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Networks and epidemic models
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Networks and the epidemiology of directly transmitted infectious diseases are fundamentally
linked. The foundations of epidemiology and early epidemiological models were based on
population wide random-mixing, but in practice each individual has a finite set of contacts to
whom they can pass infection; the ensemble of all such contacts forms a ‘mixing network’.
Knowledge of the structure of the network allows models to compute the epidemic dynamics
at the population scale from the individual-level behaviour of infections. Therefore,
characteristics of mixing networks—and how these deviate from the random-mixing
norm—have become important applied concerns that may enhance the understanding and
prediction of epidemic patterns and intervention measures.

Here, we review the basis of epidemiological theory (based on random-mixing models) and
network theory (based on work from the social sciences and graph theory). We then describe
a variety of methods that allow the mixing network, or an approximation to the network, to
be ascertained. It is often the case that time and resources limit our ability to accurately find
all connections within a network, and hence a generic understanding of the relationship
between network structure and disease dynamics is needed. Therefore, we review some of the
variety of idealized network types and approximation techniques that have been utilized to
elucidate this link. Finally, we look to the future to suggest how the two fields of network
theory and epidemiological modelling can deliver an improved understanding of disease
dynamics and better public health through effective disease control.
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1. STANDARD EPIDEMIC THEORY

The overwhelming majority of disease models are based
on a compartmentalization of individuals or hosts
according to their disease status (Kermack &
McKendrick 1927; Bailey 1957; Anderson & May 1992).
The basic models describe the number of individuals
(or proportion of the population) that are susceptible to,
infected with and recovered from a particular disease.
Many of the details of the progression of infection are
therefore neglected, as are differences in response between
individuals, but the simplification has had a long and
successful history. The assumptions generate two stan-
dard sets of differential equations that provide the
foundations of almost all of mathematical epidemiology:
the susceptible-infectious-recovered (SIR) model
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and the susceptible-infectious-susceptible (SIS) model
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(1.2)

The SIR model is appropriate for infectious diseases that
confer lifelong immunity, such as measles or whooping
cough (Kermack & McKendrick 1927; Anderson & May
1992; Grenfell 1992; Rohani et al. 2000). The SISmodel is
predominantly used for sexually transmitted diseases
(STDs), such as chlamydia or gonorrhoea, where repeat
infections are common (Hethcote & Yorke 1984; Garnett
& Anderson 1996). In these equations, S, I andR refer to
the number of susceptible, infectious and recovered
individuals, respectively, in a population of size N. The
other parameters are the birth rate, b, the natural death
rate, d, and the rate of recovery from infection, g. The
force of infection, l, is the rate at which susceptible
individuals become infected, and is a function of the
number of infectious individuals; this parameter contains
information about the interactions between individuals
that lead to the transmission of infection.
J. R. Soc. Interface (2005) 2, 295–307
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When the population mixes at random, so that each
individual has a small and equal chance of coming into
contact with any other individual, the force of infection
can be calculated as follows:

lZ transmission rate

!effective number of contacts per unit time

!proportion of contacts infectious

zt!n̂!
I

N
Z b

I

N
: ð1:3Þ

This leads to a nonlinear term (bSI/N ) representing
the transmission of infection, generating a variety of
rich dynamical behaviours (Schwartz 1985; Olsen et al.
1986; Rand & Wilson 1991; Anderson & May 1992;
Earn et al. 2000; Keeling et al. 2001).

Many biologically motivated modifications have
been made to this basic framework, usually involving
the inclusion of more heterogeneities by further
subdividing the S, I and R classification to reflect either
more complex pathogen biology (Anderson 1988;
Grenfell et al. 2001) or greater structure within the
host population (Hethcote & Yorke 1984; Ghani et al.
1997; Keeling 1997). Often, different mixing rates are
expected between the population subgroups (e.g.
children mix more readily among themselves than
with adults), and this can be modelled by replacing
the single parameter b in equation (1.3) with a
matrix of transmission parameters, b, describing the
transmission of infection between different groups
(Anderson & May 1992). Nevertheless, the assumption
of random mixing, at least between individuals within
each pair of subgroups, remains.

It is usually the case, however, that the number of
contacts each individual has is considerably smaller than
the population size, and in such circumstances, random
mixing does not occur. Models that incorporate network
structure avoid the random-mixing assumption by
assigning to each individual a finite set of permanent
contacts to whom they can transmit infection and from
whom they can be infected. Although in network and
random-mixing models, individuals may have the same
number of effective contacts per unit time, within a
network, this set of contacts is fixed, whereas in random-
mixing models, it is continually changing. Networks thus
capture the permanence of interactions.

