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Household and Community Transmission Parameters from
Final Distributions of Infections in Households

Ira M. Longini, Jr and James S. Koopman

Department of Epidemiology, School of Public Health, University of Michigan,
Ann Arbor, Michigan 48109, U.S.A.

SUMMARY

A model is devised for the distribution of the total number of cases in households from a
homogeneous community. In the model, community-acquired infection serves as a source of initial
infection within households as well as of possible further cases. In addition, infected household
members can infect others in the household. Maximum likelihood procedures for the model
parameters are given. The model is fitted to symptom data on influenza and the common cold.
Influenza seems to spread more easily in the community than within the household, while the
opposite may be the case for the common cold. The model, which does not require specification of
the time of onset of infection for individuals, can be fitted to serological data; this would provide a
more accurate measure of household infection than the symptom data used.

1. Introduction

A tool for measuring the degree or the relative importance of transmission of infectious
agents in households and in the community is needed to help describe the dynamics of
disease transmission and to answer practical questions about disease control. The model
described in this paper has been devised to provide estimates of separate parameters
describing household and community transmission of disease from infection data. These
data need not specify the time of onset of infection for individuals, nor is it necessary to
identify chains of household infection. Several data sets have been selected from the
literature to illustrate use of the model and to show how one can answer questions about
the spread of influenza and the common cold. Since infection data are not presently
available, symptom (i.e. illness) data have been used and all family members are assumed
to be initially susceptible. Those individuals who show symptoms will be referred to as
‘cases’.

2. Final-Size Distribution of Household Infections

The final-size distribution for the number of household cases during an epidemic period is
now derived. We consider only those presumably-infectious diseases that confer immunity
(for some period of time) following infection. Assume that sources of infection from the
community are distributed homogeneously throughout the community. In addition, sup-
pose that household members mix at random within the household and can infect one
another. Thus, each household member can be infected either from within the household
or from the community.

Key words: Case; Common cold; Final-size distribution; Infection from the community; Infection
within the household; Influenza; Maximum likelihood; Reed-Frost model.
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2.1 Infection from the Community

Assume that observations are made of infections in a community, starting in time-period
t =0 and ending in time-period t = T. This period of observation could correspond to an
epidemic season or some other period of epidemiological interest. Define a, as the
probability that a susceptible household member becomes infected from the community in
time-period t, and b,=1—a, as the probability that he escapes infection from the
community in time-period t. Now define B as the probability that a susceptible individual
is not infected from the community during the period of observation. A general expres-
sion for B is given by

B= [] f(b,), (1)

where f(-) is a bounded function describing the infection rates in the community. Since B
is estimated directly from the data, f(-) can take any acceptable form. A simple form for
f(-) is f(b,) = b.. Another form, f(b,) = exp(—a/t), is used in the Appendix [see (A1)].

2.2 Infection among Household Members

We now consider the effect of secondary spread within the household following
introductions from the community. An individual who is infected in time-period t, will
pass through a series of stages at time-periods t,, t,, . . ., until he becomes immune. Define
p: as the probability that an infective who was infected in time-period t = ¢, will make
infectious contact in the household with another individual in time-period t. Then, {p,}
describes the pattern of infectiousness over time. The structure of {p,} is

p,=0 when (,=<t=<y, the latent period,

p.>0 when ¢,;<t<t,, the infectious period, 2)
p.=0 when t,,,<t<o, the immune period.

Let g, = 1—p, be defined as the probability of escaping infectious contact. Then if there is
an infected individual in the household who became infected at time t = t,, we define Q, as
the probability that a susceptible individual has escaped infection within the household at
time t, where to<t, <t,.;. It follows that Q_=[Ii—, q. The probability Q that the
susceptible individual escapes infectious contact from the infective during his entire period
of infectiousness is

tm
e=Ila=q, (3)
t=to
Note that the pattern of infection {q,} does not influence the magnitude of Q. As with B,
the value of Q is estimated directly from the data and other forms for (3) can be used [see
Ludwig (1975) for the analogous continuous form].

