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Household-based studies

10.1 Concepts of household studies

Household studies are important for studying the effects of vaccines, trans-
mission, and the natural history of infection. In Chapter 2 we introduced vac-
cine efficacy parameters that require conditioning on exposure to infection.
Household studies were used as the basis for defining exposure to infection
in vaccine studies as early as the 1930’s in evaluating the efficacy of pertus-
sis vaccines (Kendrick and Eldering 1939). Historically the interest focused on
evaluating the protective effects of vaccination. The relative risk of developing
illness in vaccinated compared to unvaccinated susceptibles exposed to cases
in their household was the basis of estimating the protective effects, VES,p, or
VESP,p. In observational studies, evaluating vaccine efficacy under conditions
of household exposure can help reduce bias generated by unequal exposure in
vaccinated and unvaccinated people. In recent years, the vaccine effect on the
ability to transmit the infection in vaccinated infected people compared to un-
vaccinated infected people, VEI , has gained attention. An additional measure
of interest is the overall reduction in transmission if both the infective and
the susceptible are vaccinated compared to if neither are vaccinated, VET .
Considering the estimates of VE based on the relative secondary attack rates,
there are three main unstratified vaccine effects:

V ES.1/.0 = 1− SAR.1

SAR.0
, V EI1./0. = 1− SAR1.

SAR0.
,

V ET = 1− SAR11

SAR00
. (10.1)

If one stratifies on the vaccine status of the infective person or the susceptible
person, then there are four further stratified measures of VES and VEI :

V ES01/00 = 1− SAR01

SAR00
, V ES11/10 = 1− SAR11

SAR10
,

V EI10/00 = 1− SAR10

SAR00
, V EI11/01 = 1− SAR11

SAR01
. (10.2)
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Equations (10.1) and (10.2) give the three main unstratified and three strat-
ified vaccine effects conditonal on exposure to infection data. Despite being
widespread, household studies of vaccine effects have not generally been used
for primary licensure efficacy trials. Household studies are sometimes nested
within randomized, controlled studies and provide secondary analyses.

The analysis is generally based on the relative transmission probability, p,
or relative secondary attack rate (SAR), between the vaccinated and unvac-
cinated individuals of interest. The SAR is a special case of the transmission
probability. The secondary attack rate is the expected proportion of suscep-
tibles who become infected when exposed to an infectious person. In the sec-
ondary attack rate, the contact between the infectious susceptible persons may
be defined as occuring over some time period, such as the duration of infec-
tiousness or over the period of the study. For example, the household SAR is
the probability that a susceptible individual living in the same household with
an infectious person during his or her period of infectiousness will become in-
fected (Fine, et al, 1988; Orenstein, et al, 1988). The SAR is a proportion, not
a rate. The index case in a household is the case that draws attention to the
household and leads to ascertainment of the household. The index case is also
often the first, or primary, case in the household, but not necessarily. A case
that occurs too soon after the primary case to have resulted from infection by
the primary case is called a co-primary case.

Households are the most common form of transmission unit used. It allows
easy identification of contacts between a case and susceptibles, and families are
convenient units of study. Many other settings are also used as transmission
units in studies and analyses that condition on exposure to infection. These in-
clude sexual partnerships, classrooms, schools, school buses, day care centers,
and workplaces, among others. Here we talk mostly about household studies,
but many of the studies and analyses are applicable with possibly slight mod-
ification to other transmission units as well. We use the term “household”
for general small transmission units. The term household is much easier for
exposition than is “transmission unit”.

Often but not always the household exposure studies are nested in a study
that has the primary analysis based on one of the unconditional measures of
vaccine efficacy, such as VES,IR or VES,CI . In these studies, when an exposure
is determined to have occurred, for instance, when a sibling of a vaccine study
participant has a case of pertussis, then the outcomes are evaluated in a
secondary analysis.

In addition to evaluating vaccine efficacy, household studies have been used
to learn about the transmission and natural history of many infections. As-
pects of the natural history studied in households include the transmissibility,
the incubation and latent periods, the duration of infectiousness, and the serial
interval between cases (Hope-Simpson 1952; Bailey 1957). Household studies
have also been used to evaluate other interventions, such as post-exposure
prophylaxis with influenza antiviral agents (Welliver et al 2001; Hayden et
al. 2004). Exposure to an infectious case within a household can be used as
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a natural challenge study, for example when studying immunological corre-
lates of protection. In many analyses of household studies, the households
are assumed to be independent of one another, so that susceptible contacts
are exposed only by the first case within the household. When the statistical
model assumes that the households are embedded within a community, the
analysis allows estimation of the risk of being infected in the community as
well as the risk of infection by exposure to a case within the household and
the vaccine effects at both levels.

