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In an important paper, Newman [Phys. Rev. E 66, 016128 (2002)] claimed that a general network-based
stochastic Susceptible-Infectious-Removed (SIR) epidemic model is isomorphic to a bond percolation model,
where the bonds are the edges of the contact network and the bond occupation probability is equal to the
marginal probability of transmission from an infected node to a susceptible neighbor. In this paper, we show
that this isomorphism is incorrect and define a semidirected random network we call the epidemic percolation
network that is exactly isomorphic to the SIR epidemic model in any finite population. In the limit of a large
population, (i) the distribution of (self-limited) outbreak sizes is identical to the size distribution of (small)
out-components, (ii) the epidemic threshold corresponds to the phase transition where a giant strongly con-
nected component appears, (iii) the probability of a large epidemic is equal to the probability that an initial
infection occurs in the giant in-component, and (iv) the relative final size of an epidemic is equal to the
proportion of the network contained in the giant out-component. For the SIR model considered by Newman,
we show that the epidemic percolation network predicts the same mean outbreak size below the epidemic
threshold, the same epidemic threshold, and the same final size of an epidemic as the bond percolation model.
However, the bond percolation model fails to predict the correct outbreak size distribution and probability of
an epidemic when there is a nondegenerate infectious period distribution. We confirm our findings by com-
paring predictions from percolation networks and bond percolation models to the results of simulations. In the
Appendix, we show that an isomorphism to an epidemic percolation network can be defined for any time-

homogeneous stochastic SIR model.
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I. INTRODUCTION

In an important paper, Newman studied a network-based
Susceptible-Infectious-Removed (SIR) epidemic model in
which infection is transmitted through a network of contacts
between individuals [1]. The contact network itself is a ran-
dom undirected network with an arbitrary degree distribution
of the form studied by Newman, Strogatz, and Watts [2].
Given the degree distribution, these networks are maximally
random, so they have no small loops and no degree correla-
tions in the limit of a large population [2—4].

In the stochastic SIR model considered by Newman, the
probability that an infected node i makes infectious contact
with a neighbor j is given by T;;=1-exp(-8;;7;), where §;; is
the rate of infectious contact from i to j and 7; is the time that
i remains infectious. (We use infectious contact to mean a
contact that results in infection if and only if the recipient is
susceptible.) The infectious period 7; is a random variable
with the cumulative distribution function (CDF) F(7), and
the infectious contact rate §;; is a random variable with the
CDF F(B). The infectious periods for all individuals are in-
dependent and identically distributed (IID), and the infec-
tious contact rates for all ordered pairs of individuals are IID.

Under these assumptions, Newman claimed that the
spread of disease on the contact network is exactly isomor-
phic to a bond percolation model on the contact network
with bond occupation probability equal to the a priori prob-
ability of disease transmission between any two connected
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nodes in the contact network [1]. This probability is called
the transmissibility and denoted by T:

T=(T;)= f J (1 - e Pim)dF(B,)dF(T)). (1)
0o Jo

Newman used this bond percolation model to derive the dis-
tribution of finite outbreak sizes, the critical transmissibility
T. that defines the epidemic (i.e., percolation) threshold, and
the probability and relative final size of an epidemic (i.e., an
outbreak that never goes extinct).

As a counterexample, consider a contact network where
each subject has exactly two contacts. Assume that (i) 7;
=71,>0 with probability p and 7;,=0 with probability 1-p
and (ii) B;;=/8,>0 with probability one for all ij. Under the
SIR model, the probability that the infection of a randomly
chosen node results in an outbreak of size one is p;=1-p
+pe2P0™, which is the sum of the probability 1—p that 7
=0 and the probability pe~2#0™ that 7=, and disease is not
transmitted to either contact. Under the bond percolation
model, the probability of a cluster of size one is pi”=(1
—p+pePo7)2 corresponding to the probability that neither
of the bonds incident to the node are occupied. Since

pr=pi"=p(1=p)(1 = e o),

the bond percolation model correctly predicts the probability
of an outbreak of size one only if p=0 or p=1. When the
infectious period is not constant, it underestimates this prob-
ability. The supremum of the error is 0.25, which occurs
when p=0.5 and 75— . In this limit, the SIR model corre-
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sponds to a site percolation model rather than a bond perco-
lation model.

When the distribution of infectious periods is nondegen-
erate, there is no bond occupation probability that will make
the bond percolation model isomorphic to the SIR model. To
see why, suppose node i has infectious period 7; and degree
n; in the contact network. In the epidemic model, the condi-
tional probability that i transmits infection to a neighbor j in
the contact network given 7; is

T,.= f ’ (1 - e Pim)dF(B;)). (2)
0

Since the contact rate pairs for all n; edges incident to i are
IID, the transmission events across these edges are (condi-
tionally) independent Bernoulli (7',) random variables; but
the transmission probabilities are strictly increasing in 7;, SO
the transmission events are (marginally) dependent unless
T;= Ty With probability one for some fixed 7. In contrast, the
bond percolation model treats the infections generated by
node i as n; (marginally) independent Bernoulli (7) random
variables regardless of the distribution of 7;. Neither counter-
example assumes anything about the global properties of the
contact network, so Newman’s claim cannot be justified as
an approximation in the limit of a large network with no
small loops.

In Sec. II, we define a semidirected random network
called the epidemic percolation network and show how it can
be used to predict the outbreak size distribution, the epi-
demic threshold, and the probability and final size of an epi-
demic in the limit of a large population for any time-
homogeneous SIR model. In Sec. III, we show that the
network-based stochastic SIR model from [1] can be ana-
lyzed correctly using a semidirected random network of the
type studied by Bogufid and Serrano [3]. In Sec. IV, we show
that it predicts the same epidemic threshold, mean outbreak
size below the epidemic threshold, and relative final size of
an epidemic as the bond percolation model. In Sec. V, we
show that the bond percolation model fails to predict the
distribution of outbreak sizes and the probability of an epi-
demic when the distribution of infectious periods is nonde-
generate. In Sec. VI, we compare predictions made by epi-
demic percolation networks and bond percolation models to
the results of simulations. In the Appendix, we define epi-
demic percolation networks for a very general time-
homogeneous stochastic SIR model and show that their out-
components are isomorphic to the distribution of possible
outcomes of the SIR model for any given set of imported
infections.