2. STANDARD NETWORK THEORY

The historical study of networks has its grounding in
two disparate fields: social sciences (Leinhardt 1977;
Scott 1991;Wasserman&Faust 1994) and graph theory
(Harary 1969; Bollobás 1985; West 1996). Whereas in
epidemiology, we speak of ‘hosts’ and ‘contacts’, the
social literature is based upon ‘actors’ and ‘relations’,
while graph theory uses the terms ‘nodes’ and ‘edges’. In
each case, however, it is the presence of a relationship
between individuals in a population that is the issue of
concern. The range of available vocabularies can hinder
the transfer of ideas between these fields. We shall refer
to ‘individuals’ and their ‘contacts’; the set of contacts
of an individual is their ‘neighbourhood’ and the size of
this neighbourhood is the individual’s ‘degree’.
J. R. Soc. Interface (2005)
Research in the social sciences is often concerned
with the reason behind the network connections rather
than the properties of the network structure itself.
However, it provides a wealth of quantitative and
qualitative information about social network connec-
tions, which are related to the mixing networks for
airborne diseases. Network analysis has been used as an
explanatory tool to describe the evolution and spread of
ideas and innovations in societies (Leinhardt 1977), and
observed social dynamics can often be understood
through analysis of the social networks that underlie
them. Attention has been given to the nature of
connections, particularly properties such as symmetry
(whether a relationship between A and B implies a
relationship between B and A) and transitivity
(whether the friend of a friend is a friend), which
together provide measures of social cohesion
(Wasserman&Faust 1994; Karlberg 1997). In addition,
measures of the importance of individuals have also
been derived; these range from the simple (such as the
number of connections) to the highly complex (number
of paths between other actors in which an individual
features; Scott 1991; Wasserman & Faust 1994).
Because the social importance of an individual (i.e.
the extent to which they dominate the network) is
probably closely linked to their role in disease spread,
such ideas are immediately relevant to epidemiology.

Research in graph theory has provided a wealth of
quantitative tools and mechanisms for describing net-
works, many of which have epidemiological appli-
cations. We can use an ‘adjacency matrix’ or
‘sociomatrix’, A, to describe the connections within a
population (Harary 1969; Bollobás 1979; Wasserman &
Faust 1994; West 1996); AijZ1 if there is a connection
such that infection could pass from individual i to
individual j ; otherwise, AijZ0. The matrix A sum-
marizes all connections within the network. Most
mixing networks are non-directed graphs (in the
language of social sciences connections are symmetric)
in which infection can pass either way across a contact
and thus AijZAji . However, this is not necessarily the
case; transmission through donated blood products is
an instance when infection can only travel one way
along a link. In this case, the network of relevant
interactions would be a directed graph (Harary 1969;
Bollobás 1979).

A number of useful network quantities can be
ascertained from the adjacency matrix (Keeling
1999). For a population of size N, the average number
of contacts per individual is
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The matrix Am contains information about paths
within the network of length m, and powers of the
adjacency matrix can therefore be used to calculate
measures of the amount of transitivity or clustering.
One such measure is given by

fZ
traceðA3Þ

kA2kKtraceðA2Þ
:



Networks and epidemic models M. J. Keeling and K. T. D. Eames 297
This is the ratio of the number of triangles within the
network to the number of connected triples; the larger
this number, the greater the clustering. Similar
measures can be constructed by looking at squares or
larger loops.

Finally, a network (or graph) is said to be connected
if any individual (or node) can be reached from any
other by following network links; epidemiologically,
this is equivalent to infection being able to reach the
entire population from any starting point, which is the
case if

PN
mZ1 A

m (or equivalently, limm/Nð1CAÞm)
has no zero terms. Zeros in either of these matrices
demonstrates that the network is divided into two or
more separated components, none of which has any
links to any of the others.

The intuition and understanding from the social
sciences coupled with the elegant formalism from graph
theory provide a powerful framework within which to
investigate mixing networks in epidemiology. However,
the research in graph theory and social sciences
generally considers an understanding of the network
itself to be the ultimate goal; in contrast, epidemiolo-
gical interest is focused on the spread of the disease, in
which case the network forms a constraining back-
ground to the transmission dynamics.

Applied questions of long-term disease spread or the
risk of an epidemic for a given mixing network have
many similarities to results in percolation theory
(Mollison 1977; Grassberger 1983; Grimmett 1989;
Newman 2002). This area of mathematics examines
the formation of connected structures within networks.
In its most familiar form (bond percolation), a square
lattice of sites is considered, in which neighbouring sites
are randomly connected with some probability, p; when
this probability is high enough it is possible to find a
path from one side of the lattice to another. Edges
within this latticemay be treated as transmission events
from individual to individual, with p representing a
transmission probability. Thus, the size of connected
clusters that emerge in percolation models relate to the
expected size of an epidemic within the network;
however, percolation models do not provide a dynamic
description of the epidemic process. Another model
(site percolation) places individuals at lattice points
with probability p—this may be considered as a
representation of epidemics in a partially susceptible
population. In both cases, the value of p at which large
connected structures emerge is significant, for it is at
this point that major epidemics can occur (Grimmett
1989). Although lattices may not be realistic represen-
tations of human mixing networks, the concepts
underlying percolation theory are immediately relevant
to epidemiology, and many of these ideas and the
tools for understanding them have been applied in
epidemiological settings (Mollison 1977; Grassberger
1983; Newman & Watts 1999; Newman 2002; Warren
et al. 2002).
3. FINDING ‘REAL’ NETWORKS

Determining a complete mixing network requires
knowledge of every individual in a population and
every relationship between individuals. For all but the
J. R. Soc. Interface (2005)
smallest populations, this is an impractically time-
consuming task. The sheer volume of data required
provides the first difficulty, but even if an entire
population can be sampled (Bearman et al. 2004),
there are other issues that complicate network
evaluation. Firstly, because individuals may have
many contacts, problems of recall are probable.
Secondly, evaluation of contacts requires personal
information and, especially for sexual mixing net-
works, this may not always be readily volunteered.
These two problems concern data collection, but more
fundamental is the question of how a network link is
defined. If networks are to be used for epidemiological
purposes, then connections should only be included if
they describe relationships capable of permitting the
transfer of infection. However, in many cases, it is not
clear how to define such a relationship; how much
contact is it necessary to have with someone with
influenza, say, before there is a measurable risk? The
issue is likely to be most acute for infections spread by
casual contact, where some degree of arbitrariness is
inevitable, but even in cases where link definition
should be more straightforward, such as for STDs,
there are complications. Different types of relationship
bestow different risks and judgments must be made
about which sorts of transmission routes are likely to
be significant in any given epidemic. One way around
this problem is to consider valued networks in which
links are not merely present or absent but are weighted
according to their strength (Wasserman & Faust
1994); however, this leads to further problems with
data collection and complexity of models, and is
usually impractical unless considering only a small
number of possible weights—for instance, monog-
amous and casual sexual relationships (Kretzschmar
et al. 1996) or limited social settings (Eubank et al.
2004; Meyers et al. 2005).