In this and the following two chapters, we consider households studies not
only for evaluating vaccine effects, but in a broader context. Some of these
concepts may be useful for future vaccine studies. The household- and school-
based pneumococcal carriage studies were conducted as a prelude to introduc-
tion of the pneumococcal vaccines. This chapter provides several examples of
household studies and discusses general design considerations. Design consid-
erations include how the households are ascertained, whether the cases are
ascertained on infection status or symptomatic cases, and whether the stud-
ies are randomized or observational. The data structure and follow-up period
can depend on whether the infection results in immunity that lasts at least as
long as the study period, such as in influenza, colds, or measles, or whether a
person can experience repeated episodes of infection, carriage or disease dur-
ing the study, such as pneumococcal nasopharyngeal carriage. Chapters 11
and 12 cover methods of analysis in more detail. Chapter 11 presents several
methods for analyzing data assuming that households are embedded in com-
munities. Chapter 12 presents methods of analysis assuming that households
are independent.

10.2 Pertussis Vaccination

10.2.1 History

Household exposure studies have long been used to evaluate pertussis vacci-
nation. Pertussis vaccines were developed in the 1920’s and the first hopeful
results were observed in the Faroe Islands in the early 1920’s (Madsen 1933;
Medical Research Council 1951). Most pertussis vaccines were based on killed
whole cells until the 1980’s. Concern about efficacy and adverse effects of
whole-cell pertussis vaccines resulted in some countries to discontinue rec-
ommending its use. For example, Sweden completely discontinued pertussis
vaccination in 1979 because the efficacy seemed to be negligible (Trollfors
1981). A new generation of acellular vaccines was developed as an alternative
to the killed whole-cell ones. In the 1980’s and early 1990’s, considerable in-
terest in evaluating the relative efficacy of the two types generated a number
of papers on how methodological compared to biological effects of vaccines af-
fected the efficacy estimates. Fine and Clarkson (1987) and Fine et al (1988)
give a thoughtful review of sources of variability in pertussis vaccine efficacy
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estimates. They compare estimates based on controlled trials, cohort studies,
case-control studies, and secondary attack rate studies. Efficacy estimates were
often lower in household studies, possibly due to more intense and prolonged
exposure.

In countries that did not recommend pertussis vaccination, trials of the ef-
ficacy of the new vaccines could be conducted with a placebo arm. In countries
that recommended use of the whole cell pertussis vaccines, it was unethical to
have a placebo arm, and the two vaccines had to be compared head to head.
Children not in the study who were not vaccinated could be followed and
provide an unvaccinated study arm as part of an observational study. Pertus-
sis vaccine is generally combined with the diptheria and tetanus toxoids and
given three to four times early in the first year of life. The vaccine without the
pertussis component is denoted DT, and with it is denoted DTP. We present
several examples of pertussis vaccine studies in households.

10.2.2 Michigan, USA

Kendrick and Eldering (1939) report on a study of pertussis immunization
in children between 8 months and <5 years (<6 years for a short time at
the beginning) in Grand Rapids, Michigan, USA, and surrounding areas from
March 1, 1934 to November 1, 1937. Although the study was not randomized,
efforts were made to create a control group comparable to the test group.
Children receiving the vaccine were self-selecting. They obtained the vaccine
by presenting themselves at the city immunization clinics. As children were
immunized, comparable children were selected at random from a population-
based roster to match the vaccinated children on age and district. House visits
were made by nurses to all participants initially at 3 to 4 month intervals, but
after November 1935 at 2 month intervals. Public health and other sources of
reports of whooping cough cases were followed up as well.

The diagnoses in the study were primarily based on detailed clinical histo-
ries. Kendrick and Eldering discuss the difficulties associated with diagnosing
an attack of pertussis with certainty, particularly one in which the usually
accepted clinical criteria are lacking or at least not prominent. The difficulty
of choosing the best case definition for pertussis persists even today.

The main analysis was based on the relative number of cases per person-
years at risk in the vaccinated group compared with the control group (Figure
1.2 and equation (2.4)). However “from the beginning, one important objec-
tive in the study was to obtain as exact information as possible with regard to
exposures to pertussis and subsequent related attacks” (Kendrick and Elder-
ing 1939, page 146). They had clearly established definitions of exposures. To
be considered an exposure, the source case had to have a written case history
with diagnosis made on the same basis as the study participants. The contact
had to be recorded. Different levels of exposure were defined. The levels of
exposure were (1) definite in their own household, (2) definite in other house-
holds, (3) indefinite, and (4) no exposure history. To be considered definite,
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an exposure had to occur within 21 days of onset of the source case. A maxi-
mum incubation period of 30 days was assumed. Definite exposures in other
households had to be of at least 30 minutes duration. Indefinite exposures
could occur under less intimate conditions, such as outdoors or after the 21st
day, but no later than the 35th day of onset of the source case. The data
are shown in Figure 1.3 and the vaccine efficacy estimate based on definite
household exposure is in equation (2.5).