II. EPIDEMIC PERCOLATION NETWORKS

Consider a node i with degree n; in the contact network
and infectious period 7;. In the SIR model defined above, the
number of people who will transmit infection to i if they
become infectious has a binomial (n;,7) distribution regard-
less of ;. If i is infected along one of the n; edges, then the
number of people to whom i will transmit infection has a
binomial (n;,—1, TT,-) distribution. In order to produce the cor-
rect joint distribution of the number of people who will
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transmit infection to i and the number of people to whom i
will transmit infection, we represent the former by directed
edges that terminate at i and the latter by directed edges that
originate at i. Since there can be at most one transmission of
infection between any two persons, we replace pairs of di-
rected edges between two nodes with a single undirected
edge.

Starting from the contact network, a single realization of
the epidemic percolation network can be generated as fol-
lows.

(1) Choose a recovery period 7; for every node i in the
network and choose a contact rate §;; for every ordered pair
of connected nodes i and j in the contact network.

(2) For each pair of connected nodes i and j in the contact
network, convert the undirected edge between them to a di-
rected edge from i to j with probability (1—e ?i%)e #ii%, to a
directed edge from j to i with probability ¢~Pii(1—ePii%),
and erase the edge completely with probability e=Aii%i=Bii%,
The edge remains undirected with probability (1—e%ii7%)(1
—e Bii).

The epidemic percolation network is a semidirected ran-
dom network that represents a single realization of the infec-
tious contact process for each connected pair of nodes, so 4™
possible percolation networks exist for a contact network
with m edges. The probability of each possible network is
determined by the underlying SIR model. The epidemic per-
colation network is very similar to the locally dependent ran-
dom graph defined by Kuulasmaa [5] for an epidemic on a
d-dimensional lattice. There are two important differences:
First, the underlying structure of the contact network is not
assumed to be a lattice. Second, we replace pairs of (occu-
pied) directed edges between two nodes with a single undi-
rected edge so that its component structure can be analyzed
using a generating function formalism.

In the Appendix, we prove that the size distribution of
outbreaks starting from any node in a time-homogeneous
stochastic SIR model is identical to the distribution of its
out-component sizes in the corresponding probability space
of percolation networks. Since this result applies to any time-
homogeneous SIR model, it can be used to analyze network-
based models, fully mixed models (see [6]), and models with
multiple levels of mixing.

A. Components of semidirected networks

In this section, we briefly review the structure of directed
and semidirected networks as discussed in [3,4,7,8]. In the
next section, we relate this to the possible outcomes of an
SIR model.

The indegree and outdegree of node i are the number of
incoming and outgoing directed edges incident to i. Since
each directed edge is an outgoing edge for one node and an
incoming edge for another node, the mean indegree and out-
degree are equal. The undirected degree of node i is the
number of undirected edges incident to i. The size of a com-
ponent is the number of nodes it contains and its relative size
is its size divided by the total size of the network.

The out-component of node i includes i and all nodes that
can be reached from i by following a series of edges in the
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FIG. 1. Schematic diagram of the giant components, tendrils,
and tubes of a supercritical semidirected network. Adapted from
Broder et al. [7] and Dorogovtsev et al. [8].

proper direction (undirected edges are bidirectional). The in-
component of node i includes i and all nodes from which i
can be reached by following a series of edges in the proper
direction. By definition, node i is in the in-component of
node j if and only if j is in the out-component of i. Therefore
the mean in- and out-component sizes in any (semi-)directed
network are equal.

The strongly connected component of a node i is the in-
tersection of its in- and out-components; it is the set of all
nodes that can be reached from node i and from which node
i can be reached. All nodes in a strongly connected compo-
nent have the same in-component and the same out-
component. The weakly connected component of node i is
the set of nodes that are connected to i when the direction of
the edges is ignored.

For giant components, we use the definitions given in
[8,9]. Giant components have asymptotically positive rela-
tive size in the limit of a large population. All other compo-
nents are “small” in the sense that they have asymptotically
zero relative size. There are two phase transitions in a semi-
directed network: One where a unique giant weakly con-
nected component (GWCC) emerges and another where
unique giant in-, out-, and strongly connected components
(GIN, GOUT, and GSCC) emerge. The GWCC contains the
other three giant components. The GSCC is the intersection
of the GIN and the GOUT, which are the common in- and
out-components of nodes in the GSCC. Tendrils are compo-
nents in the GWCC that are outside the GIN and the GOUT.
Tubes are directed paths from the GIN to the GOUT that do
not intersect the GSCC. All tendrils and tubes are small com-
ponents. A schematic representation of these components is
shown in Fig. 1.

B. Epidemic percolation networks and epidemics

An outbreak begins when one or more nodes are infected
from outside the population. These are called imported infec-
tions. The final size of an outbreak is the number of nodes
that are infected before the end of transmission, and its rela-

PHYSICAL REVIEW E 76, 036113 (2007)

tive final size is its final size divided by the total size of the
network. In the epidemic percolation network, the nodes in-
fected in the outbreak can be identified with the nodes in the
out-components of the imported infections. This identifica-
tion is made mathematically precise in the Appendix.

Informally, we define a self-limited outbreak to be an out-
break whose relative final size approaches zero in the limit of
a large population and an epidemic to be an outbreak whose
relative final size is positive in the limit of a large population.
There is a critical transmissibility 7. that defines the epi-
demic threshold: The probability of an epidemic is zero
when T<T,, and the probability and final size of an epi-
demic are positive when 7>T, [1,10-12].