At this point, we observe that because different
infections are passed by different routes, a mixing
network is necessarily disease specific. Thus, a network
used in the context of HIV transmission would differ
from one used to examine influenza; in such a case, we
might expect the networks to be nested, with the links
relevant for HIV spread to be a subset of those
important for influenza. However, even for two airborne
infections (such as influenza and measles), different
networks may be appropriate because differing levels of
interaction will be required to constitute a contact. The
problems with network definition and measurement
mean that any mixing networks that are obtained will
depend on the assumptions and protocols of the data
collection process. Nevertheless, those networks that
have been explored provide important insights into
interaction patterns and their implication for disease
transmission.

Three main techniques have been employed to
gather network information: infection tracing, complete
contact tracing, and diary-based studies (figure 1).
These have their own advantages and disadvantages,
and the method applied depends on the resources
available and the purpose for which the data is being
gathered.



Figure 1. For the same simple network (thin grey lines), the type of network information that is achieved using infection tracing
(left), contact tracing (middle) and diary-based studies (right). For infection and contact tracing, circles represent infected
individuals, while the square shows the primary infectious case; for the diary-based study, those taking part are shown with open
circles. For infection tracing, only sources of infection are traced and some individuals (e.g. top left) have multiple potential
sources of infection. For contact tracing, a proportion of all contacts from infectious individuals are traced. Finally, with a diary-
based study, although almost all links can be traced, the lack of a unique identifier means that often links from different
individuals cannot be connected.
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3.1. Infection tracing

After an epidemic, such as the recent cases of SARS in
Hong Kong and Canada, field-based epidemiologists
place considerable emphasis on determining the source
of infection for each case (Haydon et al. 2003; Riley
et al. 2003). In this way, each infected individual is
linked to one other from whom they caught the
infection, and additionally, to a variable number of
others to whom they transmitted the disease, thus
providing a ‘transmission network’ consisting of all the
links through which infection spread in a single
outbreak. Because all connections represent actual
transmission events, this method does not suffer from
problems with the definition of links; however, inter-
actions that did not happen to lead to the transmission
of infection in this particular case will be omitted from
the network. The networks observed are therefore liable
to be tree-like, containing no loops, and this precludes
any worthwhile evaluation of the more complex net-
work measures. However, since such tracing is often an
integral component of disease control policies, these
partial samples of the network can be generated a little
extra cost, and provide useful information about the
individuals most involved in disease transmission
(Riley et al. 2003).
3.2. Contact tracing

Contact tracing aims to identify all potential trans-
mission contacts from a source individual (known as an
‘index case’). This reveals a new set of individuals who
might be infected and who can be the subject of further
tracing effort (Klovdahl 1985; Kretzschmar et al. 1996;
Ghani et al. 1997; Ghani & Garnett 1998; Müller et al.
2000; Wylie & Jolly 2001; Potterat et al. 2002; Eames &
Keeling 2003; Fraser et al. 2004). Because it aims to
identify potential transmission routes, contact tracing
suffers from network definition issues; in addition, it is
time consuming and relies on individuals providing
complete and accurate data about personal
relationships.
J. R. Soc. Interface (2005)
Contact tracing has been commonly applied not as a
network evaluation device but as a control tool, most
often in the case of STDs, where a contact is most easily
defined (Klovdahl 1985; Rothenberg et al. 1998;
Wylie & Jolly 2001; Potterat et al. 2002). In such
instances, the purpose of contact tracing is to identify
asymptomatic infected individuals who can then be
treated or quarantined (Eichner 2003; Fraser et al.
2004). This means that the contacts of uninfected
individuals are not sought, and thus only a subset of the
full mixing network will be uncovered; we might expect
a partial network with many dead-ends consisting of
uninfected individuals (Ghani & Garnett 1998;Wylie &
Jolly 2001; Potterat et al. 2002). Although a network
uncovered via contact tracing is not complete and has
biases, it is generally most detailed in regions of the
network with the highest disease burden; thus the
network data obtained is of immediate epidemiological
relevance (Ghani et al. 1997; Jolly & Wylie 2002).

Several good examples of sexual mixing networks
determined through contact tracing can be found in
the literature (Bearman et al. 2004; De et al. 2004).
Long-term and large-scale data collection has enabled
large portions of sexual networks from Manitoba,
Canada, and from Colorado Springs, USA, to be
traced (Woodhouse et al. 1994; Rothenberg et al.
1998; Wylie & Jolly 2001; Jolly & Wylie 2002;
Potterat et al. 2002). These networks highlight the
heterogeneities present in sexual networks and show
the importance of core groups (interconnected groups
with high numbers of contacts) and ‘long-distance’
connections (linking otherwise distant parts of the
network) in disease transmission.