2.3 Final-Size Distribution

Assume that household members mix randomly among themselves and that the probabil-
ity that a household member is infected in the community is not affected by the number of
infected members in his household. Also, assume that all households under consideration
are initially free of infected members at the beginning and end of the period of
observation.
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To derive the final-size distribution, let pr(j | k) be the probability that j of k initial
susceptibles within a household are infected during the course of the epidemic. We write
m;, = pr(j | k) to simplify notation. Using similar ideas to those of Ludwig (1975) concern-
ing final-value distributions, the values of m;, are derived in the following way.

When k =1, it follows from the above assumptions that m,, = B and m,; = 1— B. When
k =2, we have, since there is random mixing, mg,= B2, As regards m,,, there are two
ways in which this event can occur. Either the first susceptible individual becomes infected
with probability B, and the second escapes infection (from both the infective in the
household, with probability Q, and in the community at large), or the first susceptible
individual escapes and the second does not. It follows that

mq, =2(1-B)BQ =2m,;BQ.
Derivation of m,, follows a similar argument, giving
my,=2(1-B)(1-Q)B+(1-B)?
=1—myp—mq,
as expected, since the probabilities must sum to one.
In general, there are (f) ways to get j finally infected individuals from k originally-

susceptible ones. The k —j susceptible individuals who escape infection must avoid having
infectious contact with the j infective individuals in their household and from the
community. The general expression for my, is

k o
My = (1) mB* QI j<k,
and (4)
k—1
mkk = l b Z m"k.
i=0

The density function (4) can be shown to represent the general expression for specific
models considered by others. If it is assumed that there is spread only within the
household, and there are initially i infectives within the household, then (4) becomes

My = (I](> myQUPTD, <k,

and i+j is the final number of infectives in the household. This equation is equivalent to
(1.13) of Ludwig (1975) and (14.7) of Bailey (1975). Although (4) provides the final-size
distribution for the Reed-Frost model, it also describes a more general process in terms of
length of latent and infectious periods. Strict adherence to the Reed-Frost assumptions
would require that t,, —t.,,<<g, where ¢ is small compared to —t,. When considering
infection from the community, (4) gives the final-size distribution for the modified
Reed-Frost model of Sugiyama (1960).

When Q =1, there is no spread of infection among family members and the disease in
question is presumably not ‘infectious’. Then (4) reduces to the binomial distribution:

e = (']‘) (1-BYB*,  j=k. (5)
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If B is allowed to vary according to the beta distribution, then (5) describes the
beta-binomial distribution. Griffiths (1973) used this distribution with data for influenza
and the common cold.

3. Estimation

The parameters of interest, Q and B, can be estimated by maximum likelihood (ML).
Assume that there are n households and define q; (k=1,2,...,Kandj=0,1,...,k)as
the observed frequencies of households with j infectives from k susceptibles, where
Y« X @i = n. Then the likelihood function is

L(Q B)=[1ITmg-
ko
The explicit form of the log likelihood function from (4) is
lnL=c+Z Z ag{ln my; +(k—j)In B+j(k—j)In Q}.
koj

The ML estimators Q and B are solutions of

e
L IRESY o

These equations may be solved iteratively using the method of scoring. The elements of
the information matrix are given by the expected values, with respect to gy, of the second
partial derivatives, which are

()L I o Gal S S @

S IR ) o

()L T [ G G -GS oo

where ny, =Y a;;, the total number of households with k initial susceptibles.

3.1 Starting-Point

An estimate, Bk; of B is available from (4) and the frequencies of the zero class, ag,
k=1,2,...,K. We have

a .
ﬂ="lot<:B,t§
Ny
and
. Ao\ V*
B - (@)
= (11)

The estimate over all k is

s 1 aoi\"*
B0=_ Z My (ﬁ> . (12)
n i
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Estimation of B from (12) is quite efficient since most of the information about B is
contained in ag.. In general, the efficiency of the estimate increases as ag./n, increases.
An estimate of Q can be derived in a similar manner, where

By = k(1-Bo)Bs 1 O5
k

and

. i Uk—1) |
=47 . 13
Qo {knk(l-Bo)B’g‘l} (13)

However, this estimate is not very efficient since it ignores the frequencies ay, j=
2, ..., K, which contain much of the information about Q. A more efficient estimator
should use all the available information. Towards this end, an estimator for Q is derived
from an approximating set of differential equations for (4), given in the Appendix. From

(AS) in the Appendix,
A (1=6\®
0= ()", (14)

B,

where

¢ and 6

T Yk Zi Jau
n

5_ Yk Zj (jag/k)
——n .