If all out-components in the epidemic percolation network
are small, then only self-limited outbreaks are possible. If the
percolation network contains a GSCC, then any infection in
the GIN will lead to the infection of the entire GOUT. There-
fore the epidemic threshold corresponds to the emergence of
the GSCC in the percolation network. For any finite set of
imported infections, the probability of an epidemic is equal
to the probability that at least one imported infection occurs
in the GIN. The relative final size of an epidemic is equal to
the proportion of the network contained in the GOUT. Al-
though some nodes outside the GOUT may be infected (e.g.,
nodes in tendrils and tubes), they constitute a finite number
of small components whose total relative size is asymptoti-
cally zero.

III. ANALYSIS OF THE SIR MODEL

To analyze the SIR model from [1], we first calculate the
probability generating function (PGF) of the degree distribu-
tion of the corresponding epidemic percolation network.
Then we use methods developed by Bogufid and Serrano [3]
and Meyers et al. [4] to calculate the in- and out-component
size distributions and the relative sizes of the GIN, GOUT,
and GSCC.

A. Degree distribution

If p, is the probability that a node has degree n in the
contact network, then

G(2)= 2 p2"

n=1

is the PGF for the degree distribution of the contact network.
If pji, is the probability that a node in the percolation net-
work has j incoming edges, k outgoing edges, and m undi-
rected edges, then

G(x’y’”) = E 2 E pjkmxjykum

j=0 k=0 m=0

is the PGF for the degree distribution of the percolation net-
work. Suppose nodes i and j are connected in the contact
network with contact rates (3;;,8;;) and infectious periods 7;
and 7;. Let g(x,y,u| B;j,Bji» 7;» 7;) be the conditional PGF for
the number of incoming, outgoing, and undirected edges in-
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cident to i that appear between i and j in the percolation
network. Then

Bij» Bjis i 7j) = € P Fii% 4+ ¢Pii7i(1 — e~ PiiTi)x
+ (1 = e Pim)ePiiTiy
+ (1 = e Pim)(1 - e PiT)u.

glx,y,u

Given 7;, the conditional PGF for the number of incoming,
outgoing, and undirected edges incident to i that appear in
the percolation network between i and any neighbor of i in
the contact network is

glx,y,u

)
L[ s
0 0 0

=(1=T,)(1=T) +(1 = T)Tx+T,(1 = T)y + T, Tu.
(3)

The PGF for the degree distribution of a node with infectious
period 7; is

Ti

Bij» Bji» T T)AF (B))dF(B;)dF (7))

©

Tl) = E Pn(g(X,y,u
n=0

Ti))n: g(g(x’ysu Ti))' (4)

G(x,y,u

Finally, the PGF for the degree distribution of the epidemic
percolation network is

G(x’y’u) = ch G(Xa)’a“ Tl)dF(Tl) (5)
0

If a, b, and ¢ are non-negative integers, let G(”’b"‘)(x, v,
u) be the derivative obtained after differentiating a times
with respect to x, b times with respect to y, and ¢ times with
respect to u. Then the mean indegree and outdegree of the
percolation network are

(kgy=G00(1,1,1) = GO O(1,1,1) = T(1 - )G'(1),
and the mean undirected degree is

(k) =GOOV(1,1,1) =T°G'(1).

B. Generating functions

When the contact network underlying an SIR epidemic
model is an undirected random network with an arbitrary
degree distribution, the PGF of its degree distribution can be
used to calculate the distribution of small component sizes,
the percolation threshold, and the relative sizes of the GIN,
GOUT, and GSCC using methods developed by Boguifid and
Serrano [3] and Meyers et al. [4]. These methods generalize
earlier methods for undirected and purely directed networks
[1,2,13-16]. In this section, we review these results and in-
troduce notation that will be used in the rest of the paper. We
discuss the case of networks with no two-point degree cor-
relations, which is sufficient to analyze the SIR model from
[1].

Let Gf(x, y,u) be the PGF for the degree distribution of a
node reached by going forward along a directed edge, ex-
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cluding the edge used to reach the node. Since the probabil-
ity of reaching any node by following a directed edge is
proportional to its indegree,

1 . |
== 2 V" = =G0 y,u).

Gf(x’y’u) B <kd>j,k,m <kd>

(6)

Similarly, the PGF for the degree distribution of a node
reached by going in reverse along a directed edge (excluding
the edge used to reach the node) is

1
G (x.y,u) = =G x,y,u), (7)
(kg
and the PGF for the degree distribution of a node reached by
going to the end of an undirected edge (excluding the edge
used to reach the node) is

L

P >G<0~0~”(x,y,u). (8)

G, (x,y,u) =

1. Out-components

Let H7"(z) be the PGF for the size of the out-component
at the end of a directed edge and H}"(z) be the PGF for the
size of the out-component at the “end” of an undirected edge.
Then, in the limit of a large population,

Hp"(2) = 2G(1,H"(2), H," (2)), (9a)

H,"(2) = 2G, (1 H}"(2). H}"(2)) . (9)

The PGF for the out-component size of a randomly chosen
node is

H*"(2) = 2G(1,H}"(2), H;"(2)). (10)

The probability that a node has a finite out-component in the
limit of a large population is H*(1), so the probability that a
randomly chosen node is in the GIN is 1-H“(1).

The coefficients on z° in H{"(z) and H;"(z) are G/(1,0,0)
and G,(1,0,0), respectively. Therefore power series for
H}’”’(z) and H"(z) can be computed to any desired order by
iterating Egs. (9a) and (9b). A power series for H**(z) can
then be obtained using Eq. (10). For any z €[0,1], H?”t(z)
and H;"(z) can be calculated with arbitrary precision by it-
erating Egs. (9a) and (9b) starting from initial values y,uq
€[0,1). Estimates of H"(z) and H,"(z) can be used to es-
timate H*"(z) with arbitrary precision.

The expected size of the out-component of a randomly
chosen node below the epidemic threshold is H°*'(1). Tak-
ing derivatives in Eq. (10) yields

H' (1) = 1+ (k) HP™ (1) + (kY H™ (1). (11)

Taking derivatives in Egs. (9a) and (9b) and using the fact
that H;“t(1)=HZ“’(1)=1 below the epidemic threshold yields
a set of linear equations for H;Z”’ '(1) and HJ""(1). These can
be solved to yield
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0,0,1 0,0,1
1+GP0N - gy

H{' (1) = (1= G0 (1 - G0OD) - GPON G010
(12)
and
HO (1) = -G+ G
¢« T (1= GO (1 2 GOOD) - GIODGOTo"
(13)

where the argument of all derivatives is (1,1,1).