10.2.3 Niakhar, Senegal

Active population surveillance has been conducted since 1983 in Niakhar,
Senegal, a sub-Saharan rural community of 30 villages. The community is very
homogeneous, composed of Sereer peasant families, living in compounds, the
residential unit for extended families. As part of many research components
(Garenne and Cantrelle 1998), pertussis was under prospective and active
surveillance (Préziosi, et al. 2002). As a result, for each child information was
available not only on pertussis illnesses and vaccination but also on contacts.
Extended families were under longitudinal observation beginning in March
1983, based on annual visits, and from 1987 to 1996, based on weekly visits to
each compound. In addition, during pertussis vaccine trials 1990-1996 com-
paring whole cell to acellular vaccine, physicians collected biological samples
from consenting suspected cases in the entire population, defined as having a
cough lasting 8 days or more. The pertussis vaccine studies were conducted in
the 1990’s in accordance with the Helsinki Declaration (Préziosi et al 1997).
The children who did not receive vaccination in the trials were under active
surveillance as well. Samples included nasopharyngeal aspirates for isolating
the bacteria and to detect DNA using PCR. Acute and convalescent blood
samples were drawn to measure IgG titers to pertussis toxin (PT) or filamen-
tous hemagglutinin (FHA) by ELISA. Surveillance for pertussis focused on
children under age 15 years. All suspected cases and their co-residents were
followed actively by a physician. The usual demographic data, including age,
gender, hut, compound, hamlet and village were known for each child in the
area. Pertussis vaccination status and dates of vaccination were also known.
The primary analysis of the efficacy trials was based on unconditional vaccine
efficacy parameters (Simondon, et al. 1997).

For each suspected case, the date of symptom onset, duration of cough,
type of cough, a wide range of symptoms, results of each biologic diagnos-
tic test done, and physician diagnosis were recorded. Focusing on the year
1993, an epidemic year that produced a large number of cases and exten-
sive exposure to pertussis, Preźiosi and Halloran (2003) and Halloran, et al
(2003) analyzed the data to estimate not only VES but also VEI and VET

for pertussis. Preźiosi and Halloran (2003) considered a number of different
case definitions and the relation to estimated VES , VEI and VET . Halloran
et al (2003) considered different statistical methods for the secondary attack
rate analysis (see Chapter 12.2) using just one case definition. In the latter



212 10 Household-based studies

paper, a case of pertussis was defined as requiring clinically, at least 21 days
of cough with paroxysms and biologicially, either B. pertussis isolated from
a nasopharyngeal aspirate or significant increase or decrease in PT or FHA
antibodies as measured by ELISA or presence of a bacteriologically confirmed
case in the same compound within 28 days. The latter criterion is called an
epilink.

Preźiosi and Halloran (2003) chose the compound as the transmission unit
within which it was assumed that susceptibles were exposed to infection by
the first case in the unit. The compound is the “home”, i.e., the residential
unit where individuals make privileged contacts and where random mixing
is a reasonable assumption. Indeed, for these reasons, the compound is the
transmission unit of choice in African rural settings such as here (Garenne, et
al 1993; Aaby et al 1996).

A potentially infectious contact, or exposure, was defined as a susceptible
living in the same compound during the infectious period of the index case.
Exposed susceptibles were children with no history of pertussis living in a
compound with an index case. Onset of pertussis symptoms was assumed to
be the onset of infectiousness, thus the latent period equals the incubation
period. Co-primaries were those cases whose onset of cough was <7 days
after that of the index case, assumed to be too soon after the index case to
have been infected by the index case. To allow for uncertainty in duration of
infectiousness, a secondary case was defined as a case whose date of onset was
≥7 days after that of the index case and less than a variable cutoff, specifically
none, 56, 42, or 28 days.

Generally, when estimating protective efficacy, VES , from SARs, co-
primaries are simply ignored in the analysis, entering as neither susceptibles
nor infectives (Orenstein, et al. 1988; Fine, Clarkson, Miller 1988). However,
the particular interest here was in the effect of vaccine status on infectiousness
of the index case. Since primaries and co-primaries often had different vaccine
status, compounds with co-primaries were excluded from the analysis.

