as an example. Separable mixing is analysed in Section
7. A conjecture is made on the convexity of the threshold surface in Section 8. Finally, an opti-
mization application is presented in Section 9. Proofs of all the theorems are in the Appendix A.

2. The next generation matrix

We define the next generation matrix for a variety of infectious disease processes. The next
generation matrix is applied in the case where there are no infected individuals in the population, a
fixed point for most epidemic systems of equations. We partition the population into m mutually
exclusive mixing groups. Let Rij be the expected number of secondary infections in unvaccinated
people in subgroup i resulting from a single randomly selected unvaccinated infectious person in
mixing group j, where i; j 2 f1; . . . ;mg. Then, the next generation matrix, R, is the m� m matrix
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R11 � � � R1m

..

. ..
. ..

.

Rm1 � � � Rmm

2
64

3
75:

The basic reproduction number R0 is defined to be the spectral radius of R, i.e., the largest
magnitude eigenvalue [3]. If R0 > 1, the epidemic process grows away from zero infectives.

Now assume that we randomly vaccinate the fraction fi people in group i. The vaccine allo-

cation in the whole population is given by f ¼ ½f1; . . . ; fm�T. Without loss of generality, we define
vaccine efficacy for susceptibility as VES ¼ 1� h and vaccine efficacy for infectiousness as
VEI ¼ 1� /, where h;/ 2 ½0; 1� [1,10]. We assume at least one of the VES, VEI > 0.

We assume that there are no infected individuals in the population at some time 0 other than
the single infected person that is inserted. Then, we can model the beginning of the epidemic
process as the following system of difference equations for ymi, the expected number of secondary
infections in population i 2 f1; . . . ;mg, unvaccinated if m ¼ 0 and vaccinated if m ¼ 1, at gene-
ration g:

y0iðg þ 1Þ ¼
Xm
j¼1

Rijð1� fjÞy0jðgÞ þ Rij/fjy1jðgÞ;

y1iðg þ 1Þ ¼
Xm
j¼1

Rijhð1� fjÞy0jðgÞ þ Rijh/fjy1jðgÞ:

If we define the 2m� 1 column vector

yðgÞ ¼ ½y01ðgÞ; y11ðgÞ; . . . ; y0mðgÞ; y1mðgÞ�T;

the linearized system of difference equations takes the form

yðg þ 1Þ ¼ MyðgÞ;
where M is the 2m� 2m next generation matrix for vaccine allocation f:

M ¼

R11ð1� f1Þ R11/f1 � � � R1mð1� fmÞ R1m/fm
R11hð1� f1Þ R11h/f1 � � � R1mhð1� fmÞ R1mh/fm

..

. ..
. ..

. ..
. ..

.

Rm1ð1� f1Þ Rm1/f1 � � � Rmmð1� fmÞ Rmm/fm
Rm1hð1� f1Þ Rm1h/f1 � � � Rmmhð1� fmÞ Rmmh/fm

2
6666664

3
7777775
:

The reproductive number Rf is defined to be the spectral radius of M. If Rf > 1, the epidemic
grows. Note that Rf depends on the vaccine allocation, f ¼ ½f1; . . . ; fm�T. We assume that R0, the
basic reproductive number, must be greater than 1 for an epidemic to occur. The notation is
consistent in that Rf ¼ R0 in the absence of vaccination when f ¼ 0, as will be shown later in this
section. To determine the critical (i.e., minimal) vaccination fractions fj of the populations needed
to eliminate the disease, we set a threshold condition by requiring Rf to be 1.

BothM and R are non-negative matrices. We assume R, henceM, is indecomposable. That is, R
admits no permutation of its indices that transforms it into a block triangular matrix. As noted in
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[11, p. 53], �this assumption eliminates the possibility that part of the community encounters amajor
outbreak whereas another subgroup in the population remains unaffected�. The Perron–Frobenius
theorem [12,13] asserts that Rf is itself an eigenvalue ofM, as opposed to merely being the modulus
of an eigenvalue. This theorem is stated below alongwith associated relevant results. FormatricesA
and B of the same size, define B6A if and only if each entry of A� B is non-negative.

Theorem 2.1. Let A be a non-negative indecomposable matrix and let qðAÞ denote its spectral radius.
(a) qðAÞ > 0 and qðAÞ is an eigenvalue of A.
(b) With qðAÞ can be associated strictly positive left and right eigenvectors. This is the only eigen-

value for which this happens.
(c) If k is any other eigenvalue of A, then jkj6 qðAÞ.
(d) qðAÞ has algebraic multiplicity 1. That is, qðAÞ is a simple eigenvalue.
(e) If 06B6A and b is an eigenvalue of B, then jbj6 qðAÞ. If jbj ¼ qðAÞ, then B ¼ A, so that qðAÞ

increases when any element of A increases.

Theorem 2.1(a)–(d) comprises the Perron–Frobenius theorem. The second statement of part (b)
is not always included in textbook versions of the Perron–Frobenius theorem. However, it is a
crucial result here and is proved in the Appendix A.

If A is a strictly positive matrix, Theorem 2.1(c) may be strengthened to read: If k is any other
eigenvalue of A, then jkj < qðAÞ.

This result also holds if A is a non-negative primitive matrix, that is, one for which Ak is strictly
positive for some natural number k. Primitive matrices are indecomposable, but the converse is
not true [12]. In many cases, our R is primitive (often, though not always, it will be strictly
positive, hence primitive). This means that eventually, after k generations say, the expected
number of infections in every group from every other group will be positive.

The system of difference equations, hence the structure of M, takes into account
y1iðgÞ ¼ hy0iðgÞ. The linear operator represented by M is therefore defined on the m-dimensional
subspace of R2m spanned by ei � ½1 h�T, i ¼ 1; . . . ;m, where ei denotes the standard m� 1 basis
vector of Rm with 1 in the ith entry and 0 elsewhere. The symbol � denotes the Kronecker product
[12]. Let w ¼ 1� h/ so that 0 < w6 1. Also define di ¼ 1� wfi, i ¼ 1; . . . ;m so that 1� w6 di 6 1
with corresponding vector d ¼ 1� wf, and diagonal matrices F ¼ diagðf1; . . . ; fmÞ, D ¼ I � wF .
Here 1 is the m� 1 vector with all entries 1 and I is the m� m identity. The parameter w is a
measure of the combined efficacy of VES and VEI and has been denoted VER elsewhere for its
effect on R0 [14]. The significance of the quantity h/ has previously been noted by Halloran et al.
[15], who refer to it as the immunologically naive equivalent. We have the following important
characterisation of Rf .