2. In-components

The in-component size distribution of a semidirected net-
work can be derived using the same logic used to find the
out-component size distribution, except that we consider go-
ing backwards along directed edges. Let H"(z) be the PGF
for the size of the in-component at the beginning of a di-
rected edge, H"(z) be the PGF for the size of the in-
component at the “beginning” of an undirected edge, and
H™(z) be the PGF for the in-component size of a randomly
chosen node. Then, in the limit of a large population,

H™(z) = 2G,(H"(2),1,H™(2)), (14a)
H,(z) =2G,(H]'(z),1,H,(2)), (14b)
H™(z) = zG(H™(z),1,H"(2)). (14c)

The probability that a node has a finite in-component is
H™(1), so the probability that a randomly chosen node is in
the GOUT is 1-H™(1). The expected size of the in-
component of a randomly chosen node is H™'(1). Power
series and numerical estimates for H"(z), H"(z), and H"(z)
can be obtained by iterating these equations.

The expected size of the out-component of a randomly
chosen node below the epidemic threshold is H?*'(1). Tak-
ing derivatives in Eq. (14¢) yields

H™ (1) =1+ (k)H (1) + (k,H.' (1). (15)

Taking derivatives in Eqgs. (14a) and (14b) and using the fact
that H)'(1)=H.'(1)=1 in a subcritical network yields

1+ G50,0,1) _ Gl(lo,o,l)

()= Gy~ goom) - oGy
(16)
and
Hi (1) = e
0= ([ GEo G~ e - UG
(17)

where the argument of all derivatives is (1,1,1).

3. Epidemic threshold

The epidemic threshold occurs when the expected size of
the in- and out-components in the network becomes infinite.
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This occurs when the denominators in Egs. (12) and (13) and
Egs. (16) and (17) approach zero. From the definitions of
Gix,y.u), G(x,y,u), and G,(x,y,u), both conditions are
equivalent to

(1 _ LG(LLO))(I _ LG«),o,z)) L suongonn
<kd> <ku> <kd><ku>

=0.

Therefore there is a single epidemic threshold where the
GSCC, the GIN, and the GOUT appear simultaneously in
both purely directed networks [1,2,13-16] and semidirected
networks [3,4].

4. Giant strongly connected component

A node is in the GSCC if its in- and out-components are
both infinite. A randomly chosen node has a finite in-
component with probability G(H"(1),1,H"(1)) and a finite
out-component with probability G(1,H;"(1),H,"(1)). The
probability that a node reached by following an undirected
edge has finite in- and out-components is the solution to the
equation [3]

v =G,(H(1),H"(1),0),

and the probability that a randomly chosen node has finite in-
and out-components is G(H’r”(l),H‘;‘”( 1),v). Thus the rela-
tive size of the GSCC is

1 - G(H}(1),1,H;/(1)) = G(1,H(1),H;" (1))
+G(H(1),H(1),v).

IV. IN-COMPONENTS

In this section, we prove that the in-component size dis-
tribution of the epidemic percolation network for the SIR
model from [1] is identical to the component size distribution
of the bond percolation model with bond occupation prob-
ability 7. The probability generating function for the total
number of incoming and undirected edges incident to any
node i is

G(x,1,x

TI) = g(g(x’ 1 X

which is independent of 7;. If node i has degree n; in the
contact network, then the number of nodes we can reach by
going in reverse along a directed edge or an undirected edge
has a binomial (n;,T) distribution regardless of 7;. If we
reach node i by going backwards along edges, the number of
nodes we can reach from i by continuing to go backwards
(excluding the node from which we arrived) has a binomial
(n;—1,T) distribution. Therefore the in-component of any
node in the percolation network is exactly like a component
of a bond percolation model with occupation probability 7.
This argument was used to justify the mapping from an epi-
demic model to a bond percolation model in [1], but it does
not apply to the out-components of the percolation network.

Methods of calculating the component size distribution of
an undirected random network with an arbitrary degree dis-

7)) =G(1 - T+ Tx),
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tribution using the PGF of its degree distribution were devel-
oped by Newman et al. [2,13-16]. These methods were used
to analyze the bond percolation model of disease transmis-
sion [ 1], obtaining results similar to those obtained by Ander-
sson [17] for the epidemic threshold and the final size of an
epidemic. In this paragraph, we review these results and in-
troduce notation that will be used in this section. Let G(u) be
the PGF for the degree distribution of the contact network.
Then the PGF for the degree of a node reached by following
an edge (excluding the edge used to reach that node) is
G,(u)=(n)"'G' (1), where {(n)=G'(1) is the mean degree of
the contact network. With bond occupation probability 7, the
number of occupied edges adjacent to a randomly chosen
node has the PGF G(1-T+Tu) and the number of occupied
edges from which infection can leave a node that has been
infected along an edge has the PGF G,(1-T+Tu). The PGF
for the size of the component at the end of an edge is

H(z)=zG,(1 - T+ TH(z)) (18)

and the PGF for the size of the component of a randomly
chosen node is

Hy(z) =zG(1 =T+ TH,(2)). (19)

The proportion of the network contained in the giant compo-
nent is 1—H,(1), and the mean size of components below the
percolation threshold is H/(1). Hy(z) and H,(z) can be ex-
panded as power series to any desired degree by iterating
Eqgs. (18) and (19), and their value for any fixed z € [0,1] can
be found by iteration from an initial value z, €[0,1).

We can now prove that the distribution of component
sizes in the bond percolation model is identical to the distri-
bution of in-component sizes in the epidemic percolation
network.

Lemma 1. G(x,y,u)=G,(x,y,u) for all x,y,u.

Proof. From Eq. (7),

G, y,1) = mcm"%,y,u)
Tg (1) )T, dF(T)
From Eq. (8),
Guloy,0) = =GOy,

ng'(l)

f G'(g(x.y,ul )T, dF ().