A total of 518 of the 1800 compounds (29%) were detected as having
potential cases of pertussis in 1993. In 189 (36%) of those compounds, pertus-
sis was confirmed. They represented 232 primary and co-primary cases and
1217 susceptibles. Among those were excluded compounds with co-primary
cases (n=33 [17%]), compounds with no susceptibles (n=5[3%]), and com-
pounds with a partially vaccinated primary case (n=42[22%]). Thus a total
of 109/189 (58%) of the qualifying compounds was eligible for analysis. The
109 compounds represented 109 primary cases and 790 susceptibles, of whom
152 ([19%] were partially vaccinated and 638 [81%] were either unvaccinated
or completely vaccinated. Table 10.1 gives the data and SAR’s using differ-
ent cutoffs. The result of at least one biological confirmation criterion was
available in over 97% of the suspected cases meeting our clinical definition.
From the same study, Preźiosi and Halloran (2003b) estimated the effect of
pertussis vaccination on clinical severity VEP (Chapter 9).
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Table 10.1. Number of exposed susceptibles, secondary cases, and secondary attack
rates (SAR) by vaccination status of the index case and the exposed susceptible
children and cutoff for counting secondary cases (from Halloran et al 2003).

Exposed susceptibles and secondary cases
Vaccinated Unvaccinated Combined

Index case cases/exposed SAR cases/exposed SAR cases/exposed SAR

Vaccinated
cutoff: none 11/127 0.09 9/67 0.13 20/194 0.10
56 days 10/127 0.08 6/67 0.09 16/194 0.08
42 days 10/127 0.08 5/67 0.07 15/194 0.08
28 days 3/127 0.02 3/67 0.04 6/194 0.03

Unvaccinated
cutoff: none 61/246 0.25 73/198 0.37 134/444 0.30
56 days 55/246 0.22 67/198 0.34 122/444 0.27
42 days 52/246 0.21 66/198 0.33 118/444 0.27
28 days 41/246 0.17 52/198 0.26 93/444 0.21

Combined
cutoff: none 72/373 0.19 82/265 0.31 154/638 0.24
56 days 65/373 0.17 73/265 0.28 138/638 0.22
42 days 62/373 0.17 71/265 0.27 133/638 0.21
28 days 44/373 0.11 55/265 0.21 99/638 0.16

10.2.4 England

During World War II, several investigations were undertaken by the Whooping-
cough Immunization Committee of the Medical Research Council to assess
the prophylactic value of pertussis vaccination, with disappointing results.
Between 1946 and 1950, the committee conducted an essentially randomized,
controlled trial in children between 6 and 18 month when recruited. They
tested five batches of vaccine from three manufacturers, two from the Michi-
gan Department of Health, two from Glaxo Laboratories, and one from Parke
Davis and Co. in ten separate field trials (Medical Research Council 1951).
Each child in the study was visited monthly by a nurse-investigator. Infor-
mation was obtained on exposure to pertussis, incidence of upper-respiratory
track disease, other immunizations, and other childhood diseases. If it was
found by the visit or routine report by the parent that a child had been ex-
posed to pertussis or had developed suspicious symptoms, repeated visits were
made and the mother was asked to take notes as well.

A total of 6,710 children completed the trial, with 3,358 in the vaccinated
and 3,352 in the unvaccinated group. In the vaccine group, there 149 cases in
102,961 child-months at risk, and in the unvaccinated group, there were 687
cases in 102,180 child-months at risk, a risk ratio of 1 to 4.6. The results give a
VES,IR = 1−1.45/6.72 = 0.78, [95% CI 0.74,0.82]. Analysis of information on
the exposures of children to pertussis was divided into two categories. First,
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Table 10.2. Total number of cases of pertussis and secondary attack rates by type
of exposure according to vaccine group from the study by the Medical Research
Council in England 1946–1950.

Home exposure Other exposure No

Vaccination No of No of Rate No of No of Rate exposure
status exposures cases (%) exposures cases (%) history

Vaccinated 203 37 18.2 566 47 8.3 65
Unvaccinated 173 151 87.3 561 213 38.0 323

home exposures were children exposed in their own home to one or more
siblings, and second, other exposures were children exposed in “day nurseries,
in nursery schools, at parties, in cinemas, in buses, and while playing outside
the home with other children.” In this study, the number of exposures was
recorded, not the number of children exposed, as some children were exposed
more than once. Table 10.2 gives the summary data, not broken down by the
10 areas and 5 vaccine batches. When analyzed by vaccine batch, the two
vaccines from the Michigan Department of Health gave a considerably greater
degree of protection than the other three.