Although infectious diseases motivate a significant
proportion of network evaluation studies, social net-
works have been sought for other purposes, and these
can also be useful for epidemiological modelling.
Pioneering studies of social networks were carried out
in Australia in the 1970s (Klovdahl et al. 1977), where
study participants were questioned about their social
connections and by tracing some of these contacts a
picture of a city-wide network was obtained. This



Networks and epidemic models M. J. Keeling and K. T. D. Eames 299
demonstrated the importance of setting, whether
geographical, work- or leisure-related, in the formation
of partnerships. Snowball sampling schemes that follow
a proportion of links are a form of contact tracing that is
independent of infection status (Ghani & Garnett
1998); they are therefore capable of giving information
about uninfected parts of mixing networks that would
not be sampled from in conventional contact tracing.
3.3. Diary-based studies

The determination of networks through tracing is
highly labour intensive and relies on the subject
individuals being able to recall and willing to recount
their contacts. In contrast, in diary-based studies
subjects record contacts as (or shortly after) they
occur, shifting the work-load from the researcher to the
subject and allowing a larger number of individuals to
be sampled in detail (Edmunds et al. 1997a,b). The
change of focus from the population approach of other
tracing methods to the individual-level scale of diary-
based studies has some associated problems. Firstly,
the data collection is at the discretion of the subjects,
thus the definition of a close contact may not be the
same for all individuals. Secondly, while this method
gathers detailed individual-level data, it may be
difficult for the co-ordinating researcher to link this
information into a comprehensive network, as the
names or identifiers of contacts may not be accurately
or uniquely recorded. Indeed, unless the subject
individuals come from a coherent group, such as work
colleagues or residents in a single small community, it is
probable that the study will result in a large number of
unconnected sub-networks, each one representing the
personal network of a few individuals (Klovdahl 1985;
Scott 1991; Wasserman & Faust 1994).

A form of diary-based study is currently occurring
in the livestock industry in the UK (National Audit
Office 2003). All cattle have a unique identifying ear
tag, and recent legislation requires that all movements
of cattle are recorded. The records derived provide a
comprehensive dynamic network for diseases of cattle
that are spread by animal-to-animal contact and can
therefore be used to investigate patterns of livestock
infections (Gilbert et al. 2005). Again, the great
advantage of this network is that the responsibility
for collecting the data lies with the individual rather
than the researcher.
4. THE USE OF SIMULATED NETWORKS

While collecting network data is beset with difficulties,
the simulation of disease transmission on networks is
relatively straightforward (Eames & Keeling 2002;
Eubank et al. 2004; Meyers et al. 2005; Read & Keeling
2003; Wallinga et al. 1999; Watts & Strogatz 1998),
relying on the observation that

rateðsusceptible is infectedÞ

Z t!number infectious in neighbourhood: (4.1)

Many good examples exist of simulating sexually
transmitted diseases on networks designed to match
J. R. Soc. Interface (2005)
the available data (Garnett & Anderson 1996; Ghani
et al. 1997; Morris 1997; Potterat et al. 1999; Klovdahl
2001; Rothenberg 2001; Potterat et al. 2002; Liljeros
et al. 2003; Rothenberg 2003; Szendrői & Csányi 2004;
Doherty et al. 2005). This work highlights the
importance of network structure and, in particular,
the role of core groups (interconnected individuals with
a large number of contacts) in the dynamics and
persistence of STDs.

Halloran et al. (2002) attempt the more difficult
problem of simulating an airborne disease outbreak,
which requires a network of social connections
(Edmunds et al. 1997a; Wallinga et al. 1999). The
networks used are generated by computer simulation to
conform to several observed social characteristics.
Populations of 2000 individuals are generated with a
given age distribution and household size that agree
with the values for the United States. Children are
assigned a school, day-care centre or play group where
they interact (and therefore form connections) with
other children. The simulation model is used to
examine the spread of smallpox, and places particular
emphasis on transmission within households and family
groups, which are probably the main routes of
transmission for this disease. Other models (Eubank
et al. 2004; Meyers et al. 2005) attempt similar tasks,
using census data to determine interaction patterns; the
detail of such models requires the estimation of many
parameters—transmission rates in a variety of con-
texts, for instance—which can often only be estimated.
Despite the number of approximations involved, the
inherent stochasticity of such microsimulations allows a
direct estimation of the variability between epidemics.

All network-based simulations are limited by fact
that there is no simple way to ascertain the sensitivity
of the epidemiological results to the details of the
network structure. Such simulations are therefore
always vulnerable to questions of ‘what if?’; for
example, in the model of Halloran et al. (2002), we
may ask whether the network is representative of an
average American community, whether variation
between communities will bias the results if large
population sizes are considered and whether rare but
epidemiologically important contact structures are
missing from the network. It is difficult to answer
such questions or gain an intuitive understanding of
network structure if our experience is limited to
simulations of sampled networks. Therefore, a range
of idealized networks and analytical tools have been
developed that can reveal the elements of network
structure that are important determinants of epidemic
dynamics.
5. IDEALIZED NETWORKS

Several forms of computer-generated networks have
been studied in the context of disease transmission.
Each of these idealized networks can be defined in terms
of how individuals are distributed in space (which may
be geographical or social) and how connections are
formed, thereby simplifying and making explicit the
many and complex processes involved in network
formation within real populations. Here, we review a
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Figure 2. Five distinct network types containing 100 individuals. These are from left to right: random, lattice, small world (top
row), spatial and scale-free (bottom row). A network generated by an exponential random graph model is not shown, as this
flexible framework can encompass a huge variety of network types. For the scale-free network, the bottom right-hand graph
shows the power-law distribution of individuals with a given degree from 1000 replicate networks; for this example, the power-
law exponent is K3.3. The random, spatial and scale-free networks all utilize the same position of individuals, although for the
random and scale-free network, the position of the individuals is irrelevant for forming connections. In all five graphs, the average
number of contacts per individual is approximately four. For the scale-free network, individuals with high numbers of contacts
are represented by larger dots and are shaded grey.
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range of the most popular network types and their
implications for epidemic spread (figures 2 and 3).