" TG'(1)

Thus the degree distribution of a node reached by going
backwards along an edge is independent of whether it was a
directed or undirected edge. |
Lemma 2. Hi”(z):HZ’(z):Hl(z) for all z.
Proof. From Egs. (14a) and (14b),

H)'(z) = 2G(H,"(2),1,H,/(2)) = 2G,(H]"(2), 1,H,/'(2)) = H,(2)..

Let H"(z)= H”’(z) H’”(z) Since g(x,1,x|7)=1-T+Tx for
all 7,
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H'(z) = f G'(1 = T+ THY(2))T,dF(;)

Tg (1)

= —g (1-T+TH"(2)).

Gg'(1)
From Eq. (18), we have

in
H\(2) = G (1)g (1-T+THY(2)).
Since there is a unique PGF that solves this equation,
H™(z)=H,(z). Thus the in-component size distribution at the
beginning of an edge is the same for directed and undirected
edges, and it is identical to the distribution of component
sizes at the end of an occupied edge in the bond percolation
model. |
Theorem 3. H™(z)=H(z).
Proof. Let Hi”(z)=Hi”(z)=HZ’(z). From Eq. (14c), the
probability generating function for the distribution of in-
component sizes in the percolation network is

H™(z) = zG(H™(z),1,HY(2))
_. f G(g(H(2), 1 HY(2) 7)) dF ()
0

=26(1 - T+ TH(2)).

When H,(z) is substituted for H"(z) (which is justified by the
previous Lemma), this is identical to Eq. (19) for Hy(z) in the
bond percolation model. Since there is a unique PGF solu-
tion to this equation, H"(z)=H,(z), so the distribution of
in-components in the percolation network is identical to the
distribution of component sizes in the bond percolation
model. |

Since the mean size of out-components is equal to the
mean size of in-components in any semidirected network, the
bond percolation model correctly predicts the mean size of
outbreaks below the epidemic threshold. Since the mean
sizes of in- and out-components diverge simultaneously, the
bond percolation model also correctly predicts the critical
transmissibility 7. Since the probability of having a finite
in-component in the percolation model is equal to the prob-
ability of being in a finite component of the bond percolation
model, the bond percolation model also correctly predicts the
final size of an epidemic.

V. OUT-COMPONENTS

In this section, we prove that the distribution of out-
component sizes in the epidemic percolation network for the
SIR model from [1] is always different than the distribution
of in-component sizes when there is a nondegenerate distri-
bution of infectious periods. As a corollary, we find that the
probability of an epidemic in the SIR model from the Intro-
duction is always less than or equal to its final size, with
equality only when epidemics have probability zero or the
infectious period is constant. This is similar to a result ob-
tained by Kuulasmaa and Zachary [18], who found that an
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SIR model defined on the d-dimensional integer lattice re-
duced to a bond percolation process if and only if the infec-
tious period is constant.

The probability generating function for the total number
of outgoing and undirected edges incident to a node i with
infectious period 7; is

) =G -T +T.y),

where T, is the conditional probability of transmission
across each edge given 7;, as defined in Eq. (2). The number
of nodes we can reach by going forwards along edges start-
ing from i has a binomial (ni,TTi) distribution. If we reach a
node j by following an edge, then the number of nodes we
can reach from j by continuing to go forwards (excluding the
node from which we arrived) has a binomial (k;—1,T, ) dis-
tribution. Unless 7; is constant, the out-components of the
percolation network are not like the components of a bond
percolation model.

Suppose i and j are connected in the contact network. The
conditional transmission probability from j to i given 7; is
always T. Thus an edge across which we leave any node is
directed (i.e., outgoing) with probability 1—7 and undirected
with probability 7. This allows us to calculate the PGFs of
the out-component distributions without differentiating be-
tween outgoing and undirected edges: Let

G, (x,y,u)=(1- T)Gf(x v,u) + TG, (x,y,u)

7,))dF(T;)

g (1)

be the probability generating function for the degree distri-
bution of a node that we reach by going forward along an
outgoing or undirected edge (excluding the edge along which
we arrived). Let

HY(2) = (1= THH}"(2) + TH"(2)
be the probability generating function for the size of the out-
component at the end of an outgoing or undirected edge.

Lemma 4. For the SIR model from [1],

H}(2) = 2G(1LH2(2), H"(2),
H{(2) = 2G,(1LHE (), HE (),

H"(z) = 2G(1,H"(2), H"(2)) ,
and we have the following self-similarity equation:
H(2) = 2G, (1 HY"(2), HY" (2)).
Proof. From Eq. (3), we have

g(1,(1 =Ty + Tu,(1 = T)y + Tu| 7))
=1-T, +T.[(1-T)y+Tu]=g(1,y,u

7;)

for all y, u, and 7,. This allows us to rewrite Eq. (9a):
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H{"(2) = 2G (1, H{"(2), H}"(2))

< i ! ut ut
=mjo g'(g(1,H7"(2), H,"(2)| 7))

X(1-T,)dF(r)

£ i ! out out
ZML G' (¢(1, H2"(2), H2'(2)| )

X(1=T,)dF(r)
=2G(1,H"(z),H"(2)).
Similarly, we can rewrite Eq. (9b):

Hﬂum(Z) =ZG (1 Hout(z) Haut(z))

ST j G' (51 H}" ()., Q)| ) T, dF ()

Z - ! out out
= Tg’(l)fo G'(g(1,H"(2), H(2)| s T, dF (1)

=2G,(1,H"(2),H"(2)).
Finally, we can rewrite Eq. (10):

H"(2) = 2G(1,H}"(2), H;" (2))

=z f G(g(1,H" (2),H," (2)| 1)) dF ()
0

- f G (1L H(2), H(2)| ) dF(r)
0

=zG(1,H"(2), H(2))
but then

H{"(z) = (1 = T)H}"(2) + H"(2)
= 2[(1 - DIGA1,H" (), H2(2))
+TG (1 HMI(Z) H;)MI(Z))] ZGO(l ka)m(z) qul(z))