Theorem 2.2. The reproductive number is given by Rf ¼ qðRDÞ. The threshold condition for elimi-
nating the disease is therefore qðRDÞ ¼ 1.

If nobody is vaccinated, f ¼ 0 and D ¼ I, in which case, Rf ¼ R0 > 1 and there is no possibility
of elimination. If qðRDÞ ¼ 1 with associated right eigenvector v, then:

RDv ¼ v ) Rv� v ¼ wRF v:
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Corollary 2.3. When m ¼ 1, so that R ¼ R0, set v ¼ 1 to obtain the threshold condition:

R0 � 1 ¼ ð1� h/ÞR0f :

This is the result previously obtained by Longini et al. [10].
For a given efficacy parameter w, Theorem 2.2 ensures the threshold solutions are to be

found among those of the equation detðRD� IÞ ¼ 0 which constrains the fj to lie on a ðm� 1Þ-
dimensional hypersurface of Rm and forces the existence of a (not necessarily largest) eigenvalue
of 1. The hypersurface usually consists of more than one connected component. As will be shown
in the next section, one of these components contains the threshold (hyper)surface, implicitly
described by Rf ¼ 1. The rest of that component and all the other components satisfy Rf > 1. For
example, for fixed w when m ¼ 2, f1 and f2 are constrained to lie on one branch of the hyperbola
implicitly described by

detRð1� wf1Þð1� wf2Þ þ wðf1R11 þ f2R22Þ � trRþ 1 ¼ 0

() detRw2f1f2 þ ðR11 � detRÞwf1 þ ðR22 � detRÞwf2 þ detðR� IÞ ¼ 0: ð2:1Þ

3. The threshold surface

In this section, we give bounds on w and f, derive a method for generating threshold solutions,
and show that given w, the threshold surface is a ðm� 1Þ-dimensional, compact, connected subset
of a regular submanifold of Rm. These properties all hinge on Perron–Frobenius theory. Loosely
speaking, regular submanifolds do not �fold back� on themselves in points of self-intersection. See
Definition 1.11 of [16] for the precise meaning of this concept.

Define the polynomial U : Rmþ1 ! R by

Uðf;wÞ ¼ detðRD� IÞ ¼ detðR� wRF � IÞ;
where all quantities are as defined in Section 2. Efficacies, w, and vaccination levels, fj, satisfying
the threshold condition for growth of the epidemic are among the solutions implicitly described by
the set N \ ½0; 1�mþ1

, where

N ¼ U�1ð0Þ ¼ fðf;wÞ 2 Rmþ1 : Uðf;wÞ ¼ 0g:
The restriction of ðf;wÞ to ½0; 1�mþ1

introduces a relationship between R0 and w. In the case of
m ¼ 1, simultaneously constraining f ;w 2 ½0; 1� in Corollary 2.3 gives w 2 ½1� R�1

0 ; 1�, a result
also found in [15]. As w is bounded above by 1, this also forces the critical vaccination fraction f to
lie in the interval ½1� R�1

0 ; 1�. Thus, for there to be any chance of eliminating the disease, both f
and w can be no smaller than 1� R�1

0 and h/6R�1
0 < 1.

The function U is invariant under the scaling transformation ðf;wÞ7!ðwf; 1Þ, or, equivalently,
Uðf; 1Þ ¼ Uðw�1f;wÞ:

It follows that the threshold surface for w ¼ 1 (i.e., when either VES ¼ 1 or VEI ¼ 1) may be
scaled up to the surface for general w < 1. That is, threshold vaccination coverage for arbitrary
efficacy w < 1 may be obtained by scaling up each w ¼ 1 threshold fj by a factor of w�1, provided
the resulting value is still less than 1.
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As w decreases, scaling ensures that the corresponding threshold f that satisfies qðRDÞ ¼ 1
is �pushed outward� towards the vertex ð1; 1; . . . ; 1Þ of the unit hypercube ½0; 1�m. At this vertex,

we have universal vaccine coverage in all groups, f ¼ 1 ¼ ð1; 1; . . . ; 1ÞT, D ¼ ð1� wÞI and
Rf ¼ ð1� wÞqðRÞ ¼ ð1� wÞR0, where R0 > 1 by assumption. The threshold condition Rf ¼ 1
yields w ¼ 1� R�1

0 , the minimum allowable value of w for epidemic elimination.
A similar argument and scale invariance show that for f 6¼ 0, N ¼ U�1ð0Þ contains

ðf0;w0Þ ¼ ðf ; . . . ; f ; ð1� R�1
0 Þf �1Þ corresponding to D ¼ R�1

0 I . Note that Rf ¼ R�1
0 qðRÞ ¼ 1. The

element ðf0;w0Þ lies in N \ ½0; 1�mþ1
if and only if f 2 ½1� R�1

0 ; 1� so that the corresponding
w0 ¼ ð1� R�1

0 Þf �1 lies in ½1� R�1
0 ; 1�. In other words, for various w, the permissible vaccine

coverage region for elimination contains the line segment joining the points f ¼ ð1� R�1
0 Þ1

(maximum w ¼ 1) and f ¼ 1 (w ¼ 1� R�1
0 ).

The bounds on w for elimination are therefore a straightforward generalization of the case
when m ¼ 1 discussed previously: w 2 ½1� R�1

0 ; 1� or, equivalently, h/ 2 ½0;R�1
0 �.

As an example, consider the influenza A example of Longini et al. [4] for which

R ¼

0:6 0:1 0:1 0:1 0:1
0:2 1:7 0:3 0:2 0:2
0:4 0:3 0:5 0:4 0:3
0:2 0:1 0:3 0:2 0:1
0:1 0:1 0:1 0:1 0:1

2
6664

3
7775: ð3:1Þ

The m ¼ 5 age groups are pre-school, school, young, middle-aged and old adults. For this
matrix, R0 ¼ 1:86. For elimination by vaccination, we need w P 1� R�1

0 ¼ 0:46. A vaccine with
VES ¼ 0:9 and VEI ¼ 0:8 is efficacious enough since w ¼ 1� ð0:1Þð0:2Þ ¼ 0:98. On the other
hand, a vaccine with VES ¼ 0:3 and VEI ¼ 0:2 has w ¼ 0:44 and elimination is impossible.