The value ¢ is the average number of individuals infected per household, while the value
6 is the average fraction of individuals infected per household, which is sometimes called
the ‘household attack rate’.

The estimators given by (12) and (14) are used to obtain starting-values for the fully
efficient ML estimators given by (6) and (7).

3.2 The Truncated Case

In some cases, the zero class ag, is not present, since households are surveyed only after
an initial infective has appeared. In this case, the zero-truncated distribution is used. The
probability density function is then

My, = (;(> m;B Q' V)(1- BY). (15)

Application of the ML procedure to (15) is somewhat tedious but straightforward. The
absence of the zero class makes it difficult to obtain a starting-point for B [see (12)].
Moreover, an estimate of ag, would be useful for epidemiological reasons. A method for
estimating ao, is described by Irwin (1963), although the derivation was first proposed by
McKendrick (1926). Griffiths (1973) used the method in fitting the truncated beta-
binomial distribution of household data.

For application in this paper, an initial guess 452 is made and the corresponding ML
estimates B© and Q© are found from the nontruncated distribution (4). A new estimate

ady is found using the proportional allocation based on (4), such that

Ay =ni[(BOY/{1—(BO)}],
A (1)

where nj=Y,_; a;. Then the next estimates, B’ and Q, are found from 4§, and BV,

after which d$% can be calculated. The iterations are continued until

lage—agVl<e (16)
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for some small value of . Hartley (1958) has shown that the estimates B and O obtained
in this way are the ML estimates. He also gave methods for accelerating convergence.

If the disease in question is rare, or does not spread readily in the community, then the
estimate for ay, may approach infinity and the estimate for B will approach one. When
this is the case, some upper limit should be placed on ag,. This limit would logically be the
number of households in the community from which the data is drawn, as suggested by
Griffiths (1973).

3.3 Computation

In our experience, when the zero class is present, convergence of QO and B to an accuracy
of 107* is quite rapid. For the data given in the next section, with starting-points given by
(12) and (14), convergence usually occurred in three or four iterations. The asymptotic
variances and covariance were readily obtained by inversion of the information matrix.
However, when the zero class was absent, convergence on iterates of dy, was somewhat
slow. This problem was alleviated by forming geometric projections on dg,, as suggested
by Hartley (1958). When the ML estimates for Q and B are found by iterating on dy,
estimates for the variances and covariance are not directly available from the information
matrix. In order to get true variance estimates, the variation of ‘O and B due to iteration
on dg, must be taken into account.

4. Application to Data

4.1 Influenza Epidemics

The model was fitted to the Asian influenza epidemic household data previously examined
by Sugiyama (1960). The data set is the only one considered for which the zero class is
present. The distribution (4) (which is the final-size distribution for Sugiyama’s model) fits
the data quite well—as expected, since Sugiyama got an equally good fit. Results are given
in Table 1. Since O =.834, the estimated probability of a susceptible individual being
infected by a case during the course of his infectious period is .166. The average length of
the latent and infectious periods for influenza are about two and four days, respectively
(see Kilbourne, 1975). Therefore, in (2), [ =2 and m =6. If it is assumed that p, = p for

Table 1
Observed and expected distributions of Asian
influenza data of Sugiyama. Households of
size three (zero class present)

Number of cases Observed Expected

0 29 29.17

1 9 7.87

2 2 3.62

3 2 1.34

Total 42 42.00
O =.834, B =.886

var(Q)=.0063,  var(B)=.0009
cov(Q, B) =.0004
x2(1df)=1.222, (25<P<.50)
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Table 2
Observed and expected distributions of influenza data of Hope-
Simpson and Sutherland (zero class absent)