After this study, England continued to monitor efficacy of pertussis vac-
cine. As the controversy over the vaccine continued, a fresh assessment was
made. During an outbreak that began in 1977, from January 1978 through
June 1980, England undertook a national assessment of the efficacy of pertus-
sis vaccination in 21 area health authorities (PHLS Epidemiologic Research
Laboratory 1982). The 21 areas comprise about one-quarter of the total health
authorities in England at that time. Case notification rates for children with
three doses of DTP or three doses of DT were studied in that period. The
vaccination status both of the population under 6 years of age and of the noti-
fied cases was provided from computer records by each area health authority
(AHA). Home visits by nurses and health visitors from the AHA were made
to notified cases to assess the severity of the case, the family circumstances,
and to take perinasal swabs. Information was collected on age, sex, history
of pertussis in the distant past, and history of recent illness that could have
been pertussis. Particular attention was given to children under 6 years of
age. A subsequent home visit about six weeks later was also made to record
symptoms in contacts under six years. Nurses were asked to report all cases of
cough whether or not associated with typical paroxysms. A household contact
who developed spasmodic cough was considered a case. The original analy-
sis included only two-child households. About 90% of the notified cases were
visited.

In the DTP group, a total of 2261 cases were notified in about 250,163
child-years at risk (0.9%). In the DT group, a total of 9,515 cases were noti-
fied in 187,595 child years at risk (5.1%) over the course of the study. Efficacy,
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Table 10.3. Secondary attack rates in home contacts according to age and vaccine
group (from PHLS Epidemiological Research Laboratory 1982)

Age of 3 DTP 3 DT Relative
contact No of Rate No of Rate rate
(years) Contacts cases (%) Contacts cases (%) DTP:DT

0− < 1 28 12 43 56 34 61 1:1.4
1− < 2 108 35 32 399 316 79 1:2.5
2− < 3 97 36 37 384 299 78 1:2.1
3− < 4 108 34 31 284 170 60 1:1.9
4− < 6 476 92 19 428 165 39 1:2.0

VES,IR, based on the total number of cases for each year of birth was greater
than 0.80. However, the analysis based on the secondary attack rates in house-
holds was lower in the study. Table 10.3 shows the relative secondary attack
rates in two-child families in which symptoms in the contact began at least
one week after those of the index case. Efficacy was consistently around 0.50,
except in the children less than one year, where the number of cases is small.
In this study, the co-primaries were those within seven days of the index case
and secondary cases were those that occurred within about 42 days of the in-
dex case and at least seven days after the index case. The efficacy was higher
with a more severe case definition, reaching 71 percent in children with 10
paroxysms or more.

Fine, et al (1988) reanalyzed this study and considered why estimates of
pertussis vaccine efficacy might be lower in household contact studies than
when assessed in cohort analyses in general populations. They restricted their
analyses to households with at least one child under 6 years of age. The
primary case was defined as the first recent case in the household, which
in many households was not the index case. Co-primaries were defined as
cases within one week of the primary case. Incidence cases were those that
occurred more than one week after the primary cases. These included more
than potentially secondary cases. Incidence cases were further divided into
retrospective, prospective, and current incidence cases depending on whether
they occurred before, after, or around the time of the initial visit to the
household. The analysis included 9,242 households with 10,406 contacts, of
whom 6,436 (61.8%) developed pertussis at the same time or after symptom
onset in the primary case. The 1,520 co-primary cases were excluded from
further analysis. A surprising 94% of all incidence cases were retrospectively
ascertained.

There were two key findings. First, vaccine efficacy was lower, though
not significantly, in retrospectively than in prospectively ascertained cases.
The overall, age standardized efficacy was 0.35 (95% CI 0.25–0.44) in ret-
rospectively ascertained cases, and 0.59 (95% CI 0.42–0.70) in prospectively
ascertained cases. Secondly, the efficacy was lower, though not significantly,
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in contacts exposed to vaccinated primary cases than in contacts exposed to
unvaccinated primary cases. This latter finding is not consistent with the bi-
ological argument that the bacterial exposure from a vaccinated case would
be lower than from an unvaccinated case (Préziosi and Halloran 2003a). They
speculate that it could be due to household clustering of vaccine failures or
false positive diagnoses.

10.2.5 Sweden

After cessation of pertussis vaccination in 1979 in Sweden, pertussis became
endemic again (Romanus et al 1987). Thus it was possible to conduct ran-
domized, placebo-controlled trials of pertussis vaccination in Sweden. A trial
of two acellular pertussis vaccines compared with placebo was conducted in
Sweden 1986–1987. The efficacies were lower than expected, which could have
been due to more sensitive case ascertainment, so further efficacy trials were
planned directly comparing the acellular with whole cell vaccines. Several per-
tussis vaccine trials were conducted in Sweden in the 1990’s.