Note that Theorem 2.1(e) ensures that, given w, for any threshold vaccine allocation f, an
increase in any one of the components fj corresponds to a decrease in D so that Rf ¼ qðRDÞ < 1.
This reflects the fact that if threshold elimination is achievable, more vaccine in any of the groups
results in faster elimination. In terms of the threshold surfaces, this means that all possible
elimination combinations f, threshold and above, for all w 2 ½1� R�1

0 ; 1�, lie in the interior region
of ½0; 1�m bounded by the vertex f ¼ 1 and (see Proposition 3.2 below) the connected submanifold
containing f ¼ ð1� R�1

0 Þ1, corresponding to threshold elimination for w ¼ 1.
Bounds involving f follow from Theorem 2.1(e). Let dmin and dmax denote the smallest and

largest components, respectively, of d, and define fmin and fmax in the same fashion. There is
a necessary, though not sufficient, condition for a solution to the determinantal equation
detðRD� IÞ ¼ 0 to lie on the threshold surface.

Proposition 3.1. Assume f 2 ½0; 1�m satisfies detðRD� IÞ ¼ 0. If f lies on the threshold surface
then 1� w6 dmin 6R�1

0 6 dmax 6 1, or, equivalently, 06 fmin 6w�1ð1� R�1
0 Þ6 fmax 6 1. Unless f ¼

w�1ð1� R�1
0 Þ, the inner inequalities are strict: fmin < w�1ð1� R�1

0 Þ < fmax.

As a result, if fmin > w�1ð1� R�1
0 Þ and fmax 6 1, the vaccine allocation is above critical level, i.e.,

Rf < 1. Similarly, if fmax < w�1ð1� R�1
0 Þ, then Rf > 1, and elimination is not possible.

Now we specify an algorithm that generates exact threshold solutions. Theorem 2.1(b) ensures
that any non-negative square matrix has exactly one eigenvector, up to scalar multiples, with
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positive entries. Furthermore, this eigenvector corresponds to the spectral radius eigenvalue. This
result applies to both left and right eigenvectors. Therefore, if Rf ¼ qðRDÞ ¼ 1, there exists a
positive vector v ¼ ½v1; . . . ; vm�T such that vTRD ¼ vT. Equating components:Xm

i¼1

viRijdj ¼ vj ) dj ¼
vjPm

i¼1 Rijvi
¼ vj

ðvTRÞj
) wfj ¼ 1� vj

ðvTRÞj
; ð3:2Þ

where ðvTRÞj denotes the jth component of vTR. By computing the right hand side of (3.2), as
v ranges over vectors with positive components and rejecting any fj 62 ½0; 1�, we generate all
threshold solutions. We can normalize the v so as to exclude scalar multiples which yield the same
solution. One normalization is kvk1 ¼ 1, i.e., the largest entry of v is always 1. Another is
kvk1 ¼ 1, i.e.,

Pm
i¼1 vi ¼ 1, so that the v lie on the face of the unit simplex. In any case, whatever

norm is chosen, the (interior) threshold solutions are to be found among

fj

(
¼ w�1 1

"
� vj
ðvTRÞj

#
: kvk ¼ 1; vi > 0 8i

)
:

For example, take u to be the normalized left positive eigenvector corresponding to the spectral
radius eigenvalue R0 of R. As

Pm
i¼1 Rijui ¼ R0uj, the corresponding threshold solution is f ¼

w�1ð1� R�1
0 Þ1.

That we are using left eigenvectors merely reflects the choice of RD for determining Rf .
However, Rf ¼ qðDRÞ as well since AB and BA always have the same eigenvalues for any m� m
matrices A and B. In this situation, right eigenvectors generate the solutions

fj

(
¼ w�1 1

"
� vj
ðRvÞj

#
: kvk ¼ 1; vi > 0 8i

)
: ð3:3Þ

Using this method, we can recover the threshold solution found by Britton [9]. Suppose the
final attack rates pi have been estimated in the case of an SIR system without vital dynamics. That
is, pi is the proportion of group i that ultimately gets infected. Then

Rp ¼ � lnð1� pÞ; ð3:4Þ
where p ¼ ½p1; . . . ; pm�T and the logarithm is applied component-wise [4]. Taking v ¼ p > 0 as a
right eigenvector, this gives the threshold solution

fj ¼ w�1 1


� pj
� lnð1� pjÞ

�
; j ¼ 1; . . . ;m: ð3:5Þ

Britton [9] derives this result by producing a set of m positive quantities between whose minimum
and maximum Rf is guaranteed to lie. Britton�s R is the transpose of ours. By constraining all m
values to be 1, he obtains Rf ¼ 1 yielding the threshold solution just given. This is a special case of
a linear algebraic result found in both Rao [12, p. 472], and Varga [17, p. 52], which (transposed)
states that for any non-negative n� n matrix A and positive vector x ¼ ½x1; . . . ; xn�T:

min
16 i6 n

Pn
i¼1 aijxi
xj

6 qðAÞ6 max
16 i6 n

Pn
i¼1 aijxi
xj

:

Greenhalgh and Dietz [18] have previously made use of this result in obtaining bounds for re-
productive numbers.
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For an example of Britton�s threshold solution, consider again the influenza A example of
Longini et al. [4] with w ¼ 0:98, and next generation matrix given by (3.1). Solution of (3.4) in
MAPLEMAPLE shows the final attack rate vector to be p ¼ ½0:32; 0:83; 0:58; 0:33; 0:20�T. Substitution of
this into (3.5) generates the threshold solution f ¼ ½0:17; 0:54; 0:34; 0:18; 0:11�T.