As a corollary, we find that the analysis in Ref. [1] can be
corrected if we let Gy(x)=G(1,x,x) and G,(x)=G,(1,x,x)
[see Egs. (13) and (14) in [1]]. [ |
Lemma 5. H™(z) <H?%"(z) for all ze[0,1].
Proof. Since G' is convex,

H?"(2) = 2G,(1,H3"(2), H"(2))

z 0
= "(1-T, +T,H%(z))dF(r,
g'(l)fo §'(1-T, + T HQ)dF(r)

= g—(l)g (1 -T+THM(Z))

by Jensen’s inequality. Equality holds only if z=0, H%(z)
=1, G’ is constant, or 7; is constant. Since H?'(z) is the solu-
tion to
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. z .
H(z)=——G'(1 -T+TH{(2)),
g1
we must have H2(z) =H"(z). This can be seen by fixing z
and considering the graphs of y=zG,(1,x,x) and y

=ﬁl)g’(1—T+Tx). H?"(z) is the value of x at which y

=2G,(1,x,x) intersects the line y=x. H(z) is the value of x

at which y= g,z(l)g'(l —T+Tx) intersects the line y=x. Since
2G,(1.x,x)= 5G'(1-T+Tx), we must have H(7)

Theorem 6. H™(z)<H""(z) for all ze[0,1]. Equality
holds only when z=0, z=1 and the percolation network is
subcritical, or the infectious period is constant.

Proof. From Eq. (14c),

H™(z) = zG(HY(2),1,H(2)) = 2G(1 - T+ THY(2)).
From Eq. (10),

H(z) =zG(1,H"(2),H"(2))
= Zf g(l - TTl- + TTngut(Z))dF( Tz)
0

= 7G(1 = T+ TH?(2)) = zG(1 = T+ TH(2)).

The first inequality follows from the convexity of G and
Jensen’s inequality. The second follows from the fact that G
is nondecreasing and H%"(z) = H"(z). Equality holds in both
inequalities only if z=0, G is constant, H"(z)=1, or 7; is
constant. |

Since the probability of an epidemic is 1 —H*"(1) and the
final size of an epidemic is 1-H™(1), it follows that the
probability of an epidemic is always less than or equal to its
final size. When the infectious period is constant, H°*(z)
=H"(z) for all ze[0,1], so the in- and out-component size
distributions are identical and the probability and final size of
an epidemic are equal. When the infectious period has a
nondegenerate distribution and the percolation network is
subcritical, H*“(z) > H™(z) for all z e (0,1) (so the in- and
out-components have dissimilar size distributions) but
H*(1)=H™(1)=1 (so the probability and final size of an
epidemic are both zero). If the network is supercritical and
the infectious period is nonconstant, H*“(z) > H™(z) for all
z€[0,1], so in- and out-components have dissimilar size
distributions and the probability of an epidemic is strictly
less than its final size.

Since the bond percolation model predicts the distribution
of in-component sizes, it cannot predict the distribution of
out-component sizes or the probability of an epidemic for
any SIR model with a nonconstant infectious period. How-
ever, it does establish an upper limit for the probability of an
epidemic in an SIR model. We have recently become aware
of independent work [19] that shows similar results for more
general sources of variation in infectiousness and suscepti-
bility in a model where these are independent and uses Jens-
en’s inequality to establish a lower bound for the probability
and final size of an epidemic. The lower bound corresponds
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to a site percolation model with site occupation probability
T, which is the model that minimized the probability of no
transmission in the Introduction.

VI. SIMULATIONS

In a series of simulations, the bond percolation model
correctly predicted the mean outbreak size (below the epi-
demic threshold), the epidemic threshold, and the final size
of an epidemic [1]. In Sec. IV, we showed that the epidemic
percolation network generates the same predictions for these
quantities.

In Newman’s simulations, the contact network had a
power-law degree distribution with an exponential cutoff
around degree «, so the probability that a node has degree k
is proportional to k=%~"* for all k= 1. This distribution was
chosen to reflect degree distributions observed in real-world
networks [1,13—15]. The probability generating function for
this degree distribution is

T Lig(e7V%)”
where Li,(z) is the a-polylogarithm of z. In [1], Newman
used a=2.

In our simulations, we retained the same contact network
but used a contact model adapted from the counterexample
in the Introduction. We fixed B;;=6,=0.1 for all ij and let
7;=1 with probability 0.5 and 7,=7,,,>1 with probability
0.5 for all i. The predicted probability of an outbreak of size
one is G(1,0,0) in the epidemic percolation network and
G(0,1,0) in the bond percolation model. The predicted prob-
ability of an epidemic is 1—H°*“(1) in the epidemic percola-
tion network and 1—H™(1) in the bond percolation model. In
all simulations, an epidemic was declared when at least 100
persons were infected (this low cutoff produces a slight over-
estimate of the probability of an epidemic in the simulations,
favoring the bond percolation model). Figures 2 and 3 show
that percolation networks accurately predicted the probabil-
ity of an outbreak of size one for all (n, x, 7,,,) combina-
tions, whereas the bond percolation model consistently un-
derestimated these probabilities. Figures 4 and 5 show that
the bond percolation model significantly overestimated the
probability of an epidemic for all (n, k, 7,,,,,) combinations.
The percolation network predictions were far closer to the
observed values.

VII. DISCUSSION

For any time-homogeneous SIR epidemic model, the
problem of analyzing its final outcomes can be reduced to
the problem of analyzing the components of an epidemic
percolation network. The distribution of outbreak sizes start-
ing from a node i is identical to the distribution of its out-
component sizes in the probability space of percolation net-
works. Calculating this distribution may be extremely
difficult for a finite population, but it simplifies enormously
in the limit of a large population for many SIR models. For a
single randomly chosen imported infection in the limit of a
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FIG. 2. The predicted and observed probabilities of an outbreak
of size one on a contact network with k=10 as a function of 7.
Models were run for 7,,,,=10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50,
60, 70, 80, 90, and 100. Each observed value is based on 10 000
simulations in a population of size n. For n=10 000, 1000 simula-
tions were conducted on each of ten contact networks. For n
=1000, 100 simulations were conducted on each of 100 contact
networks.

large population, the distribution of self-limited outbreak
sizes is equal to the distribution of small out-component
sizes and the probability of an epidemic is equal to the rela-
tive size of the GIN. For any finite set of imported infections,
the relative final size of an epidemic is equal to the relative
size of the GOUT.