In a double blind, placebo-controlled trial in the Göteborg area of western
Sweden, 3450 infants were randomized to vaccination with DT or the same
DT with pertussis toxoid at 3, 5, and 12 months of age. The study children
were born between June 1991 and May 1992 (Trollfors et al 1995). Trollfors et
al (1998) were interested in estimating the indirect protection of close contacts
of the children in the vaccine trial. A household study was nested within the
primary efficacy study described in Chapter 6.4.2. Parents and siblings in
households were followed for a median of two years starting 30 days after the
third vaccination up to January 31, 1995. The numbers of older siblings of
the DTP and DT were 938 and 965, of younger siblings 514 and 523, and of
parents 3237 and 3229, respectively. The vaccination status of parents and
siblings of the study children was not recorded. This is an example of the
mini-community design (Section 10.7.5).

Later acellular pertussis vaccine candidates contained further antigens.
Storsaeter et al (1998) did a study to evaluate immunological surrogates of
protection after household exposure to pertussis. The idea was to use house-
hold exposure as a natural challenge experiment in studying surrogates of
protection. The study was nested in a primary efficacy study (Gustafsson et
al 1996). The household study is reported in Chapter 15.4.3. Further exam-
ples of studies of the efficacy of acellular pertussis vaccination after household
exposure are Trollfors et al (1997) in Sweden and Schmitt et al (1996) in
Germany.

10.3 Influenza

Longitudinal household studies have a long history in the study of transmis-
sion of influenza and other acute respiratory diseases. Household studies of
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influenza have generally not been used for estimating vaccine efficacy, though
they have been used for evaluating the effects of post-exposure prophylaxis
of influenza antiviral agents. We present a number of household-based studies
of influenza transmission for their historical significance and to promote fu-
ture household-based studies of influenza and other respiratory diseases. We
present the household-based studies of influenza antivirals to illustrate further
methodological issues.

10.3.1 Seattle USA

Intensive surveillance of Seattle, Washington, USA families with school-age
children for influenza virus infections was conducted from 1975 to 1979 (Fox
et al 1982a). The study followed the Virus Watch method that basically in-
volves continuing virologic surveillance of families. The Viral Watch in Seattle
began by recruiting families with newborn infants in 1965 to 1969 with a focus
on respiratory and enteric viruses detectable by cell culture methods and that
were not well understood at that time. The Virus Watch method was specif-
ically adapted for the study of influenza viruses to yield a better description
of their behavior. Families with at least one child were recruited in Fall 1975
(Group I) or Fall 1976 (Group II) and followed for three years. In Group I, 112
families were recruited, and in Group II, 116 familes were recruited. By the
1978–1979 season, the families had dwindled to 44 and 73, yielding a total of
639 family-seasons of observation over four influenza virus epidemic seasons.

The protocol required collection of blood samples by venipuncture at four-
month intervals, information concerning onset and manifestation of symp-
toms, and duration of illness in any family member, using illness records kept
by the mother. Nose-throat swab specimens for virus isolations were to be
collected from all family members on a regular basis, bi-weekly or, during
influenza outbreaks, weekly, particularly when onset of a new case occurred.
The plan was quite ambitious and could not be fully implemented. Many ill-
nesses were missed, though there is no way to estimate how many. Between
9% (Group I) and 13% (Group II) of reported illnesses had no specimens
collected, while between 26% (Group I) and 32% (Group II) of illnesses were
recognized only because specimens were collected. Fox et al (1982b) analyzed
the pattern of infection in invaded households and the relation of age and
prior antibody to occurrence of infection and related illness. Susceptibility to
each type or subtype was rigorously defined so that the resulting secondary
attack rates would reflect virus infectivity. Susceptibles were defined on the
basis of a pre-episode hemagglutination-inhibiting antibody titer of 1:≤20 for
A/H3N2 virus and 1:≤10 for A/H1N1 and type B viruses. Of 102 contacts
susceptible to A/H3N2, 53% became infected when exposed in the household.
Of 147 contacts susceptible to A/H1N1, 44% were infected when exposed. Of
55 contacts susceptible to type B, 47% became infected.
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Table 10.4. Observed distribution of influenza A(H3N2) infections in 1977-1978
and 1980-1981 combined epidemics in Tecumseh, Michigan (from Addy et al 1991).