As another example, the solutions generated from 1T and 1 as left and right eigenvectors, res-
pectively are fj ¼ w�1½1� ð

Pm
i¼1 RijÞ�1� and fi ¼ w�1½1� ð

Pm
j¼1 RijÞ�1�. This requires all column

and row sums of R to exceed 1 to be of any use (else the f can be negative).
As the spectral radius is a continuous function of m� m matrices [19], the boundary of the set

of all unit norm vectors with positive components is also mapped to threshold solutions. That is,
all threshold solutions are to be found among

fj

(
¼ w�1 1

"
� vj
ðRvÞj

#
: kvk ¼ 1; vi P 0 8i

)
: ð3:6Þ

Taking v ¼ ej gives the solution d ¼ R�1
jj ej. This dj-axis intercept yields f 2 ½0; 1�m if and only if

w ¼ 1 and Rjj P 1. Although w < 1 in real applications, the above observation is useful for
graphing the threshold surface. From these observations we also obtain:

Proposition 3.2. Given w 2 ½1� R�1
0 ; 1�, the threshold surface Rf ¼ 1 is a compact, connected subset

of Rm.

Returning to the determinantal equation detðRD� IÞ ¼ 0, of which the threshold points are
solutions, we can establish regularity of the threshold surface. For a fixed w 2 ½1� R�1

0 ; 1�, define
�UU : Rm ! R by �UUðfÞ ¼ Uðf;wÞ ¼ detðRD� IÞ. Regularity is proved by examining the gradient of �UU.

Theorem 3.3. Let w 2 ½1� R�1
0 ; 1�. For each j 2 f1; . . . ;mg, �UUðfÞ ¼ dj detAj � Cj, where Aj is the

m� m matrix obtained by replacing the jth column of RD� I with that of R and Cj is the ðj; jÞ-
cofactor of RD� I . The gradient of �UU as a function of ðf1; . . . ; fmÞ is given by

r�UU ¼ �w½detA1; . . . ;detAm�:

r�UU does not vanish on �NN ¼ �UU�1ð0Þ so that the latter is a regular ðm� 1Þ-dimensional submanifold of
Rm. As a subset of the above submanifold, the threshold surface is also regular.

The m-dimensional submanifold N ¼ U�1ð0Þ of Rmþ1 is also regular. Using the scale invariance
mentioned earlier, it can be shown that oU=ow ¼ �

Pn
j¼1 fj detAj.

4. The case when m=2

The situation when m ¼ 2 is explicitly described by Eq. (2.1) and has also been investigated in
[5] in the context of two culturally distinct population groups. We assume all Rij > 0. Remaining
indecomposable R may be similarly dealt with. The corresponding curves in R2 depend on the
nature of the eigenvalues of R, namely R0 and real k, with jkj < R0. A case-by-case examination
follows. Note that trR ¼ R0 þ k and the determinant is jRj ¼ R0k.
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(a) If jRj ¼ 0, R has eigenvalues 0 and R0 > 1; trR ¼ R0. Simplification of (2.1) leads to

R11wf1 þ R22wf2 ¼ R0 � 1 () f1 ¼ � R0

R11


� 1

�
f2 þ

R0 � 1

wR11

:

Since all entries of R are strictly positive, R11 < R0. The submanifold is therefore a straight line
of fixed negative slope with positive axis intercepts, decreasing with increasing w. Of interest is
the portion of this line that lies inside the square ½0; 1�2. The lower bound on w is found by
setting f1 ¼ f2 ¼ 1, whence w ¼ 1� R�1

0 , as expected.
(b) If jRj 6¼ 0, the equation of the hyperbola is

wf1


� jRj � R22

jRj

�
wf2


� jRj � R11

jRj

�
¼ R12R21

jRj2
:

(i) If the other eigenvalue of R is k ¼ 1, this becomes

wf1


� R0 � R22

R0

�
wf2


� R0 � R11

R0

�
¼ ðR0 � R22ÞðR0 � R11Þ

R2
0

:

We get a hyperbola with asymptotes f1 ¼ w�1ð1� R22=R0Þ and f2 ¼ w�1ð1� R11=R0Þ, with
lower branch passing through the origin. The threshold curve lies on the upper branch.

Fig. 1. An example of the threshold curve for a population consisting of two mixing groups with vaccine efficacy

parameter w ¼ 0:9. In this case, R ¼ 1:8 0:2
0:4 0:5

� �
and the threshold curve is on the upper branch of the hyperbola. The

threshold solutions range from ðf1; f2Þ ¼ ð0:497; 1Þ to ðf1; f2Þ ¼ ð0:544; 0Þ.
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(ii) If the other (real) eigenvalue is k 6¼ 1 with jkj < R0, we get another hyperbola. As f ¼
ð1� k�1Þ1 is a solution to detðRD� IÞ ¼ 0, it follows that if k > 0, the threshold curve lies
on the upper branch, whereas if k < 0, it lies on the lower branch. As examples, suppose

R ¼ 1:8 0:2
0:4 0:5

� �
;

for which R0 ¼ 1:859 and k ¼ 0:441. The equation of the hyperbola is

ðwf1 � 0:390Þðwf2 þ 1:195Þ ¼ 0:119;

for which wf1 varies between 0.444 and 0.490, corresponding to wf2 values of 1 and 0, re-
spectively. The threshold curve lies on the upper branch as shown in Fig. 1 with w ¼ 0:9. On
the other hand, if

R ¼ 1 4

3 2

� �
;

then R0 ¼ 5 and k ¼ �2. Now the equation of the hyperbola is

ðwf1 � 1:2Þðwf2 � 1:1Þ ¼ 0:12;

for which wf2 varies between 0.5 and 1, corresponding to wf1 values of 1 and 0, respectively.
The threshold curve lies on the lower branch. See Fig. 2, where w ¼ 0:9.

