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SUMMARY

A stochastic infectious disease model was developed by Ball (1986, Advances in Applied Probability 18,
289-310) in which the distribution of the length of the infectious period is allowed to have any distribution
that can be described by its Laplace transform. We extend this model such that the infection can be
transmitted within the population or from an unspecified source outside the population. Also, discrete
heterogeneity in the population can be modeled to incorporate variable susceptibility, variable infectivity,
and /or mixing behaviors. The model is fitted to serologic data from two influenza epidemics in Tecumseh,
Michigan, using maximum likelihood estimation procedures. The estimates show a clustering pattern by
age groups.

1. Introduction

Epidemic models can be used as mathematical tools for the analysis of the transmission of
infectious diseases. An epidemic model offers a convenient summary to infectious disease data,
but a more important use is to provide understanding of the biological and sociological
mechanisms of disease transmission (Becker, 1979). The identification of an epidemic model as
being either adequate or inadequate for a particular disease can elucidate important characteris-
tics of transmission of that disease. An epidemic model combines biologic characteristics such as
susceptibility, infectiousness, and length of infectious period with tichavioral characteristics such
as hygienic practices and social mixing patterns.

Current epidemic models make various assumptions about the disease transmission process.
All of these assumptions are to some extent approximations for the actual process. Dietz and
Schenzle (1985) offer a survey of the historical development of many of these models for
homogeneous populations. A common assumption is that the infectious period has a constant
length. This assumption might lead to the Greenwood model or to the Reed—-Frost model (see,
for example, Bailey, 1975; Abbey, 1952; and Maia, 1952). These simple models have been
extended to allow multiple sources of infection by Longini and Koopman (1982), Longini et al.
(1982), and Longini, Monto, and Koopman (1984), and to allow variable susceptibility (Longini
et al., 1988; Haber, Longini, and Cotsonis, 1988).

If the length of the infectious period is not considered to be fixed, it is most often assumed to
have an exponential distribution. The epidemic model with an exponentially distributed length of
infectious period is called the general epidemic model. The exponential distribution is useful
because of its constant hazard rate and its lack of memory, but lacks biologic plausibility. No

Key words: Extra-population infection: Final size data; Infection within the population; Influenza;
Maximum likelihood estimation.
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other nondegenerate distribution for the length of the infectious period has been used so
extensively in epidemic modeling. Ball (1985) has extended this general epidemic to include
several types of susceptibles.

The assumption of an exponentially distributed infectious period is untenable to some
researchers. Ball (1986) develops a stochastic epidemic model that allows for any distribution for
the length of the infectious period, provided that its Laplace transform can be specified. Other
generalizations to the so-called general epidemic include various structures for population
mixing behaviors. Further extensions of epidemic modeling include prediction of global spread
of infectious agents, discussed in papers by Rvachev and Longini (1985) and Longini, Fine, and
Thacker (1986).

In this paper, the stochastic model presented by Ball (1986) is further developed to allow a
variable length of infectious period, heterogeneous contact rates reflecting variable susceptibility
and infectivity as well as mixing behaviors, and multiple sources of infection (see Addy,
unpublished Ph.D. dissertation, Emory University, 1988). The model is applied to the
Tecumseh, Michigan, influenza data (Monto, Koopman, and Longini, 1985) to illustrate
estimation of the contact parameters based on final sizes of epidemics.

2. Recursive Nature of Final Size Probabilities

Consider a population composed of N; (i = 1, ..., m) individuals in each of m groups, where
each individual is in exactly one group and is susceptible to the infectious disease of interest at

the beginning of the epidemic; let N = (N, N,, ..., N,,)’ be a vector containing all the initial
susceptible group sizes and N = Y7 | N, be the total size of the susceptible population.
Furthermore, suppose that if a given susceptible k¥ (kK = 1,..., N)) in group i/ is infected, the

length of that person’s infectious period is the random variable T;,, with Laplace transform
/1) = Elexp(—(T;,)].