In this paper, we used epidemic percolation networks to
reanalyze the SIR epidemic model studied in [1]. The map-
ping to a bond percolation model correctly predicts the dis-

Pr(final size = 1) for x = 20

0.7 i T
- - - Bond percolation
0.65F —— Epidemic percolation network
R 2 Observed (n=10,000)
06f © Observed (n=1,000)
0.55
2
S 05
3
©0.45¢
o
0.4F
0.35F
0.3f
0.25 . . . . .
0 20 40 60 80 100
Tmax

FIG. 3. The predicted and observed probabilities of an outbreak
of size one on a contact network with k=20 as a function of 7,,,,.
Models were run for 7,,,=5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25,
30, 40, 50, 60, 70, 80, 90, and 100. Each observed value is based on
10 000 simulations in a population of size n. For n=10 000, 1000
simulations were conducted on each of ten contact networks. For
n=1000, 100 simulations were conducted on each of 100 contact
networks.
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Pr(epidemic) for k = 10
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0.05 aif © —— Epidemic percolation network 1
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! o Observed (n=1,000)
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FIG. 4. The predicted and observed probabilities of an epidemic
on a contact network with k=10 as a function of 7,,,. Models were
run for 7,,,,=10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80,
90, and 100. Each observed value is based on 10 000 simulations in
a population of size n. For n=10 000, 1000 simulations were con-
ducted on each of ten contact networks. For n=1000, 100 simula-
tions were conducted on each of 100 contact networks.

tribution of in-component sizes, the critical transmissibility,
and the final size of an epidemic. However, it fails to predict
the correct distribution of outbreak sizes and overestimates
the probability of an epidemic when the infectious period is
nonconstant. Since all known infectious diseases have non-
constant infectious periods and heterogeneity in infectious-
ness has important consequences in real epidemics [20-22],
it is important to be able to analyze such models correctly.
The exact finite-population isomorphism between a time-
homogeneous SIR model and our semidirected epidemic per-
colation network is not only useful because it provides a

Pr(epidemic) for x = 20

0.45 T T
0.4 7
0.35f eemTTTTTTTTTT T 1
0.3+ L 1
= )/
F0.25 1
3
o 0.2 7
<4
o
0.15 7
/60 - - - Bond percolation
0.1 o —— Epidemic percolation network 7
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FIG. 5. The predicted and observed probabilities of an epidemic
on a contact network with k=20 as a function of 7,,,,. Models were
run for 7,,,=5, 6, 7, 8,9, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50, 60,
70, 80, 90, and 100. Each observed value is based on 10 000 simu-
lations in a population of size n. For n=10 000, 1000 simulations
were conducted on each of ten contact networks. For n=1000, 100
simulations were conducted on each of 100 contact networks.
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rigorous foundation for the application of percolation meth-
ods to a large class of SIR epidemic models (including fully
mixed models as well as network-based models), but also
because it provides further insight into the epidemic model.
For example, we used the mapping to an epidemic percola-
tion network to show that the distribution of in- and out-
component sizes in the SIR model from [1] could be calcu-
lated by treating the incoming and outgoing infectious
contact processes as separate directed percolation processes,
as in [19]. However, in contrast with [19], the semidirected
epidemic percolation network isolates the fundamental role
of the GSCC in the emergence of epidemics. The design of
interventions to reduce the probability and final size of an
epidemic is a central concern of infectious disease epidemi-
ology. In a forthcoming paper, we analyze both fully mixed
and network-based SIR models in which vaccinating those
nodes most likely to be in the GSCC is shown to be the most
effective strategy for reducing both the probability and final
size of an epidemic. If the incoming and outgoing contact
processes are treated separately, the notion of the GSCC is
lost.
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APPENDIX: EPIDEMIC PERCOLATION NETWORKS

It is possible to define epidemic percolation networks for
a much larger class of stochastic SIR epidemic models than
the one from [1]. First, we specify an SIR model using prob-
ability distributions for recovery periods in individuals and
times from infection to infectious contact in ordered pairs of
individuals. Second, we outline time-homogeneity assump-
tions under which the epidemic percolation network is well-
defined. Finally, we define infection networks and use them
to show that the final outcome of the SIR model depends
only on the set of imported infections and the epidemic per-
colation network.

1. Model specification

Suppose there is a closed population in which every sus-
ceptible person is assigned an index i € {1, ...,n}. A suscep-
tible person is infected upon infectious contact, and infection
leads to recovery with immunity or death. Each person i is
infected at his or her infection time t;, with t;= if i is never

PHYSICAL REVIEW E 76, 036113 (2007)

infected. Person i is removed (i.e., recovers from infectious-
ness or dies) at time t;+r;, where the recovery period r; is a
random sample from a probability distribution f;(r). The re-
covery period r; may be the sum of a latent period, when i is
infected but not yet infectious, and an infectious period,
when i can transmit infection. We assume that all infected
persons have a finite recovery period. Let S(¢)={i:7;>1} be
the set of susceptible individuals at time 7. Let 7)<t
<+ =<1, be the order statistics of 7,,...,7,, and let iy, be
the index of the kth person infected.

When person i is infected, he or she makes infectious
contact with person j#i after an infectious contact interval
7,;- Bach 7;; is a random sample from a conditional probabil-
ity density f;;(7|r;). Let 7;;=o if person i never makes infec-
tious contact with person j, so fij(7'| r;) has a probability mass
concentrated at infinity. Person i cannot transmit disease be-
fore being infected or after recovering, so fij(7'| r;))=0 for all
7<0 and all 7e[r;,%). The infectious contact time t;=t,
+7;; is the time at which person i makes infectious contact
with person j. If person j is susceptible at time ¢#;, then i
infects j and ¢;=t;;. If 1,;<<co, then ¢;<t; because person j
avoids infection at 7; only if he or she has already been
infected.