Fig. 2. Another example of the threshold curve for a population consisting of two mixing groups with vaccine efficacy

parameter w ¼ 0:9. This time, R ¼ 1 4

3 2

� �
and the threshold curve is on the lower branch of the hyperbola. The

threshold solutions range from ðf1; f2Þ ¼ ð0:667; 1Þ to ðf1; f2Þ ¼ ð1; 0:778Þ.
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5. Conditions for elimination by vaccinating a single group

The determinantal description of the threshold surface is useful for finding threshold vacci-
nation coverage restricted to a small number of groups. If we vaccinate the jth group only,
D ¼ I � wF ¼ diagð1; . . . ; 1; 1� wfj; 1; . . . ; 1Þ. Expand the determinant about the jth column as in
the Proof of Theorem 3.3:

detðRD� IÞ ¼ ð1� wfjÞ detAj � Cj ¼ ð1� wfjÞðdetðR� IÞ þ CjÞ � Cj:

The last expression results from jth column expansion of detAj, with dk ¼ 1, 8k 6¼ j. Setting to
zero and solving

fj ¼ w�1 detðR� IÞ
detðR� IÞ þ Cj

: ð5:1Þ

As all the other dk ¼ 1, Cj is now the ðj; jÞ-cofactor of R� I . According to Proposition 3.1, Rf ¼ 1
only if w�1ð1� R�1

0 Þ < fj 6 1.
Consider the influenza A example of Longini et al. [4], with R0 ¼ 1:86 and R as in (3.1). If we

vaccinate school-aged children with a vaccine having VES ¼ 0:9 and VEI ¼ 0:8, then w ¼ 0:98,
detðR� IÞ ¼ 0:0925 and C2 ¼ 0:015. Eq. (5.1) gives f2 ¼ 0:86=0:98 ¼ 0:88. Thus, 88% vaccination
coverage of the school-aged group will achieve threshold. A quick check of the spectral radius
shows that Rf ¼ 1 and our solution lies on the threshold surface and 1� R�1

0 ¼ 0:46 < wf2 ¼ 0:86
as guaranteed by Proposition 3.1.

For j 6¼ 2, Cj < 0. As detðR� IÞ > 0, Eq. (5.1) shows that threshold can only be achieved by
single group vaccination for school-aged children (wfj > 1 if j 6¼ 2).

6. Conditions for elimination by vaccinating two groups

It may be possible to achieve threshold elimination or better by vaccinating just two groups,
particularly if the disease spreads more efficiently in these groups than in the rest of the popu-
lation. If we wish to vaccinate groups i and j only, the threshold curve is a hyperbola, as with
m ¼ 2. The equation for the hyperbola may be obtained by taking successive determinant ex-
pansions about the ith and jth columns. Denote by Ekk the m� m matrix with 1 in the ðk; kÞ
position and zero elsewhere. Define B ¼ detðR� I þ Eii þ EjjÞ and let B½i�, B½j� be the determinants
of the ðm� 1Þ � ðm� 1Þ matrices obtained by deleting from R� I þ Eii þ Ejj the ith row and
column and the jth row and column respectively. Furthermore, let B½ij� denote the determinant of
the ðm� 2Þ � ðm� 2Þ matrix obtained by deleting the ith and jth columns and rows from R� I. If
just fi; fj > 0, the threshold equation detðRD� IÞ ¼ 0 reduces to

ð1� wfiÞð1� wfjÞB� ð1� wfiÞB½j� � ð1� wfjÞB½i� þ B½ij� ¼ 0: ð6:1Þ

If B ¼ 0, this is a straight line (suppressing the remaining m� 2 dimensions):

B½j�wfi þ B½i�wfj ¼ B½i� þ B½j� � B½ij�:

In accordance with Theorem 2.1(e), the slope of the line must be negative, that is, B½i� and B½j�
must have the same sign.
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If B 6¼ 0, we have a hyperbola:

wfi


� B� B½i�

B

�
wfj


� B� B½j�

B

�
¼ B½i�B½j� � BB½ij�

B2
:

By Theorem 2.1(e), simultaneously increasing or decreasing fi and fj will increase or decrease
qðRDÞ. Therefore, the right hand side of the hyperbola equation must be positive, so that an
increase in fi is accompanied by a decrease in fj: B½i�B½j� > BB½ij�. Note that this may not be the case,
i.e., that the hyperbola is oriented to the left. This reflects the fact that there are no threshold
solutions involving just the two groups i and j.

As an example, consider again the influenza A example of Longini et al. [4] with matrix R given
in (3.1). Pre-school and school groups have the greatest numbers of secondary infections. A
vaccination strategy might therefore be to vaccinate only these two groups with coverage f1 for
pre-school, f2 for school and no vaccine for the rest. With i ¼ 1 and j ¼ 2, Eq. (6.1) becomes

�0:3755ð1� wf1Þð1� wf2Þ þ 0:195ð1� wf1Þ þ 0:483ð1� wf2Þ � 0:21 ¼ 0: ð6:2Þ
The various coefficients are given by subdeterminants. For example,

B½2� ¼
0:6 0:1 0:1 0:1
0:4 0:5� 1 0:4 0:3
0:2 0:3 0:2� 1 0:1
0:1 0:1 0:1 0:1� 1

�������
������� ¼ �0:195:

Fig. 3. Threshold vaccination levels for influenza A when only two of the five mixing groups are vaccinated, namely

pre-school and school. The vaccine efficacy parameter is w ¼ 0:7. In this case, f1 represents pre-school vaccination

coverage and f2 school age coverage. The critical fractions range from ðf1; f2Þ ¼ ð0:299; 1Þ to ðf1; f2Þ ¼ ð1; 0:844Þ so that

a high proportion of school age vaccination is required for elimination. As an example, 30% vaccination of pre-school

and 100% vaccination of school age will achieve threshold.

96 A.N. Hill, I.M. Longini Jr. / Mathematical Biosciences 181 (2003) 85–106



As B½i�B½j� ¼ �0:483��0:195 ¼ 0:094 > BB½ij� ¼ �0:3755��0:21 ¼ 0:079, the hyperbola is cor-
rectly oriented.

For example, if VES ¼ 0:7 and VEI ¼ 0, then w ¼ 1� ð0:3Þð1Þ ¼ 0:7. 100% vaccination of the
school-age population (f2 ¼ 1) leads to f1 ¼ 0:30 in Eq. (6.2) so that 30% vaccination of pre-
schoolers is required. Calculation shows that Rf ¼ 1, and this allocation of vaccine does indeed lie
on the threshold curve shown in Fig. 3.

Or suppose VES ¼ 0:9 and VEI ¼ 0:8 so that w ¼ 0:98. 70% vaccination of the school-age
population gives f1 ¼ 0:25. Again Rf is found to be 1, so that 25% vaccination of pre-schoolers
and 70% vaccination of school-age population will achieve threshold elimination when w ¼ 0:98.
The threshold curve is displayed in Fig. 4.