An epidemic can be started by one or more persons in the population who are infected at the
beginning of the epidemic or by infectious contact from an unspecified source outside the
population; let a = (a,, a,, ..., a,,)" denote the numbers of initial infectives in the groups.
Given these conditions, the epidemic is governed by two types of parameters. The first type is
the extra-population escape probability B;, which is the probability that a susceptible of type i
will escape infection from outside the population during the entire course of the epidemic. Then
the vector B = (B,, B,, ..., B,,) contains all the extra-population escape probabilities.

The second type of parameter governs within-population disease transmission. The parameter
B, is the rate at which a susceptible of type i has contact with an infective of type k; these
contact parameters are stored in the m X m matrix §. The contact parameter matrix can be
structured to model certain conditions. For example, a model of variable susceptibility and fixed
infectivity would have $3;, = B;, so that the contact parameter depends only on the group of the
susceptible and not on the group of the infective. The final notation needed is for the random
variables of interest. Let N;* be the final size in group k, i.e., the number of initial susceptibles
in group k who are ultimately infected by the epidemic; analogous to the susceptible population
sizes, let N* = (N, NJ¥, ..., Ny and N* = )" | NJ. Of secondary interest but crucial to
the development is the total area under the trajectory of infectives in each group. The total area
in group k may be regarded as the total person-time units of exposure to infectives of type k and
is denoted T\¥; these group-specific quantities are summarized by T, = (7", T,®, ..., T\"™Y
and T, = Y7, T*). These total areas include the exposure contributed by the initial infectives.

To simplify notation, the following conventions will be adopted:

W @
> >
1

J1=0 Jm=0

m m

B® = I B#, ¢(0) = II¢,(t,)", io -
iz

i=1 i=1
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02 )

w w; |\ w, w,,

Also, w; = {1,..., w;}. To distinguish between w = (w;,...,w,) and w; = {1,..., w;},
note the use of a subscript for the latter ordered set. The vector w will never have a subscript.
'The distinction is even clearer in context since a set and a vector are not interchangeable in
algebraic operations, and the ordered set is used only to identify a function or probability.

Crucial to the development of the recursive relations between the final size probabilities is a
Wald’s identity.

and

Theorem 1 Forallt = (¢,,...,1t,) e R")",

E(exp(— S £, TO) I (£, +%) = 1. (1)
Proof See Addy (unpublished dissertation cited previously).

Notice that the compact notation enables the equality in (1) to be written as

= E(exp(—t’TA)/¢(t)N*+a).

Next, notation for the final size probabilities is needed. Let PN be the probability that
N* = w when the initial susceptible group sizes are N, and let P:: ..... «,, De the probability that
exactly individuals 1, ..., w; are infected in group i (i = 1, ..., m) in the same susceptible
population. Because of the symmetry of the epidemic,

N, N,
N _ 1 " N
Pw - ( ) ( Z)Pwl ..... W,y

Wy @

or, using the compact notation,

PN — (N ) PN
w w Wpoevs Wm
The dependence on 3, a, and B will not be shown explicitly. Choose integers j,, . . . y J such
that 0 < w; <Jj;, <N, (i=1,...,m). The goal is to express P‘:‘ as a function of P} and the

model parameters.

The final size probabilities are calculated by considering the probability that certain infections
do not occur. Thus, to relate the epidemic among N and the subepidemic among j, the
probability of susceptibles in N, N\ j, = {j,+1,..., N} (i=1,..., m) avoiding infection
both from within the population and from outside the population must be considered. The
probability of one susceptible in group i avoiding infection from the initial infectives and the
W, ..., w, new infectives is, for given values of 7,*,

m
CXP( - BikTA(k)) )
k=1
since the susceptible must avoid infection from all m groups. Then the probability of all the

susceptibles in {N, \ j,,...,N,, \ j,} avoiding infection from all the initial and new infec-
tives, again for given values of T%), is

m m
CXP( - Z (N: - ji) kzl BikTA(k))'

i=1
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To remove the dependence on the random variables, the expectations must be taken with
respect to the total areas T,, conditional on N = j and N* = w. Then the within-population
escape probability is

(exp{ ) Z( ji)B,-kTg“}lNﬂ,N*:w).