5.1. Random networks

In randomnetworks, the spatial position of individuals is
irrelevant, and connections are formed at random
(Bollobás 1985). In the most analytically tractable
version of the random network, each individual has a
fixed number of contacts through which infection can
spread. The random network is therefore characterized
by a lack of clustering and by homogeneity of individual-
level network properties. The dynamics of diseases on
random networks can be studied as a simple branching
process (Diekmann et al. 1998), from which it is found
that both the early growth rate of the disease and the
final epidemic size are reduced when compared with the
random-mixing model.

Growth rate in random networkZ tðnK2ÞKg;

growth rate with random mixingZ bKg Z tn̂Kg;

where t is the transmission rate across a contact, n is the
number of contacts in the network and n̂ is the effective
number of contacts per unit time in a random mixing
model. The reduction in the growth rate occurs for two
reasons: firstly, each infectious individual has been
J. R. Soc. Interface (2005)
infected by one of its contacts, reducing the number of
susceptible contacts to nK1; secondly, as an infectious
individual begins to infect its susceptible contacts, it
depletes its local environment, even when population
prevalence is low, and hence limits the rate of disease
spread. These two processes are shared by all epidemics
on networks (although the strength of the effects may
vary). Analytical results derived from the study of
simple networks can allow us to develop an intuitive
understanding of the effects of more complex social
structures on disease spread.

An alternative formulation of the random network is
to connect any two nodes with probability p. This leads
to a network with an approximately Poisson degree
distribution and a mean number of contacts per node of
�nZpðNK1Þ, where N is the total number of nodes. In
such a network, the growth rate is still reduced:

growth rate in random Poisson network

Z t
ð�nK1Þ�n
ð�nC1Þ Kg;

however, given this effective rescaling, the epidemic
dynamics for this particular network are analogous to a
an SIR epidemic in a randomly mixed population
(Barbour & Mollison 1990).
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Figure 3. Typical SIR epidemics on the five network types shown in figure 2. These are from left to right: random, lattice, small
world (top row), spatial and scale-free (bottom row). Each graph shows 100 epidemic curves (grey) together with the average for
all major epidemics (black) for a single example of each network type; therefore, all variability within each graph is a result of the
stochastic nature of transmission and not variation in the network. All five networks contain 10 000 individuals, although all
individuals are not necessarily interconnected as part of a giant component. For the spatial and scale-free networks,
approximately 88 and 74% are part of the giant component and can therefore potentially become infected. For these networks,
the proportion of infectious individuals has been rescaled as a fraction of the giant component. In all networks, the average
number of contacts per individual is approximately 4, although for the scale-free network, there is considerable heterogeneity
with one individual having 85 contacts. For consistency, the small-world network is formed from a two-dimensional lattice (not a
one-dimensional circle as shown in figure 2) with 10 additional random ‘long-range’ contacts. The dashed lines show the effect on
the mean epidemic of increasing the number of long-range contacts to 20 and 100. (tZ1, gZ0.5, bZdZ0).
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5.2. Lattices

Lattice models are based on very different assumptions.
Individuals are positioned on a regular grid of points,
usually in two dimensions, and adjacent individuals are
connected; therefore, contacts are localized in space.
Lattices are homogeneous at the individual level and
because of the localized nature of connections are highly
clustered. In general, transmission through lattices is
studied by computer simulation, with the contact
process (Harris 1974) and the forest-firemodel (Bak et al.
1990) being the two best-known examples. The contact
process is an abstraction of the SISmodel, with sites that
can be characterized as ‘on’ or ‘off’. The forest-firemodel
has strong parallels with the SIR disease model: trees
burn, leaving empty sites that can be recolonized, which
can be interpreted as SIR infection with births.

In common with all networks, lattice models show a
reduced initial growth of infection compared with
random-mixing models, although this effect is much
stronger than in the random networks because the
spatial clustering of contacts causes a more rapid
saturation of the local environment. In general, lattice
models also display a wave-like spread of infection, such
that, from an initial seed, infection spreads out in a
roughly circular manner. Lattice-based models capture
many of the aspects of the spread on infection across a
J. R. Soc. Interface (2005)
spatially extended landscape where wave-like pro-
gression is common (Mollison 1977; Grenfell et al.
2001). The spatial integrity of the wavefronts relies on
the highly localized nature of transmission, and the
inclusion of long-range connections (described as
‘sparks’ or ‘lightening strikes’ in forest fire models) can
lead to colliding waves and a much more rapid spread of
infection through the system.