On the other hand, suppose we try vaccinating only middle-aged and old adults. A look at R
suggests that this is probably not going to work as is now confirmed. In this case, B ¼ 0:0025,
B½4� ¼ 7:8� 10�13, B½5� ¼ 2:5� 10�50 and B½45� ¼ 0:176. Clearly, B½4�B½5� < BB½45� so that the resulting
hyperbola is oriented thewrongway and there is no threshold solution, irrespective of the value ofw.

7. Separable mixing

Assume that R has rank 1, so that Rij ¼ aibj, i; j ¼ 1 . . . ;m. This is known in the literature as
separable mixing [3] and corresponds to group i being equally susceptible to all other groups and
group j being equally infectious to all other groups. The special case when ai ¼ kbi for all i is

Fig. 4. Threshold vaccination levels for influenza A when only two of the five mixing groups are vaccinated, again pre-

school and school. Now the vaccine efficacy parameter is w ¼ 0:98. The critical fractions range from ðf1; f2Þ ¼ ð0; 0:878Þ
to ðf1; f2Þ ¼ ð1; 0:578Þ. For example, 25% vaccination of pre-school and 70% vaccination of school age will achieve

threshold.
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known as proportionate mixing [20]. This type of mixing has been extensively researched, for
example, see Hethcote and van Ark [6] and Cairns [7]. As RD also has rank 1 and Rf is a simple
eigenvalue, the sum of the eigenvalues of RD, counted by algebraic multiplicity, is Rf . That is,
Rf ¼ trRD ¼

Pm
j¼1 Rjjð1� wfjÞ. The threshold condition of Rf ¼ 1 becomes

w
Xm
j¼1

Rjjfj ¼ R0 � 1: ð7:1Þ

Note that tr R ¼ R0 for the same reasons as with RD. The threshold surface is a hyperplane with
axis intercepts fj ¼ ðR0 � 1Þ=wRjj > 0. The intercept fj 6 1 if and only if w P ðR0 � 1Þ=Rjj. In
other words, for 1� R�1

0 6w < ðR0 � 1Þ=Rjj, threshold elimination is impossible by vaccinating
only the jth group. From (7.1),

f1 ¼ R�1
11 w�1ðR0

(
� 1Þ �

Xm
j¼2

Rjjfj

)
:

The fj, jP 2 are chosen so that f1 lies in ½0; 1�.

8. A conjecture on convexity

Preliminary inspection of the surfaces generated when m ¼ 3 suggests that, for some types of
next-generation matrix R, the threshold surface corresponds to the graph of a convex or concave
function. For general m and fixed w, the function is one of m� 1 variables obtained by solving the
implicit expression �UUðf1; . . . ; fmÞ ¼ 0 for one of the fi. Theorem 2.1(e) ensures that this is possible
for any fi. A convex function g : Rk ! R satisfies

gðð1� tÞaþ tbÞ6 ð1� tÞgðaÞ þ tgðbÞ;
for all t 2 ½0; 1� and a; b 2 Rk. By a concave function h : Rk ! R we mean that )h is convex.

In view of the scale invariance observed in Section 3, if the threshold surface for given R is
convex for a particular w0, then it will be convex for all other values of w. Therefore, it is enough
to show convexity when w ¼ 1. Establishing convexity is equivalent to showing that qðð1� tÞf1 þ
tf2Þ6 1, for any two critical vaccine solutions f1 and f2. This is a direct consequence of Theorem
2.1(e). Similarly, concavity holds if qðð1� tÞf1 þ tf2ÞP 1, for all critical f1; f2.

When m ¼ 2, as seen in Section 4, the threshold curve is either a straight line or the upper
branch of a hyperbola (both convex), or the lower branch of a hyperbola (concave). More gene-
rally, if the threshold surface is convex, we could generate points on the surface by the technique
of Section 3 and approximate by the polyhedral surface with vertices consisting of these points.
All points on the polyhedron would then satisfy Rf 6 1, giving a conservative approximation to
the critical surface. We conjecture the following, also based on observation when m ¼ 3.

Conjecture 8.1. Assume R has only real eigenvalues. If all the eigenvalues are positive, then the
threshold surface is convex. If all the eigenvalues except the spectral radius eigenvalue are negative,
then the threshold surface is concave.

As examples, see the accompanying MAPLEMAPLE plots of the threshold surfaces for the following
matrices. In all cases, w was taken to be 1. Although this is unrealistic, there is no loss in
mathematical generality here owing to the scale invariance property discussed in Section 3.
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(a) A 3� 3 next generation matrix with three distinct positive eigenvalues

R1 ¼
2:85 1:46 1:37
0:92 3:57 0:06
1:82 2:29 2:46

2
4

3
5:

The eigenvalues are R0 ¼ 5:26 and 2.39, 1.23. For any non-zero eigenvalue k, f ¼ ð1� k�1Þ1
satisfies detðRD� IÞ ¼ 0. The threshold surface is therefore the upper branch as shown in Fig. 5,
as 1� k�1 > 1 is maximized when k ¼ R0. Note that the surface is convex.
(b) A 3� 3 next generation matrix with three distinct real eigenvalues, two of which are negative

R2 ¼
5:16 2:74 4:27
6:54 2:32 5:82
5:28 2:73 2:47

2
4

3
5:

The eigenvalues are R0 ¼ 12:16 and )0.58, )1.63. The threshold surface is therefore the lower
branch as shown in Fig. 6, for unless k ¼ R0, 1� k�1 > 1. Note that the surface is concave.
(c) A 3� 3 next generation matrix with one real eigenvalue

R3 ¼
1:78 3:69 1:62
2:46 2:95 3:74
3:17 0:71 3:67

2
4

3
5:

The eigenvalues are R0 ¼ 7:87 and 0:26� 1:24i. The threshold surface is shown in Fig. 7. It is
neither convex nor concave; in fact, it contains a saddle-like point as is obvious from Fig. 8.

Fig. 5. The threshold surface for a population consisting of three mixing groups with vaccine efficacy parameter w ¼ 1.