i=1 k=1
The extra-population escape probability for all the susceptiles in {N; \ j,,..., N, \j,} is
07 BN~/ = BN7I, Therefore the final size probabilities can be related as
n m
P = P Blow{ - 3 8 (- apmant] B o< <in, @)

where the expectation is conditional on N = j and N* = w.
The law of total probability can now be applied to Theorem 1 to yield the following system of
equations:

j . m w

1= % P‘jE(exp{—ZtkT,{")}|N J,N"—w)/qﬁ() oy, (3)
w=0 k=1

Letting ¢, = Y72 (N; — j;)B;, in (3) and applying the relationship in (2), the system can be

written as

L= X (L)en L /s - 0) B iz 4)

w=0
This system of equations fully determines the probabilities P for specific initial population
sizes N and a.
The compact notation somewhat obscures the probabilities embedded in the above system of
equations. Recall that

m

s -3 = [ o[ (N —na)

Each term in this product is the probability that the N, — j, susceptibles in each group i
(i =1,...,m)avoid infection from the w, + a, mfectlves in group k (k =1,...,m). The
product is then the probability that all the susceptibles avoid all the infectives for the entire
durations of their respective infectious periods.

3. Distribution of the Final Size

The recursive relationship between the probabilities given in (2) can be used to develop the joint
moment-generating function for the total areas under the trajectories of infectives and the joint
probability-generating function for the numbers of susceptibles in each group surviving the
epidemic. Since the total area is of secondary interest for our applications, the development of its
moment-generating function is outlined in Appendix A. The latter probability-generating func-
tion is discussed below. Once this function is known, it can be used to calculate directly the
probabilities and the moments of the final size distribution.

Theorem 2 Let fy(s) be the joint probability-generating function of the numbers of suscepti-
bles in each group surviving an epidemic among initial susceptible groups of size N. Then

Su(s) = ; (N)ak(s)¢(51{)”“‘+“3k,

K=o\ Kk
where the «,(s), k > 0, are defined by
3 (H)eas@0t =5 ns0 ®)

Proof See Appendix B.
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Properties of the joint probability-generating function can be utilized to recover the exact
probabilities and to calculate means, variances, and covariances of the final sizes in each of the
m groups.

To recover the final size probabilities, notice that the functions o, (s) are polynomials in s of
degree k. Thus the functions can be written as

K
ay(s) = Zo oy st
J:

where «, ; is the coefficient of si=17" lsf" in o, (s). With this definition, (5) can be written as

- éo j%(:o (ﬂ)ak,jsj‘f’(ﬁlk)n_k
- 2 2 (Rasstonr

for any n > 0. The coefficients «, ; can be found by equating the coefficients of sd on each side
of the equation. For any j < n,

n -k
5 (3)owspleny =0, ©)
=j
Together with o, , = 1, this system of equations fully defines the «, ; coefficients. Therefore
the probabilities can be written as

N
Py ;=3 (lz)ak’ﬁ(ﬁ’k)N kregk, (7)

k=j
In looking at this expression, recall that the subscript of the probability refers to the numbers of
initial susceptibles infected during the epidemic, whereas the probability-generating function is
defined for the numbers of initial susceptibles surviving the epidemic. Calculation of the
recursive coefficients «, ; can readily be programmed for calculation of the final size probabili-
ties. A subroutine to be used with nonlinear, derivative-free regression in BMDP (Ralston,
1985) for maximum likelihood estimation of the model parameters is given in Addy (unpublished
Ph.D. dissertation, Emory University, 1988). The distribution of the length of the infectious
period must be completely specified. This distribution is incorporated into the probability
structure through its Laplace transform, ¢(-). For most distributions considered, the Laplace
transform with argument Bk is a function of Buk, where u is the mean length of the infectious
period; thus the contact parameter (3, the mean length u, or the product Gu can be estimated, but

not § and u separately.

In the special case of a constant infectious period, i.e., 77 = ¢ and thus ¢(#) = exp(—fc),
this final size distribution reduces to that given for the model of Longini et al. (1988) and Haber
et al. (1988) with either no risk factors or variable susceptibility. The equivalence of the two
models with no risk factors is proved in Addy (unpublished dissertation cited previously).