Households of size four* Households of size five*

Number of
cases Observed  Expected Observed  Expected
0 — 8.507 — 2.47%
1 3 2.95 1 1.27
2 3 3.18 2 1.34
3 6 5.81 2 2.18
4 12 12.06 4 4.51
5 — — 9 8.73
Total 24 24.00 18 18.03
Q=.601, B=.715 Q=.664, B=.655
x*(1 df)=.018 x2(2 df) = .463
(75<P<.90) (.75<P<.90)

*For the pooled data (i.e. households of size four and five together) the
expected values are not given here. The fit was good, with x2(5 df)=.918
(.950<P <.975); Q =.644, B=.656; and d,,=5.43, d,5s=2.48.

TNot included in the total.

t=3,...,6, then application of (3) yields p =.044 as the estimate of the daily probability
that an infectious individual will infect a susceptible family member within the household.

For infection from the community, B = .856; the estimated probability that a suscepti-
ble individual will be infected from the community during the course of the epidemic is
thus .144. The approximate percentage of cases due to community exposure can be
calculated by setting Q to 1, which causes all cases to originate from the community.

From (5), the expected number of cases would be
nk(1-B)=14.4,

while the number of cases allowing spread within the household (i.e. Q=.834) is 19.
Hence, 75% of the total cases were due to infection from the community. This percentage
may be somewhat overestimated, however, since there will be some reduction in suscepti-
bles due to spread within households (i.e. the number of susceptibles is actually less than
nk). Kemper (1980) discusses the errors in calculations concerning secondary spread when
the apparent number of susceptible individuals is less than the actual number.

The model was also fitted to the influenza data of Hope-Simpson and Sutherland
(1954). In this case, the zero classes are missing and the method of §3.2 is used. The fit
(shown in Table 2) is excellent for households of size four and five, both separately and
pooled. Hope-Simpson and Sutherland got a good fit using the classical Reed-Frost
model; however, there were unanswered questions as to the extent of community
involvement in the epidemic. The estimates of ay, were quite small, indicating that
probably most houses were invaded during the epidemic, if the samples of households
given were indeed representative of the community. Using the pooled estimates, it is
calculated that, at maximum, 52% of the total cases were due to infection from the
community.
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In general, community-acquired infection has been shown to play an important role in
the spread of influenza. This was particularly true of Asian influenza, where the schools
served as foci of infection. It was estimated by Elveback et al. (1976) that almost all the
apparent secondary spread among school children within the household was due to
infection acquired in the schools. In addition, about half the apparent secondary spread
among adults in the household was due to mixing in the community.

With regard to spread within the household, p =.097 for the influenza epidemic studied
by Hope-Simpson and Sutherland, while p =.044 for the influenza epidemic studied by
Sugiyama. These results indicate that the agent of the former epidemic was more
infectious in the household than that of the latter epidemic. Aside from agent characteris-
tics, cultural and population differences could account for variations in household infecti-
ousness.

4.2 The Common Cold

The data on outbreaks of the common cold were collected over a two-year period by
Brimblecombe et al. (1958). Households of size five were partitioned into three levels of
domestic crowding, depending on the number of rooms occupied by the family. Table 3
shows that the fit is acceptable at all three levels of domestic crowding. Note that the
estimates of the zero classes approach the total size of the community except in the case of
uncrowded households where the limit may be somewhat less. This would indicate that
community-acquired cases serve only as index cases and that subsequent spread is largely
confined to the household. However, homogeneity and ascertainment bias could also
account for this result (see the last part of §5).