Another common feature of lattice models is the
existence of self-organized criticality and power-law
scaling, although such features can also be observed for
other forms of network. The dynamics of forest-fire
models are considered examples of self-organized
criticality, whereby critical behaviour and power-law
scalings exist for a wide range of parameter values (Bak
et al. 1990). In particular, the frequency distributions of
both epidemic sizes and epidemic durations obey a
power-law. Rhodes and co-workers (Rhodes &
Anderson 1997; Rhodes et al. 2003) have used this
scaling to explain the observed behaviour of three
childhood infections, measles, whooping cough and
mumps in the Faroe Islands. The observed case reports
were found to closely match the power-law distribution:

probabilityðepidemic sizeRsÞfsKa;

with aZ0.265 for measles, aZ0.255 for whooping
cough and aZ0.447 for mumps. The invariance of
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this scaling to precise parameter values also has
practical implications for the behaviour of infection,
and may explain why moderate levels of vaccination
against measles (from 1970 to the late 1980s) did not
significantly change the pattern of temporary extinc-
tions (Keeling 1997).
5.3. Small-world networks

Lattices display high clustering but long path lengths,
that is, it takes many steps to move between two
randomly selected individuals, whereas random net-
works have short path lengths, since there are many
long-range links, but low clustering. Small-world net-
works, described in the work of Watts & Strogatz
(1998; see also Watts 1999), offer a means of moving
between the rigid arrangement of lattices and the
unstructured connections of random networks. Small
worlds can be formed by adding a small number of
random connections to a lattice. Rare long-range
connections have a surprisingly large effect, allowing
infection to reach all parts of the lattice relatively
quickly—hence the term ‘small world’. Even with a few
long-distance links, there are significant changes in
epidemic behaviour, demonstrating that small differ-
ences in the structure of networks can dramatically
alter the population-level spread of infection. Never-
theless, because these long-range links are rare, the
transmission of infection remains predominantly loca-
lized, so strong saturation effects and wave-like
epidemics are still observed. Both clustering of connec-
tions and long-range transmission events are likely to
be significant factors in disease spread; therefore, small-
world networks are an important epidemiological
concept.

Small-world networks are characterized by high
clustering and short path lengths and have been
observed in a range of biological settings. Human social
networks are thought to be small worlds; indeed, it is in
this context that the expression first came to promi-
nence (Milgram 1967; Travers & Milgram 1969). In
similar settings, small worlds have been observed in the
collaboration networks of scientific authors (Newman
2001) and the co-star networks of film actors (Watts &
Strogatz 1998). On a much smaller scale are gene and
neural networks, which display the high clustering and
low path lengths associated with the small-world model
(Watts & Strogatz 1998).

Disease spread through small-world networks has
received considerable attention from both a theoretical
and more applied context. The high level of clustering
means that most infection occurs locally, but short path
lengths mean that epidemic spread through the net-
work is rapid and disease is unlikely to be contained
within small regions of the population (Watts &
Strogatz 1998). Percolation theory has been applied
to small-world networks to calculate threshold par-
ameter values at which epidemics can take place,
demonstrating that random long-range connections
within the network can dramatically increase the
likelihood of an epidemic (Moore & Newman 2000).
If each individual is linked to its two nearest neighbours
and on average to f randomly chosen other individuals,
J. R. Soc. Interface (2005)
then the critical bond percolation probability is

pc Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C12fC4f2

p
K1K2f

4f
Z 1K4fCOðf2Þ:

In epidemiological terms, if the transmission prob-
ability across a contact is greater than pc, then a large-
scale epidemic is possible.

Long-range contacts lead to increased synchroniza-
tion within the network, with a transition from
independent epidemics in distant parts of the network
to synchronized patterns of infection as path lengths are
reduced (Kuperman & Abramson 2001). The evolution
of pathogen virulence on small-world networks has been
investigated (Boots & Sasaki 1999), and the presence of
long-range links can lead to the emergence of more
virulent infections as the ability to transmit to distant
individuals reduces the cost to a pathogen of wiping out
a local host population. The fact that features of small-
world networks are also present in social mixing
networks means that these results may have impli-
cations for epidemics in human populations. For
example, short path lengths suggest that the spatial
spread of disease is likely to be rapid; effective
containment is therefore liable to require drastic
restrictions on population mixing behaviour.
5.4. Spatial networks

Spatial networks are one of the most flexible forms of
network. Individuals are positioned within a given area
(or volume) and two individuals are connected with a
probability that depends on their separation defined by
a connection kernel. By changing the distribution of
individuals or the kernel, it is possible to generate a
wide variety of networks ranging from highly clustered
lattices to small-world arrangements to globally con-
nected random networks (Eames & Keeling 2002;
Read & Keeling 2003; Keeling 2005). Spatial networks
generally show a reasonably high degree of heterogen-
eity, with the degree distribution often being approxi-
mately Poisson. In addition, when local connections are
favoured, the spatial wave-like spread of infection that
characterizes lattice models is seen.
5.5. Scale-free networks

One of the most standard network measures is of the
degree distribution of individuals. In many observed
networks, this is far from homogeneous; it is often the
case that many individuals have a small number of
neighbours, while a few have significantly more
connections (Albert et al. 1999; Barabási & Albert
1999; Jeong et al. 2000; Liljeros et al. 2001). Small
worlds, random networks and lattice models display
little variation in neighbourhood sizes, while spatial
networks generally have degree distributions that are
approximately Poisson. However, since highly con-
nected individuals (termed super-spreaders) are likely
to be disproportionately important in disease trans-
mission, incorporating such individuals into networks is
necessary if we are to capture the complexities of
disease spread (Hethcote & Yorke 1984; Anderson &
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May 1992). Scale-free networks provide a means of
achieving such extreme levels of heterogeneity.