4. Application to Influenza Data

The stochastic epidemic model for a heterogeneous population developed in the previous sections
is used to estimate the transmission parameters for influenza A(H3N2) in Tecumseh, Michigan.
A continuous epidemiologic survey was conducted in this community from 1976 to 1981,
representing a 10% cross-sectional sample of households that was followed prospectively
(Monto et al., 1985). The influenza epidemic was defined each year using virus isolation and
illness incidence information; each epidemic period was bracketed by pre- and post-epidemic
season bleedings. During the 1977-1978 and 1980-1981 influenza seasons, the primary virus
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identified was influenza A(H3N2). The data from these two epidemics are combined for this
example. The two epidemics are assumed to be independent; earlier work with these data
demonstrates their comparability. '

For this application, the population is a household. Every individual in each household is
classified as child or adult: A child is any individual O to 17 years old, and an adult is any
individual at least 18 years old. For the Tecumseh survey, antibody was detected by the
hemagglutination inhibition (HI) test; any individual with antibody detected in a dilution of 1 in
128 or less before the influenza season was considered to be immune to the virus and was not
counted as an initially susceptible individual.

Due to computational restrictions, a maximum of five initial susceptibles is allowed for the
estimation procedure. Typically this number is exactly the household size, but the household
could include one or more immune individuals. A complete absence of initial infectives for each
household is assumed. With this size restriction, there are 567 valid households with a total of
1,414 susceptible individuals. Twenty-six individuals were removed from analysis because of
immunity as defined by preseason HI titer. Table 1 shows the distributions of numbers infected
in the households.

In using the estimation procedures, two basic questions need to be answered. First, the
continuous distribution of the length of the infectious period for influenza is unknown beyond its
mean length of 4.1 days; Elveback et al. (1976) specify a discrete distribution with this mean for
use in simulation studies. One goal of this analysis is to determine an appropriate distribution for
the length of the infectious period. A second goal of this analysis is to determine which model, if
any, provides an adequate fit to the selected Tecumseh influenza data.

As an initial analysis, primarily to identify an appropriate distribution for the length of the
infectious period, any heterogeneity by age is ignored. The homogeneous population model is
fitted with constant and two-parameter gamma distributions for the length of the infectious
period, each with mean 4.1 days. The maximum likelihood estimates of 3 and B for the two
distributions are reported in Table 2. A more interpretable form of § is the secondary attack rate
(SAR) as defined by Longini and Koopman (1982), the probability that a single susceptible in the
population is infected by a single infective in the population. The convention is to express the
SAR as a percentage; thus, for a given length infectious period 77 and constant contact rate (3,
the SAR is

SAR = 100[1 — exp(—B7T;)].
Thus, when T; is variable, the SAR is calculated by taking the expectation of the above
expression,

SAR = 100[1 — E{exp(—BT;)}] = 100[1 - ¢(B)],

Table 1
Observed distribution of influenza A(H3N2) infections in 1977-1978 and 1980-1981 combined
epidemics in Tecumseh, Michigan

No. No. of susceptibles per household®
infected 1 2 3 4 5
0 110 149 72 60 13
1 23 27 23 20 9
2 13 6 16 5
3 7 8 2
4 2 1
5 1
Total 133 189 108 106 31

“The criterion for classifying individuals as susceptible is a preseason hemagglutination inhibition test detecting no
antibody in a dilution of 1 in 128 or less. Households with more than five susceptibles are deleted from all analyses.
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where ¢(-) is the Laplace transform of the length of the infectious period. Thus the estimated
SAR depends on both the estimated (3 and the specified distribution for the length of the
infectious period, generally through the product Su of 8 and the mean length of the infectious
period p. The standard error of the SAR is calculated using the delta method on the Laplace
transform. Also, the community probability of infection (CPI) as defined by Longini and
Koopman (1982), the probability that one susceptible is infected outside the population, is
calculated as CPI = 1 — B. Longini et al. (1988) analyzed these influenza data with a constant
length infectious period; their estimates of the SAR and CPI and respective standard errors are
comparable to the transformations reported here.