For each person i, let his or her importation time t(; be the
first time at which he or she experiences infectious contact
from outside the population, with #y;=2 if this never occurs.
Let F(t,) be the cumulative distribution function of the im-
portation time vector to=(ty;, %0, --- o)

2. Epidemic algorithm

First, an importation time vector t; is chosen. The epi-
demic begins with the introduction of infection at time f()
=min(7,,). Person i) is assigned a recovery period iy Ev-
ery person j € S(f(j)) is assigned an infectious contact time
liy =t + T e We assume that there are no tied infectious
contact times less than infinity. The second infection occurs

at fo)=min; g ) mm(toj,tim,), which is the time of the
first infectious contact after person i is infected. Person i)
is assigned a recovery period r; o After the second infection,

each of the remaining susceptibles is assigned an infectious

contact time Ly =) T The third infection occurs at
tF3)=mmje Sl mln(toj,t,-“. ol }.,-), and so on. After k infec-
tions, the next infection
=m1njes(t(k)) mln(toj,ti(lv‘, “ee ’ti(k}j
m infections if and only if #(,,.,;y=.

occurs at )
). The epidemic stops after

3. Time homogeneity assumptions

In principle, the above epidemic algorithm could allow
the infectious period and outgoing infectious contact inter-
vals for individual i to depend on all information about the
epidemic available up to time 7. In order to generate an
epidemic percolation network, we must ensure that the joint
distributions of recovery periods and infectious contact inter-
vals are defined a priori. The following restrictions are suf-
ficient.
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(1) We assume that the distribution of the recovery period
vector r=(ry,r,,...,r,) does not depend on the importation
time vector t,, the contact interval matrix 7=[7;], or the
history of the epidemic.

(2) We assume that the distribution of the infectious con-
tact interval matrix 7 does not depend on t; or the history of
the epidemic.

With these time-homogeneity assumptions, the cumula-
tive distributions functions F(r) of recovery periods and
F(7|r) of infectious contact intervals are completely speci-
fied a priori. Given r and 7, the epidemic percolation net-
work is a semidirected network in which there is a directed
edge from i to j iff 7;;<<c and 7;;=, a directed edge from j
to i iff 7;;=% and 7;<<e0, and an undirected edge between i
and j iff 7;;<<c and 7;;<<. The entire time course of the
epidemic is determined by r, 7, and t,. However, its final size
depends only on the set {i:7); <<} of possible imported in-
fections and the epidemic percolation network corresponding
to 7. In order to prove this, we first define the infection net-
work, which records the chain of infection from a single
realization of the epidemic model.

4. Infection networks

Let v; be the index of the person who infected person i,
with v;=0 for imported infections and v,=% for uninfected
nodes. If tied finite infectious contact times are possible, then
choose v; from all j such that ¢;=¢;. The infection network
has the edge set {v;i:0<v;<oo}. It is a purely directed sub-
graph of the epidemic percolation network corresponding to
7 because Tyi <%® for every edge v;i. Since each node has at
most one incoming edge, all components of the infection
network are trees or isolated nodes. Every imported case is
either the root node of a tree or an isolated node. Every
person infected through transmission within the population is
a nonroot node in a tree. Uninfected persons are isolated
nodes.

The infection network can be represented by a vector v
=(vy,...,v,), as in Ref. [23]. If v;=0, then t;=1,;. If 0<v;
<, then j is in a component of the infection network with
a root node imp; and its infection time is

m

tj = timpj + ; Tikjk’

where the edges iy, ..., i/, form a directed path from imp;
to j. This path is unique because all nontrivial components of
the infection network are trees. If v =%, then tj=00. The re-
moval time of each node i is #;+r;. If there is more than one

possible infection network, they must all be consistent with
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(ty,...,t,) by definition of v;. Therefore the entire time
course of the epidemic is determined by the importation time
vector t,, the recovery period vector r, and the infectious
contact interval matrix 7.

5. Final outcomes and epidemic percolation networks

Theorem 7. In an epidemic with infectious contact interval
matrix 7, a node is infected if and only if it is in the out-
component of a node i with #y; <<% in the percolation net-
work. (Equivalently, a node is infected if and only if its in-
component includes a node i with #,;<<.) Therefore the final
outcome of the SIR model depends only on the set of im-
ported infections and the epidemic percolation network cor-
responding to 7.

Proof. Suppose that person j is in the out-component of a
node i with 75;<<% in the epidemic percolation network cor-
responding to 7. Then there is a sequence iyj;,...,i,J,, such

that i;=i, j,=j, and 7, ; <o for 1<k=m, so

m
1< toi + 2 Tivip = %>
k=1

and j must be infected during the epidemic. Now suppose
that ¢;<<oc. Then there exists an imported case i and a se-
quence ij;,...,i,J, such that i;=i, j,=j, and

m
tj:ti+2 Tikjk.
k=1
Since 7;<o, it follows that T <® for all k. But then the
epidemic percolation network corresponding to 7has an edge
with the proper direction or an undirected edge between i
and j, for all k, so j is in the out-component of i.

By the law of iterated expectation (conditioning on 7),
this result implies that the distribution of outbreak sizes
caused by the introduction of infection to node i is identical
to the distribution of his or her out-component sizes in the
probability space of epidemic percolation networks. Further-
more, the probability that person i gets infected in an epi-
demic is equal to the probability that his or her in-component
contains at least one imported infection. This isomorphism
holds in any finite population. In the limit of a large popula-
tion, the probability that node i is infected in an epidemic is
equal to the probability that he or she is in the GOUT and the
probability that an epidemic results from the infection of
node i is equal to the probability that he or she is in the GIN.
This logic can be extended to predict the mean size of self-
limited outbreaks and the probability and final size of an
epidemic for outbreaks started by any given set of imported
infections.
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