No. No. of susceptibles per household

infected 1 2 3 4 5

0 110 149 72 60 13
1 23 27 23 20 9
2 13 6 16 5
3 7 8 2
4 2 1
5 1

Total 133 189 108 106 31

10.3.2 Tecumseh, USA

Active community surveillance of acute respiratory illness took place in
Tecumseh, Michigan, during the five year period 1976–1981 (Monto, et al
1985). Beginning in October 1976, recruitment over a three month period
resulted in 1,000 individuals, approximately 10% of the community being un-
der surveillance by the end of December. The households were recruited in a
stratified manner until the required number was reached. Initially there were
no restrictions on elibility. Because of attrition, further recruitment was nec-
essary. In 1978 the requirement that a family have at least one child of school
age or younger was added. Then in 1979, families were recruited at the birth
of the child until the end of the study in 1981. Throughout the five years of
the study, families on surveillance were called weekly to identify the onset
of acute illness. Specimens for virus isolation were collected when an illness
was reported within two days of symptom onset. Blood specimens were col-
lected from all on surveillance at six-month intervals. In addition, specimens
for virus isolation were collected by Tecumseh physicians from patients with
febrile respiratory illness. Table 10.4 contains a summary of the distribution
of influenza A(H3N2) infections in 1977-1978 and 1980-1981 combined epi-
demics in Tecumseh, Michigan given in Addy et al (1991). Addy et al (1991)
give the household frequency data in Table 10.4 stratified by age group 0–17
years and 18+ years as well. Table 10.5 contains a summary of the data strat-
ified by age group and pre-season antibody titer (Longini et al 1988). The
criterion for classifying individuals as susceptible is a preseason hemaggluti-
nation inhibition test detecting no antibody in a dilution of 1 in 128 or less.
People with higher titers were considered immune and are not included in the
tables. Households with more than five susceptibles were deleted from all anal-
yses. Longini et al (1988) give the household level frequency data stratified
by pre-season antibody level and age group group.
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Table 10.5. Infection attack rates by pre-season antibody titer level stratified by
age group: influenza A(H3N2) epidemic seasons 1977-1978 and 1980-1981 combined
in Tecumseh, Michigan (from Longini et al 1988).

Pre-season antibody titer Infection status

No. not Attack
(1 : x) No. infected infected Total rate

Children (0–17 years)
Low level (x < 8) 100 200 300 0.333
High level (8 ≤ x ≤ 64) 20 180 200 0.100
Total 120 380 500 0.240

Adults (18+ years)
Low level (x < 8) 96 440 536 0.179
High level (8 ≤ x ≤ 64) 42 402 444 0.095
Total 138 842 980 0.141

10.3.3 Cleveland, USA

A large longitudinal 10 year study of illness of families in Cleveland, Ohio,
USA was conducted from January 1, 1948 through May 31, 1957 (Dingle at
al 1964). The were two primary objectives of the study. The first was to an-
swer questions such as how much illness actually, occurs, what is the etiology
of the illnesses, how important is the family unit in spreading the illness,
do families have a characteristic pattern of illness, and do individuals and
families vary in susceptibility to illness. The second objective was to study
specific diseases, using clinical, epidemiological, and laboratory results. The
study had four parts. First, illnesses or events occurring in each individual and
family were observed and recorded. Second, known entities such as strepto-
coccal infections, influenza, or noninfectious diseases were differentiated and
their behavior studied. Third, possible entities of unknown etiology were in-
vestigated. Fourth, problems such as the spread of infectious agents in the
population, evaluation of therapeutic or prophylactic agents, and the occur-
rence of noninfectious processes were studied. Stable, middle class families
with at least one child were recruited. Extensive medical examinations were
done on each family when it entered the study and at regular intervals, either
6-month or one-year in children, and annually in adults. Records were kept by
each mother, who notified the investigators at the time of each illness, how-
ever minor. Each family was visited weekly by a field worker, who obtained
a throat culture from each member of the household. The family physician
was called when necessary. During the study, an epidemic of poliomyelitis oc-
curred in 1952, and stool specimens were collected. Some diseases, such as
chickenpox, were recognized more reliably than others.

A total of 96 families and 443 individuals were in the study at one time
or another. In May 1957, the first reports of the new antigenic variant of
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Table 10.6. Influenza attack rates by age as measured by virus isolation (Jordan
et al 1958).

Respiratory illness

Test Virus
Age groups for virus isolated

(years) No. No. No. Per cent No. Per cent

0–4 28 44 35 79.6 12 42.9
5–9 76 113 80 70.8 44 57.9

10–14 68 108 83 76.6 40 58.8
15+ 17 27 19 70.4 8 47.1

Adults 119 100 71 71.0 22 18.5

Totals 308 392 288 73.5 126 40.9

influenza virus A occurred in Asia. In anticipation of the influenza pandemic,
the Cleveland study was reactivated in September 1957. Sixty of the families
agreed to participate again for collection of detailed clinical and epidemiologic
data (Jordan et al 1958). Table 10.6 contains the influenza illness attack rates
by age as measured by virus isolation during the Asian influenza pandemic in
the 60 families.