Next, the age stratification is assumed to reflect unspecified heterogeneity in the population.
The general model is fitted, yielding the maximum likelihood estimates given in Table 3. The
observed and expected frequencies of influenza infection are given in Table 4. For example,
there are eleven households with one child and two adults initially susceptible in which one adult
is infected during the epidemic; if the length of the infectious period is assumed to have a gamma
(2, 2.05) distribution, the expected number of these households is 8.543. The improvement of

Table 2
Maximum likelihood estimates and standard errors for parameters of model of influenza A(H3N2)
infections in 1977-1978 and 1980-1981 combined epidemics in Tecumseh, Michigan, with
homogeneity

Estimate Transformation

Constant distribution: 7, = 4.1
B = .0423 + .0061 SAR = 15.9369 + 2.0873
B = .8677 = .0097 CPI = .1323 + .0097

Log likelihood —532.974

Gamma distribution: 77 ~ Gamma(2, 2.05)

B = .0446 + .0071 SAR = 16.0641 + 2.2433
B = .8674 + .0097 CPI = .1326 + .0097

Log likelihood —532.827

Table 3
Maximum likelihood estimates and standard errors for parameters of the model of influenza
A(H3N2) infections in 1977-1978 and 1980-1981 combined epidemics in Tecumseh,
Michigan, with unrestricted contact parameters by age (0-17 vs 18+)

Estimate Transformation

Constant distribution: 7 = 4.1

“8,, = .0805 + .0208 SAR,, = 28.1186 + 6.1227
= .0354 £ .0291 SAR,, = 13.4996 = 10.314
o1 = 0268 £ .0135  SAR,; = 10.4080 * 4.9593
» = .0401 + .0127 SAR,, = 15.1662 * 4.4096
Child B, = .8184 £ .0254 CPI, = .1816 + .0254
Adult B, = .8897 + .0128 CPI, = .1103 + .0128
Log likelihood = —522.333
Gamma distribution: 77 ~ Gamma(2, 2.05)
81, = .0910 + .0263  SAR,; = 28.9708 + 6.4515
B, = .0389 + .0330 SAR,, = 14.2256 + 10.739
B, = .0273 = .0146 SAR,, = 10.3095 + 5.0703
5, = .0430 £ .0140 SAR,, = 15.5452 + 4.4420
Child B, = .8183 +.0250 CPI, = .1817 £ .0250
Adult B, = .8887 + .0127 CPI, = .1113 + .0127

Log likelihood —521.922

#1 = child, 2 = adult. For transmission, the first subscript of the contact parameters refers to the susceptible, the
second to the infective.
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Table 4
Observed and expected frequencies of influenza A(H3N2) infections in 1977-1978 and 1980-1981
combined epidemics in Tecumseh, Michigan, with unrestricted contact parameters by age
(0-17 vs 18+)

Susceptible Infected Expected

population population Observed Constant Gamma
©,1) 0,0) 108 111.215 111.092
©, 1) 17 13.785 13.907
©,2) 0, 0) 130 129.031 128.746
©,1) 22 27.136 27.226
©,2) 11 6.833 7.029
©,3) 0, 0) 7 7.747 7.722
all other 4 3.253 3.278
0, 4)2 0,0) 2 1.253 1.248
all other 0 747 752
(1,0) 0, 0) 2 6.547 6.546
(1,0) 6 1.453 1.454
1,1 0, 0) 17 16.748 16.727
©, 1D, 1,1 4 2.923 2.942
(1,0) 2 3.329 3.331
1,2) 0, 0) 51 46.646 46.536
©, 1 11 8.485 8.543
©,2), (1,2) 2 3.787 3.902
(1,0) 6 8.307 8.360
1,1 2 4.774 4.659
(1,3) ©,0) 6 4.611 ' 4.595
all other 2 3.389 3.405
1,4)* 1,0) 1 .073 .076
all other 0 .927 .924
2,0)? 0,0) 2 2.009 2.009
1,0 0 .641 .634
2,0) 1 .350 .357
2, 0,0) 14 14.898 14.877
O,D,a,n 9 5.844 5.843

(2,00, 2, 1)
(1,0) 2 4.258 4.280
2,2) 0,0) 51 47.719 47.599
©, 1) 4 7.509 7.656
©0,2),(1,2) 2 3.549 3.306
(1,0) 10 12.217 12.541
1,1 7 6.073 5.607
2,0) 8 5.350 5.226
2,1 6 4.947 4,993
2,2) 2 2.635 3.072
2,3)" (0, 0) 1 1.415 1.253
©, 1 1 283 297
(1,0) 1 .325 341
all other 0 977 1.109
G, 1 (0,0) 1 2.926 2.922
all other 5 3.074 3.078
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Table 4—Continued