The next generation matrix R1 has three distinct positive eigenvalues and the surface corresponds to the graph of a

convex function. The vertices of the surface are ðf1; f2; f3Þ ¼ ð0:649; 1; 1Þ, (1,0.720,1) and (1,1,0.593).
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9. An optimization application

Often one is interested in minimizing the total number of vaccinations administered while re-
maining at threshold level. Optimal strategies have previously been considered by Cairns [7], Agur
et al. [5] in the context of two groups, Becker and Starczak [8] who consider household models
and, for age structured populations, Castillo-Chavez and Feng [22], Hadeler and M€uuller [23] and
M€uuller [24]. Mathematically, the goal is to minimize

Pm
i¼1 nifi subject to the constraint Rf ¼ 1,

where ni is the population of subgroup i. This can be done using the method of Lagrange mul-
tipliers; the crucial gradient of the threshold surface is supplied by Theorem 3.3. The Lagrange
multiplier system of equations is

ni þ k detAi ¼ 0; i ¼ 1; . . . ;m

Rf ¼ 1:

For example, in the case of the Influenza A model, Longini et al. [4] give the subgroup sizes as
n1 ¼ 77, n2 ¼ 241, n3 ¼ 375, n4 ¼ 204 and n5 ¼ 103 (the total population was 1000). For the
matrix given in Eq. (3.1), with w ¼ 0:98, solution of the Lagrange multiplier system, including the
reduced systems on all possible lower dimensional boundaries of [0,1]5, yields the optimal allo-
cation f ¼ ð0:30; 0:68; 0; 0; 0Þ. That is to say, the critical vaccine allocation which innoculates the
least number of people is achieved by vaccinating 30% of pre-schoolers and 68% of school chil-
dren. This corresponds to vaccinating a total of 187 people (out of the overall population of 1000).

Fig. 6. The threshold surface for a population consisting of three mixing groups with vaccine efficacy parameter w ¼ 1.

The next generation matrix R2 has three distinct real eigenvalues, two of which are negative, and the surface corres-

ponds to the graph of a concave function. The vertices of the surface are ðf1; f2; f3Þ ¼ ð0:806; 1; 1Þ, (1,0.569,1) and

(1,1,0.595).
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Fig. 8. The threshold surface in Fig. 7 from a different perspective. This view clearly shows the saddle nature of the

surface.

Fig. 7. The threshold surface for another population consisting of three mixing groups with vaccine efficacy parameter

w ¼ 1. The next generation matrix R3 has just one real eigenvalue. The vertices of the surface are ðf1; f2; f3Þ ¼
ð0:438; 1; 1Þ, (1,0.661,1) and (1,1,0.728).
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10. Discussion

In this work, we have derived explicit conditions that govern when the reproduction number is
1. The threshold surface, the set of all vaccination allocations which lead to a reproduction
number of 1, is a subset of solutions to a determinantal equation. The threshold surface is shown
to be well-behaved, in that it is a subset of a compact, connected, regular manifold. Although the
surface is described implicitly via a determinantal equation, another method was outlined for
generating exact threshold solutions. In principle, this could be implemented in a numerical app-
roach to generate a grid of points that approximate the surface. We have made a detailed ex-
amination of the case when the population is split into two subgroups only. In this case, it is
relatively easy to write down an explicit equation for the threshold curve. For higher dimensions,
we have given methods for achieving critical coverage, if possible, by singling out just one sub-
group for vaccination or by allocating vaccine to two groups only. We also looked at the special
case of separable mixing and conjectured convexity of the threshold surface in certain situations.
Finally, we presented an optimization application.

We have given general formulations for the next generation matrix and vaccine effects.
These results can be applied to a variety of epidemic and endemic situations, e.g., SIR, SEIR,
SIS, including those with simple vital dynamics [21]. We give the explicit example of the SIR
model without vital dynamics in Eqs. (3.4) and (3.5). However, our next generation matrix, M,
may not apply directly to all models, especially those with complex age structure [22–25] or a
long complex infectious period. In these cases, the next generation matrix needs to be derived
from the linearization, in the neighborhood of the fixed point with no infected individuals, of
the defining system of differential equations in the SI-plane. Conceptually, the elements Rij

of the next generation matrix are the products of three factors: (1) the contact rate between
people in mixing group i and j; (2) the per-contact transmission probability between an in-
fected, unvaccinated person in mixing group j and a susceptible, unvaccinated person in group
i; and (3) the average duration of infectiousness for an infected in group j. This will be true
regardless of the infectious disease being modeled. Vaccination reduces the magnitude of the
elements of the next generation matrix as given by the matrix M for a variety of hetero-
geneous responses to vaccination. This includes all-or-none, leaky and mixtures of effects
[1,26].

Once the elements of the next generation matrix have been determined, the theory outlined in
this paper can be used to define the minimal vaccination coverage needed to ensure elimination of
the infection. In some cases, the next generation matrix can be statistically estimated from field
data [27]. In other cases, it can be roughly determined from field data via sensitivity analysis [4].
Vaccine efficacy can be estimated from vaccine trials [1,28]. In this paper, we have used influenza
vaccination as a motivating example. Longini et al. [4] roughly determined the next generation
matrix for pandemic Asian influenza (1957) for the five age groups shown in Section 3. The next
pandemic strain of influenza could have similar behavior to this one. In addition, Longini et al.
[28] estimated the efficacy of cold-adapted influenza vaccine in children to be VES � 0:90 and
VEI � 0:80: As we have shown in Section 6, Asian influenza could be eliminated by vaccinating
70% of school children and 25% of pre-school children, without vaccinating adults. Other vac-
cination fractions for children that fall on the curve in Fig. 4 could also result in the elimination of
influenza epidemics. Mass vaccination of children with a highly efficacious influenza vaccine has
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been argued to be effective in controlling influenza in the whole population based on both the-
oretical grounds [28] and observations [29,30].

Although we have assumed constant efficacy parameter w amongst all the population sub-
groups, it is a straightforward modification to allow different wi, i ¼ 1; . . . ;m for each of the
subgroups. As is clear from (3.6), this merely results in scale changes in each of the fj and the
threshold surface for constant w is expanded or contracted in each of the coordinate axis direc-
tions accordingly.