For the common cold, the average lengths of the latent and infectious periods are about
three and seven days, respectively [see Monto (1976) for colds caused by coronavirus].
Assuming that p,=p for t=4,5,...,10, the estimates of p at each level of domestic

Table 3
Observed and expected distributions of common cold data of Brimblecombe et al. Households
of size five (zero class absent)

Degree of domestic crowding

Number Uncrowded Crowded Overcrowded
of
cases  Observed Expected Observed Expected Observed  Expected

0 — 6000.00* — Upper limitt — Upper limitt
1 156 156.44 155 143.28 112 104.74
2 . 55 52.61 41 53.87 35 40.74
3 19 22.36 24 27.15 17 21.44
4 10 8.55 15 12.79 11 10.64
5 2 2.04 6 3.91 6 3.45
Total 242 242.00 241 241.00 181 181.01
0=.900, B=.992 O=.878, B=.999 O=.872, B=.999
x*(2 df) = .864 x*(2df)=5.91 X2 dfy=4.12
(.50<P<.75) (.05<P<.10) ((10<P<.25)

*Not included in the total.
+The total number of households in the community.
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crowding are as follows:

Uncrowded: p=.015,
Crowded: p=.018,
Overcrowded: p =.028.

These results indicate that there is an increase in disease spread within the household with
increasing levels of domestic crowding.

5. Discussion

McKendrick (1926) did the first mathematical investigation of household versus commun-
ity acquisition of infection; he was concerned with epidemics of bubonic plague. Although
he was not able to estimate parameters measuring infectious contact, he did estimate the
ratio of the probability of household-acquired to that of community-acquired infection.
He concluded that this ratio was 200 : 1 for plague. Sugiyama (1960) first parameterized
the Reed-Frost model to deal with household and community-wide infection. Kemper
(1980) formulated a model which parameterizes the effect of asymptomatic infections as
well as household and community-wide infection. He showed how the presence of
asymptomatic infectives within the household, and of community-wide infection (beyond the
index case), can be a source of error in the calculation of secondary attack rates.

Elveback et al. (1976) developed a stochastic simulation model which includes
infectious-contact probabilities not only for the household and community, but also for
other important mixing groups such as pre-school playgroups, schools and neighborhood
clusters. However, their model does not allow for statistical parameter estimation or
calculation of variances from data.

The Reed-Frost model has been extensively applied to household data on infectious
disease. Bailey (1975, Chapter 14) gives a detailed account of these efforts. Aside from the
fact that the classical Reed-Frost model does not recognize community-wide infection,
there are other difficulties. The Reed-Frost model assumes that the disease being studied
is characterized by a constant latent period and a very short infectious period. Although
these assumptions roughly hold for such diseases as measles and mumps, others, such as
influenza and the common cold, have longer infectious periods than latent periods. For
these diseases, the task of separating out chains of infection is quite difficult since the
infectious periods of successive generations of cases will tend to overlap. This problem is
compounded when individuals are being infected from outside the household, making
specific chains difficult to identify, even when the Reed-Frost model assumptions are
satisfied. When it is difficult or impossible to distinguish chains of infection, it is
reasonable to use the final-size distribution of cases within households to estimate
parameters. An even more important reason to use the final-size distribution has to do
with data acquisition. Although symptom data (i.e. cases) were used as examples in this
paper, infection data, which also include asymptomatic infections but exclude clinical
syndromes not caused by the infection, provide a more accurate description of disease
transmission. Serological measures are the most efficient form of infection information for
a population. Blood samples taken before and after an epidemic period can be used to
determine which household members become infected during the course of the epidemic
as well as to establish initial levels of susceptibility. Such information provides the
final-size distributions of household infections, but does not provide information on the
time of onset or duration of infection for individuals.
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Although the model of this paper fits the data presented quite well, others have had
equal success with different models. Griffiths (1973) was able to get excellent fits to the
same data, as well as to other data sets, using the beta-binomial distribution, the
assumption being that a good fit indicates that the disease is not infectious. Heasman and
Reed (1961) were able to get a good fit to the common cold using the Reed-Frost model.
Becker (1980) got an even better fit to the same data using a generalized model of
household infection in which the probability of infectious contact varied according to the
beta distribution. In neither study was infection from the community beyond the index
cases considered, and, indeed, there may be little community spread of infection in the
case of the common cold (see §4.2). Spicer, in his discussion on Bailey (1955), raised the
question of choice among different mathematical models which all explain the data. He
concluded that further independent epidemiological evidence was needed as a basis for
choice. Accordingly, the model proposed here is testable by examination of how the
community and household parameters vary with measurable environmental factors. Re-
ciprocally, it can be used to identify community and family transmission factors that are
correlated with family parameters. For example, a high probability of infectious contact
from the community, for certain strains of influenza, has suggested that immunization of
school children may be an effective control strategy (see Elveback et al., 1976). This
strategy was actually carried out for the Hong Kong strain of inflennza (see Monto et al.,
1969) and was shown to be efficacious.