3,2) 0,0) 10 9.981 9.954
0, 1), 0,2) 4 3.125 3.035
1,1, (1,2)
(1,0) 3 2.755 3.007
(2,0), 2, 1) 5 3.122 2.823
2,2), (3,0 1 4.018 4.180
3,1, 3,2
“, 1)? 0,0) 2 1.600 1.594
(1,0) 1 472 .542
@, 1 1 .305 355
all other 0 1.623 1.509
Goodness-of-fit (19 df) 24.643 25.688
P-value 173 .139

?Denotes susceptible population sizes not included in goodness-of-fit statistics because of small frequencies.

this general model over the homogeneous population model is seen by the likelihood ratio
statistic of x> = 21.28 (4df, P = .0003) when the infectious period is assumed to have constant
length 4.1.

For each set of contact parameters, a distinct clustering pattern can be seen. For both
distributions for the length of the infectious period, the transmission most likely to occur is
between children. The next most likely is between adults. Transmission between a child and an
adult is the least likely transmission to occur, according to these contact parameter estimates,
with a child slightly more likely to be infected by an adult than an adult by a child. Intuitively,
this model is reasonable, since even in a family setting children might interact more closely with
other children and adults with other adults. The difference in magnitude in the intragroup contact
parameters and the difference between the intergroup contact parameters might be partially
explained by adults’ more hygienic practices and health awareness. In addition, children may be
more infectious because of lower levels of neuraminidase antibody, thought to affect virus
shedding, from previous infections. Children may also be more susceptible because of less
immunity from previous infections. The expected frequencies show no detectable pattern in
deviation from the observed frequencies.

Comparisons of this model with other structured models for a heterogeneous population, not
presented here, show some improvement. Of the structured models considered, the model of
variable susceptibility, defined by 3;, = B;, is the most satisfactory. The general model does not
show statistically significant improvement to this model with likelihood ratio test of x> = 2.854
(2 df, P = .2400) for the constant (4.1) distribution. The general model also shows no
statistically significant improvement to the model of proportional mixing, defined by 3;, = 6,6,
(x? = 4.012, 2 df, P = .1345). The general model is significantly better than the model of
variable infectivity, defined by B;, = 8, (x> = 6.708, P = .0349). The estimated contact
parameters in the unrestricted model seem to reflect features of the models of variable
susceptibility and proportional mixing.

5. Discussion

The generalized stochastic epidemic model presented in this paper allows a flexible approach to
analyzing final size infection data. Separation and estimation of transmission probabilities within
and external to a population are possible with a minimum of intervention in a population. Use of
final size data allows more precise determination of infection status than is practically possible
with more complete incidence data. Earlier research has indicated that complete incidence data
contain little information about transmission parameters beyond final size data (Becker, 1976).
Also, any latent period can be ignored when final size data are used.
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Traditionally, infectious disease models have focused on variable susceptibility and related
risk factors, ignoring any variable infectiousness of individuals. In this generalized model, any
structured transmission process is allowed. Variable susceptibility, variable infectiousness,
proportional mixing, and clustering can each be modeled by appropriate constraints on the
contact parameters. A completely general model, with respect to heterogeneity of contact
parameters, can also be used to avoid any assumptions about the transmission process. The
statistical improvement of the general model over any of the structured, more restricted models
can be evaluated by use of likelihood ratio statistics.

A major contribution of this generalized model is the use of a variable length infectious
period. Most previous work on epidemic models has either incorporated a constant length
infectious period or has adopted the assumption of an exponential distribution, convenient for its
constant hazard rate. The length of the infectious period for this generalized model can be any
positive random variable, provided its Laplace transform can be specified. Since the underlying
distribution for the length of the infectious period is rarely known, this model can be applied to
explore possible distributions, as has been done for influenza in the previous section.

The extension of this generalized model from that of Ball (1986) is to include an external
source of infection. Ball (personal communication) has commented that the external source of
infection could be equivalently modeled by specifying a group i’ for every group i (i =
1,...,m). These groups, each with one initial infective and zero initial susceptibles, would
mimic the external source of infection. However, the approach of this paper demonstrates the
separate modes of transmission more clearly. Also, the calculation of the recursive probabilities
and thus the maximum likelihood estimation is simpler with fewer groups.