In this paper, we have derived exact methods for determining the critical vaccination
fractions for a general next generation matrix. Exact solutions are derived for the cases when
there are one or two mixing groups and when vaccination is carried out in one or two mixing
groups in the presence of other mixing groups. For the special case of separable mixing, exact
solutions are always available when they exist. In general, there is no easily obtainable exact
solution for the case of vaccinating more than two mixing groups. The vaccine allocation for
any particular group can be expressed as a function of the remaining allocations, namely,
fj ¼ w�1ð1� Cj=detAjÞ, whenever this is defined (see Theorem 3.3). However, it is still a hit
and miss affair determining which of the remaining allocations yield fj 2 ½0; 1�. A numerical
algorithm could be devised to find exact solutions using the technique in Section 3. As this
does not involve calculation of determinants, it would be computationally more efficient.

With respect to the optimization example presented in Section 9, we acknowledge that this is
rather a simplistic case, as most considerations involve various weightings applied to the different
subgroups and the objective function may well be non-linear [4]. We also note that the various
boundary checks are quite extensive: in general, it is necessary to check

Xm
k¼0

m
k

 �
2m�k ¼ 3m

different boundary systems, each term in the sum corresponding to the number of k-dimensional
boundaries, there being 2m�k boundary choices (0 or 1 values for the boundary variables) for each
specific choice of k variables. For the Influenza A example, this meant checking 35 ¼ 243
boundary systems. However, in principle, for a differentiable objective function, the method of
Lagrange multipliers can be applied with software such as MAPLEMAPLE and an algorithm implemented
to take care of all the boundary checks. We are currently working on this and intend to address
the optimization problem more generally in future work.

In conclusion, the methods in this paper provide tools to extend the quantitative science of
infectious disease elimination through vaccination.
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Appendix A

Proof of second statement of Theorem 2.1(b). Let uT be the positive left eigenvector associated with
qðAÞ and let l be an eigenvalue with positive right eigenvector v. Then

qðAÞuTv ¼ ðuTAÞv ¼ uTðAvÞ ¼ luTv:

Since uTv > 0, it follows that l ¼ qðAÞ. �

This result also shows that the positive left eigenvector is orthogonal to all right eigenvectors of
eigenvalues other than the spectral radius. The roles of left and right eigenvectors can be inter-
changed in the above arguments.

Proof of Theorem 2.2. Consider the action ofM on the subspace basis fei � ½1 h�T : i ¼ 1; . . . ;mg,
where the ei constitute the standard basis of Rm. Denote the jth columns ofM and R by mj and rj,
respectively. Recall that w ¼ 1� h/. Then

M ei


�

1

h

� ��
¼ m2i�1 þ hm2i ¼

R1ið1� fiÞ
R1ihð1� fiÞ

..

.

Rmið1� fiÞ
Rmihð1� fiÞ

2
66666664

3
77777775
þ h

R1i/fi
R1ih/fi

..

.

Rmi/fi
Rmih/fi

2
66666664

3
77777775

¼ ð1� fiÞri �
1

h

� �
þ h/firi �

1

h

� �
¼ ð1� wfiÞri �

1

h

� �
¼ diri �

1

h

� �

¼ di
Xm
k¼1

Rkiek �
1

h

� �
:

Note that diri is the ith column of RD. The final expression above shows that M maps the sub-
space into itself. As the m-dimensional subspace is isomorphic to Rm, the linear transformation
may be represented on Rm by the matrix RD. It follows that Rf ¼ qðMÞ ¼ qðRDÞ. �

Proof of Proposition 3.1. Let Rf ¼ qðRDÞ ¼ 1. As d ¼ R�1
0 1 corresponds to a threshold solution, it

follows from Theorem 2.1(e) that any other d representing a threshold solution must have at least
one component less than R�1

0 and one greater than R�1
0 . Hence, dmin 6R�1

0 6 dmax (equality holding
for R�1

0 1). The bounds for f follow from d ¼ 1� wf. �

Proof of Proposition 3.2. The threshold surface is the continuous image of the compact, connected
set fkvk ¼ 1 : vi P 0g and is therefore a compact, connected subset of Rm. Compactness is pre-
served on intersection with ½0; 1�m. �

Proof of Theorem 3.3. We exploit the multi-linear property of the determinant function with
respect to columns. Fix w 2 ½1� R�1

0 ; 1� and recall that dj ¼ 1� wfj. For any j 2 f1; . . . ;mg, ex-
pand about the jth column to obtain

104 A.N. Hill, I.M. Longini Jr. / Mathematical Biosciences 181 (2003) 85–106



�UUðfÞ ¼ dj

d1R11 � 1 � � � R1j � � � dmR1m

..

. ..
. ..

.

d1Rj1 � � � Rjj � � � dmRjm

..

. ..
. ..

.

d1Rm1 � � � Rmj � � � dmRmm � 1

������������

������������

þ

d1R11 � 1 � � � 0 � � � dmR1m

..

. ..
. ..

.

d1Rj1 � � � �1 � � � dmRjm

..

. ..
. ..

.

d1Rm1 � � � 0 � � � dmRmm � 1

�������������

�������������
¼ dj detAj � Cj;

where Aj is the m� mmatrix obtained by replacing the jth column of RD� I with that of R and Cj

is the ðj; jÞ-cofactor of RD� I. Since D is diagonal, both detAj and Cj are independent of dj, hence
fj. Thus:

o�UU
ofj

¼ �w detAj; 8j ¼ 1; . . . ;m:

For regularity, it suffices to show that the gradient r�UU has maximal rank, i.e., does not vanish on
�NN ¼ �UU�1ð0Þ [16]. If there are any points where the gradient is zero, they satisfy detAj ¼ 0,
8j ¼ 1; . . . ;m. It follows that at any such critical point f 2 �NN ,

Cj ¼ dj detAj � �UUðfÞ ¼ 0; 8j ¼ 1; . . . ;m:

For any square matrix B, with characteristic polynomial pBðzÞ ¼ detðB� zIÞ, the coefficient of z,
namely p0Bð0Þ, is equal to the (negative) sum of the principal cofactors. Hence:

pRD�IðzÞ ¼ det½ðRD� IÞ � zI � ¼ det½RD� ðzþ 1ÞI� ¼ pRDðzþ 1Þ

) p0RDð1Þ ¼ p0RD�Ið0Þ ¼ �
Xm
j¼1

Cj ¼ 0:

This is a contradiction: p0RDð1Þ is non-zero because qðRDÞ ¼ 1 is a simple eigenvalue via Perron–
Frobenius. Hence, there are no critical points as claimed and the submanifold is regular. �
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