Finally, the data used in this paper have certain limitations. First, not all the households
in the common cold study were under surveillance for the same period of time. Therefore,
the probability of community acquisition of infection will not necessarly be homogeneous
acros$ all households. This heterogeneity could artificially decrease the parameter of
infectious contact from the community and increase the parameter of infectious contact
within the household. Another problem has to do with ascertainment bias. By inclusion
only of households with cases, there may be a tendency to overrepresent those households
in which the disease spreads easily. This will affect the parameters in the same direction as
heterogeneity. Both of these limitations in the data presented here can be overcome by
different field procedures.
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RESUME

On propose une modélisation de la distribution du nombre total des cas d’infection dans les familles
d’une communauté homogéne. Dans le modele, une infection provenant de la communauté sert de
source initiale d’infection a 'intérieur des familles aussi bien que pour des cas d’infection ultérieurs
éventuels. De plus des membres infectés d’une famille peuvent infecter d’autres personnes de la
famille. Ondonne des procédures de maximum de vraisemblance pour estimer les parametres du modéle.
Le modele est ajusté aux données symptotiques de la grippe et du rhume ordinaire. La grippe semble se
propager plus facilement dans la communauté qu’a ’intérieur des foyers, tandis que ce pourrait étre
le contraire pour le rhume ordinaire. Le modéle n’exige pas que soit précisé I'instant de début
d’infection pour les individus et peut étre ajusté a des données sérologiques. Ceci fournirait une
mesure plus précise de l'infection des familles que ’utilisation des données symptotiques.
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APPENDIX

Approximating Differential Equations

Let S(t), I(¢) and R(t) be continuous variables for the number of susceptible, infected and removed
(immune) individuals, respectively, within the household at time t. Household members mix
homogeneously and make infectious contact with one another at rate p per time unit. They also
make infectious contact with the community at rate a(t), at time t. Since the epidemic is of finite
duration, we have -
I a(w)dw =a <o, (A1)
0
Also, infected individuals are removed at the proportionality rate v, where y~' = & is the average of
the infectious period.
The initial-value problem from the above assumption is

as(t)

= sfat) + pr(o),
dI(t) —ds()

40 _—BO o, (A2)
RO 1),

dt
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with S(0) =k >0, I(0) =0, R(0)=0 and S(t)+ I(t)+ R(t) = k. From (A1) and (A2) it is easy to show
[using arguments similar to those of Hethcote and Waltman (1973)] that the limiting values S(),
I(x) and R() exist and that S(x)=0, I(®)=0 and R(x®)>0.

Substitution of the third into the first equation of (A2) yields

ds
-—s—(—(g =—{a(t) dt+paR(t) dt},
which has the solution
Sit)=k exp[— {&pR(t)+ L a(w) dw}]. (A3)

The final values are defined as S(©) =k —¢, I() =0 and R(»)=¢ (see §3.1). Taking the limit of
(A3) as t — o yields
1— 60 =exp(— apd)exp(—a), (A4)

where 0 = ¢/k.

The right-hand side of (A4) is composed of two parts. The term exp(—a) is an approximation for
the probability of a susceptible individual escaping infection from the community. The term
exp(—apd) is an approximation for the probability that a susceptible individual escapes infection
from infected household members. Substituting Q, B, 6 and ¢ from §3.1 into (A4) yields

1-6=Q4¢B.
Since an independent estimate ﬁo of B is available, Q is estimated by

A (1-6\1%
Ql"'( BAO) . (AS)