A conclusive identification of the distribution of the length of the influenza infectious period
could not be made with the Tecumseh data. Based on the results presented here and other
distributions considered, use of the gamma distribution seems to provide a satisfactory fit to the
data most consistently. However, no clear distinctions among the various distributions can be
made. A larger data set, either by number of populations or by maximum population size, might
clarify this issue. Final size distributions generated by arbitrarily specifying the distribution of
the length of the infectious period and appropriate parameters suggest that the final size
distribution is more strongly affected by the distribution of the length of the infectious period
when the mean length is greater. The constant length distribution seems to be adequate for
diseases with short and acute infectious periods, such as influenza, but would not be adequate for
a disease such as AIDS that has a long and variable infectious period.

This analysis of influenza transmission is the first time that variable susceptibility and variable
infectivity have been simultaneously modeled. In previous work with influenza data, only
variable susceptibility has been considered. The effective of variable infectivity, however, can
be seen to have a critical impact on the transmission probabilities. The results also demonstrate a
clustering tendency by age. When the general model is fitted to the Tecumseh data, the contact
parameters suggest that intragroup transmission (child to child or adult to adult) is most likely to
occur, while intergroup transmission is less likely. Although the difference is not statistically
significant, a child is more likely to be infected by an adult, than an adult by a child. This result,
combined with the probabilities of intragroup transmission, suggests that children are more
susceptible than adults to any kind of transmission. These relative relationships among the
contact parameters, or equivalently among the SARs, are similar to those estimated for
rhinovirus transmission (Rampey, unpublished Ph.D. dissertation, Emory University, 1988).

The generalized model presented in this paper offers a flexible statistical tool for modeling
infectious diseases. The model is appropriate for any infectious disease for which final size data
are available and the researcher is willing to postulate the distribution of the length of the
infectious period. Discrete heterogeneity among individuals in the population can be modeled by
specifying a pattern of transmission such as variable susceptibility or by an unspecified pattern as
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used in the general model for age discussed above. Possible extensions of this model include
time-dependent contact parameters and incorporation of continuous variables defining
heterogeneity.
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RESUME

Un modele stochastique de maladie infectieuse a été développé par Ball (1986, Advances in Applied
Probability 18, 289-310), et dans lequel la durée de la période contagieuse admet toute distribution
pouvant étre décrite par sa transformée de Laplace. On généralise ce modéle aux infections transmises a
I’intérieur de la population ou par une source contaminante quelconque extérieure. Des facteurs discrets
d’hétérogénéité peuvent aussi €tre inclus dans le modele pour tenir compte de diverses susceptibilités a
I’infection, contagiosités et/ou comportements. Le modele est ajusté a des données sérologiques d’épidémies
grippales relevées a Tecumseh, Michigan, par les méthodes d’estimation du maximum de vraisemblance.
Les estimations montrent un aspect d’agrégats par groupes d’age.
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APPENDIX A

Distribution of the Total Area Under the Trajectory of Infectives

Because the groups within the population are not independent, the joint Laplace transform of the total area
must be found by considering simultaneously the total areas for the m groups. Thus the function is

hy(t) = E(exp(— éljl t,‘,T/{k))).

Notice that this function is identified by a vector N of integers (the initial susceptible group sizes) and that
its argument is a vector t = (£, ..., ).
The joint Laplace transform can be expressed as the sum of conditional Laplace transforms:

N
hn(t) = = PJYn (1), (A1)
w=0

where Yy ,(t) = E(exp(— Y 5 TY | N* = w). This conditional Laplace transform can be written as
Uno(t) = ¥t + B(N = §)) /¥ ,(B(N =), 0<w<j<N, (A2)

where 8 is the m X m matrix of contact rates Bij (L, ) =1,...,m.