Scale-free networks can be constructed dynamically
by adding new individuals to a network one by one with
a connection mechanism that mimics the natural
formation of social contacts (Barabási & Albert
1999;Albert et al. 2000; Pastor-Satorras & Vespignani
2001). Each new individual that is added to the
population connects preferentially to individuals that
already have a large number of contacts, which
corresponds to individuals wanting to be friends with
the most popular people. This results in the number of
contacts per individual taking a power-law distri-
bution. This property was initially observed for world-
wide Web connections (Albert et al. 1999), but has also
been reported in power grid networks, graphs of actor
collaborations (Barabási & Albert 1999) and networks
of human sexual contacts (Liljeros et al. 2001).

The extreme heterogeneity in numbers of contacts
displayed by scale-free networks is a feature of
populations that has long been of interest to epidemiol-
ogists. Super-spreaders and core groups play a pivotal
role in the spread and maintenance of infection. It is
important to realize that having many contacts has two
effects; it means that the individual is at greater risk of
infection and, once infected, can transmit the disease to
many others. Core groups of such high-risk individuals
help to maintain sexually transmitted diseases in a
population where the majority are in long-term
monogamous relationships (Hethcote & Yorke 1984),
while in the SARS epidemic, a significant proportion of
all infections were caused by super-spreaders (Riley
et al. 2003). These findings are in agreement with
results from theoretical models of disease spread
through scale-free networks where it has been shown
that the infection is concentrated among individuals
with highest degree (Pastor-Satorras & Vespignani
2001; Newman 2002).

In the preferential attachment model of Barabási &
Albert (1999), the existence of individuals of arbitrarily
large degree means that there is no level of random
vaccination that is sufficient to prevent an epidemic
(Albert et al. 2000; Lloyd&May 2001; Pastor-Satorras&
Vespignani 2001). In contrast, when there is some
upper limit imposed on the degree of individuals
(Rozenfeld et al. 2002), or when a scale-free network
is generated by nearest neighbour attachment within a
lattice (Warren et al. 2002), it becomes possible to
control infection through random vaccination. Tar-
geted vaccination in scale-free networks is extremely
efficient: the dominant role of super-spreaders means
that the vaccination of only a few of these individuals
can be sufficient to prevent an epidemic (Albert et al.
1999; Lloyd &May 2001; Pastor-Satorras & Vespignani
2001), reinforcing standard public-health guidelines.
5.6. Exponential random graph models

Exponential random graph models (also known as
‘p* models’; Frank & Strauss 1986) provide a method of
constructing networks with a given set of properties.
If we are only concerned that the mean degree is
correct, then we can either add a fixed number of edges
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to a set of nodes or add an edge between two nodes with
a fixed probability, p, independent of all other edges.
For instance, if the average degree is �n in a population
of size N, then pZ �n=ðNK1Þ generates a network with
the desired expected number of connections (Bollobás
1985). However, such networks always display low
clustering (since connected individuals are unlikely to
share a neighbour), low path lengths and a binomial
degree distribution.

When an alternative distribution of higher-order
network structures is required, exponential random
graph models allow networks with the required proper-
ties to be created. Exponential random graph models
have the simple property that the probability of
connection between two nodes is independent of the
connection between any other pair of distinct nodes.
This allows the likelihood of any nodes being connected
to be calculated conditional on the graph having certain
network properties. Techniques such as Markov Chain
Monte Carlo can then be used to create a range of
plausible networks that agree with a wide variety of
information collected on network structures even if the
complete network is unknown (Handcock & Jones 2004;
Robins et al. 2004; Snijders 2001).
6. PAIRWISE APPROXIMATIONS

The various network types mentioned above are
designed as caricatures of real networks. As such,
they focus on certain aspects of the population mixing
behaviour (such as low path lengths, or heterogeneous
degree distributions) while ignoring others. Indeed,
some observed networks fall into several of the idealized
categories—authorship networks having both small-
world and scale-free characteristics, for instance
(Newman 2001). We now turn to an alternative
modelling approach—pairwise approximations—that
attempts to model the spread of infection on generic
networks where higher-order structure has been
ignored. Rather than modelling a network of inter-
actions in its entirety, pairwise models, as the name
suggests, examine the various types of connected pairs
found within a population (Keeling et al. 1997; Boots &
Sasaki 1999; Keeling 1999; Ferguson & Garnett 2000).

For the motivation behind pairwise models, we
return to the simple SIS model (equation (1.2)); here,
the infection term is written as lS, with l given by the
transmission rate multiplied by the number of infec-
tious contacts. The random-mixing model approxi-
mates the infection term as lSZtnðI=NÞS, but
instead, this can be written exactly as t[SI ], where
[SI ] is the number of partnerships between susceptible
and infected individuals. Within the pairwise formu-
lation, the numbers of different pair types are included
as variables rather than approximated in terms of the
numbers of individuals. For example, the number of S–I
pairs can change by infection from outside the pair,
infection within the pair, or recovery; in an SIS model,
this leads to

d½SI �
dt

ZKt½SI �Ct½SSI �Kt½ISI �Cg½II �Kg½SI �;

(6.1)
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where [SSI ] is the number of triples of individuals
consisting of a central susceptible individual with both
an infected and a susceptible contact. Iterating the
system requires knowledge of the numbers of the
various triples that appear, evaluated using a moment
closure approximation:

½ABC �z ½AB�½BC �ðnK1Þ
n½B� ; (6.2)

where A, B and C represent any of the disease states
and n is the degree of the central individual in the triple.
This identity allows the system to be closed at the level
of pairs.