Define the function Ay ,(t) = PNy o(1). Using the relation in (A2),

o) = (V) o ot + BN = 0))BY -, (A3)

A second useful function is gy (), defined by gy () = A, ,(t + B (N — w)). Using this function, the
joint Laplace transform can be written as

i@ = = (N)en 0B

Now the functions ¥; ,(t), /; (1), and gy ,(t) can be used in the application of Theorem 1, as first seen in
(3), to yield the following system:

-3 (i)”w,w(t +B( - @)B /e ()" (A4)

w=0
Letting t = t + B'(N — j) in (A4) yields

)a.-+a

1= é (i)gN.w(t)Bj_“’/qb(t + B (N —j) (AS5)

w=0

More complete derivations of (A2)-(AS) are given in Addy (unpublished Ph.D. dissertation, Emory
University, 1988).

To proceed further, two lemmas, proven in Addy (unpublished dissertation) and also in Ball (1986), are
needed:

Lemma Al Let (h,) and (g,) be two m-dimensional sequences such that

n
hy= % (?)x"‘jgj, n>0,
j=0

where x is an m-dimensional vector constant. Then

n n J
g, = 3 .)(—x) ho_j m>0.
“a\J
i=0

Lemma A2 If v, (t), w = 0, are defined by

] j ji—w .
S (1)@t pa) =1 j>0.

w=0
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then, for j > 0,

3 (1) 00l - st ) =

w=
To apply Lemma Al, the functional operators D, (k = 1, ..., m) are needed. Define D, by
Dkf(tl’ T tm) =f(t1 + Bkl’ cet tm + Bkm)‘
Also, for n > 0, let D" = TI/L , D/". Applying this operator product to £,.,(1) yields
DN_wgw,w(t) = gw.w(t + 6/(N - "”))

Comparison of the system of equations as written in (AS5) and the companion system with N = w and
t =t + B'(N — w) shows that

gnu(t) = 8uo(t + B(N - w)) = DY, (1)
For a simpler notation, let g, ,(t) = g,(t). Now
(N S (N
) = T (N)en o(BY o= T (N)BN-eDNvg (1),
w=0 w=0

Lemma Al holds equally well when x is replaced by the product functional operator D, so that

N
an(© = = (N)(-B) Dm0, (A6)
Now let j = N in (A5) to get
N+a _ 5 N N-w N-w N-w
ORI O L XOL A IO (A7)

When the expression in (A6) is substituted into the system of equations in (A7), the following system can
be derived, as is done in Addy (unpublished dissertation cited previously):

s = 3 (N)BYepN-en,[o() - 1V (A8)

w=0 @

This last system of equations enables the following theorem defining the unconditional Laplace transform to
be proved.

Theorem Al If v,(t), w > 0, are defined as in Lemma A2, then
N N N-w+a
hy(t) = S (w)yw(t)B“’q&(t + B w) . N>0.
w=0
Proof See Addy (unpublished dissertation).

Calculation of the recursive functions v, (t) enables easy calculation of the joint Laplace transform of the
total area. Since there is no simple way to write the function for a general t, the most common use of the
Laplace transform is to recover the moments of the total areas. The recursive functions enable this
calculation to be done simultaneously for any susceptible population size N.

APPENDIX B

Proof of Theorem 2

The probabilities PY_, and PY~¥ are related by

N m m .
rie ()rtefon| £
i=1 j=
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where the expectation is conditional on N = N — k and N* = N — k. Recalling the functions defined in
Appendix A, the relation can be written as

PR (V) PR u(B10RS
= (1: ) hN—k,N—k(ﬂ,k)Bk

= (E) gN_k(ﬁ’k)Bk.
Therefore, the joint probability-generating function can be written as
N (N k
fn(3) = = ( K )gN_k(B’k)B sk, (B1)
k=0

Now the theorem can be proved by showing that the above summation is equal to the hypothesized
summation:

0= 3 (Voo
_ Eo(llj)ak(s)n E:(N k) BNk kg, (81) g (810
_ EO }:( )(N K) e (s)BY 26 (8%) DN 4w, (8K)
- I (V) (NS K @mr (010 (5N - a)
_ Eo E: (N "’)ak(s)BN 3 (BK)N g (B(N - @)

- wgo(g)BN_ng(B'(N - ""))SN_

N
- 3 (V) (B0
w=0

This summation is exactly (B1), defining the joint probability-generating function fy(s) of the multivari-
ate final size.