Parameterization of the pairwise model requires
knowledge of the distribution of pair types in the
population, which is equivalent to a ‘who mixes with
whom’ matrix as used in mean-field models (Anderson &
May 1992; Eames & Keeling 2002). Thus, the pairwise
approach makes much better use of routinely available
mixing data, which can be obtained by any of the
network determination methods outlined above. The
advantage of this method is that the complete network
is not required so long as the pairs within the network
are well sampled.

By including connected individuals as its basic
variables, the pairwise model can capture the corre-
lations between neighbouring individuals that emerge
in the system (Keeling et al. 1997). For example,
because infection is a local process, infected individuals
tend to have infected neighbours (by whom they were
infected or to whom they have transmitted infection). It
is this localized depletion of susceptibles that is the
main difference between random-mixing and network
models, and pairwise methods include this explicitly.
Indeed, pairwise models have been shown to be
accurate approximations of many network-based epi-
demics (Eames & Keeling 2002). However, although
pairwise models can be adapted to allow for clustering
(Keeling et al. 1997), they generally do not take into
account higher order network structures such as loops,
and so are generally less accurate when network
connections are strongly localized.

Pairwise models have been used to examine a number
of epidemiological issues: fade-out and critical commu-
nity size for childhood infections (Keeling et al. 1997);
evolution of pathogen virulence (Boots & Sasaki 1999);
and spread and control of sexually transmitted diseases
in heterogeneous populations (Ferguson & Garnett
2000; Eames &Keeling 2002). They have also been used
to provide real-time predictions during the 2001 foot
and mouth epidemic in the UK (Ferguson et al. 2001).
While all of these problems could have been addressed
through detailed simulation, the differential equation
formulation of pairwise models makes them far more
amenable to rapid parameterization and analytic study,
allowing some rigorous results to be proved.
7. EMERGENT NETWORKS

All of the approaches described thus far have assumed
that there is some structure behind social interactions;
this structure, the mixing network, determines the
relationships that are permitted and the individuals
J. R. Soc. Interface (2005)
capable of transmitting infection to each other. The
concept of networks is an appealing one and agrees with
our ideas of how societies operate. An alternative
approach, used in STD modelling, is to return to
something more akin to randomly mixing models, in
which any two individuals can potentially interact, but
to impose predominantly monogamous partnerships
(Kretzschmar et al. 1996; Dietz & Hadeler 1988;
Ghani & Garnett 2000). Such partnership models
have many things to recommend them as STD
modelling tools but, in the context of networks, they
are of interest because if all partnerships over some time
period are recorded then a network of historical
connections emerges.

The emergent network generated from partnership
models can be used to test which network properties,
such as number of partnerships, concurrent relation-
ships or network position, are epidemiologically
important. For instance, in the modelling approach of
Ghani & Garnett (2000), an individual’s risk of both
acquiring and transmitting infection was found to
depend primarily on the number of partners but was
also strongly affected by partnership concurrency and
distance from other individuals within the network. It
was also seen that somewhat different factors deter-
mined an individual’s likelihood of acquiring and of
transmitting infection. Broadly speaking, local network
measures matter more for acquisition of infection and
global measures for transmission. Neighbourhood size,
or degree, determines the likelihood of an individual
acquiring infection whereas more complex network
properties, such as the number of paths on which an
individual, lies are significant determinants for the
importance of an individual as a spreader of infection.
8. THE FUTURE

Networks have an important role to play in shaping our
understanding of epidemiological processes. The
restriction of interactions to those within a network,
rather than an entire population, slows and reduces the
spread of infection; therefore, if we are attempting to
predict population-level dynamics from individual-level
observations, then it is vitally important that network
structure is taken into account. In addition, many
methods of control, such as contact tracing or ring
vaccination, can only be accurately captured and
modelled using network-based approaches. The emer-
gence of network modelling tools allows these more
sophisticated interventions to be studied and enables
different strategies to be tested in an artificial
environment.

The work using idealized networks and pairwise
approximations has highlighted many of the differences
between standard random-mixing disease models and
disease spread through networks. The aim of such
approaches should be to develop an intuitive under-
standing of network-based epidemics and the effects of
network structure. Clearly, the ultimate goal is a set of
robust network statistics that allow us to predict
epidemic dynamics when the population structure
deviates from the random-mixing ideal.
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Most of the networks discussed here have been
static—the connections have remained constant over
time. This contrasts with our intuitive perception of
human interactions breaking and forming. However,
when these networks are used for epidemic modelling,
this is not necessarily a problem. Provided that the
turnover of connections is slow relative to the time-
scale of the pathogen, the network will change little
during the epidemic phase of infection. If the links
represent close social or family relationships, or sexual
partnerships, this might be expected to be the case.
However, when long-term results are sought, care needs
to be taken over changes in network structure.
Furthermore, the behaviour of a population may
change markedly as a consequence of an outbreak of
infection, which needs to be considered when designing
interventions. Although microsimulation models
(Eubank et al. 2004; Meyers et al. 2005) and partnership
models (Dietz & Hadeler 1988; Kretzschmar et al. 1996;
Ghani & Garnett 2000; Eames & Keeling 2004) are
designed to allow for changes within a network, this is
not the norm and remains an important challenge for
the future.

Finally, recently advances in mobile phone technol-
ogy and GPS location mean that it may soon be possible
to accurately track the movement of people in real time.
This would allow us to build full and comprehensive
networks for many airborne diseases, and also to track
the changing network structure in the face of a severe
epidemic, such as an influenza pandemic or bioterrorist
attack, when behaviour may be radically different from
the norm.
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