10.3.4 Influenza Epigrippe, France

The Epigrippe study was conducted during the 1999-2000 influenza season in
France (Carrat et al 2002). Households were recruited for follow-up by 161
general practitioners. In total 946 households were recruited. For a household
to be included, a member of the household had to visit a general practitioner
with a history of fever (≥ 38oC) in the last 48 hours and respiratory signs.
The household had to have at least one other member, everyone had to give
consent to participate in the study, and the patient seeking care had to be the
first case in the household and not be hospitalized as a result of the illness.
In all index cases, nasal swabs were obtained at the first visit. Biological con-
firmation of influenza virus was by immunofluorescence test and/or culture
and/or PCR. Households followed up with diaries of symptoms for 15 days af-
ter recruitment of the index case. Influenza was defined clinically in contacts.
Of the 946 index cases, 510 tested positive for influenza virus. Follow-up infor-
mation was obtained on 334 (65%) of the households with positive index cases.
Cauchemez, et al (2004) analyzed the data that included the 334 confirmed
index cases and households and 350 clinical influenza cases in 790 contacts.
Influenza in symptomatic contacts was not confirmed biologically, nor was
there any biological confirmation of possible asymptomatic infections. A case
of influenza in the contacts was defined as having clinical influenza for at least
one day.
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Table 10.7. Some characteristics of the four studies as reported in the four papers.

Zanamivir Oseltamivir

Zan I Zan II Osel I Osel II
Hayden et al Monto et al Hayden et al Welliver et al

2000 2002 2004 2001

Centers 15 59 multi 76
Where US, Canada, S. Africa, Europe North North

UK, Finland New Zealand, America, America,
NA, Australia Europe Europe

Study
period Oct 98 – Apr. 99 June 2000 – Apr. 2001 2000-01 season 1998–99 season

Predominant B (∼30% ) B (∼33%) B (∼33%) B (∼47%)
types A(H3N2) A(H1N1) (north) A(H1N1) A(H3N2)

A(H3N2) (south)
Randomized:
No. families (IC) 337 (321) 487 277 374
No. contacts 837 1291 812 962

Inf. index cases∗:
Control arm
Households (IC)† 87 (81) 153 84 79
No. contacts 215 398 228 206
Treatment arm
Households (IC) 78 (76) 129 89 84
No. contacts 195 368 248 209
∗ includes only households with laboratory-confirmed index cases
† IC = index case

10.3.5 Influenza antivirals

Four randomized household-based studies of the efficacy of post-exposure pro-
phylaxis in preventing clinical influenza in household contacts were conducted,
two of zanamivir (Hayden et al. 2000; Monto et al. 2002), called Zan I and
Zan II, and two of oseltamivir (Hayden et al 2004; Welliver et al 2001), called
Osel I and Osel II (Halloran et al 2007). Table 10.7 contains a summary of
some characteristics of the four studies. All four studies were household-based,
multi-center, randomized, controlled trials, where treatment was randomized
by household (cluster randomized design). Households with a suspected case
of influenza illness were enrolled as a whole in each study. Assignment of the
index case to treatment or control varied across the studies, resulting in dif-
ferences in the effect measures estimated in each study. Ages for eligibility of
index cases and contacts also varied across studies.

• Zan I (Hayden et al. 2000): Randomized, double-blind, placebo-controlled
trial. Households were randomized to study drug (zanamivir) or placebo.
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Index cases and eligible contacts within a household all received either
drug or placebo. Children under age 5 did not receive study drug.

• Zan II (Monto et al. 2002): Randomized, double-blind, placebo-controlled
trial. Households were randomized for eligible contacts to receive study
drug (zanamivir) or placebo. Index cases did not receive antiviral therapy.
Children under age 5 did not receive study drug.

• Osel I (Hayden et al. 2004): Randomized, open-label, trial. Households
were randomized for eligible contacts to receive either antiviral post-
exposure prophylaxis or antiviral treatment when illness developed (expec-
tant treatment). All index cases received study drug (oseltamivir) treat-
ment for 5 days. Children under 1 year were excluded from participating.

• Osel II (Welliver et al. 2001): Randomized, double-blind, placebo-controlled
trial. Households were randomized for eligible contacts to receive study
drug (oseltamivir) or placebo. Index cases did not receive antiviral ther-
apy. Children under 12 years were excluded from participating as contacts,
but could be (untreated) index cases.

In all four studies, the primary endpoint in the household contacts was
laboratory-confirmed clinical influenza illness. A secondary endpoint was
laboratory-confirmed influenza infection, whether symptomatic or asymp-
tomatic. All four studies did extensive laboratory testing of the enrolled in-
dex cases and their contacts. Because contacts were tested for influenza in-
fection regardless of whether they had symptoms, it is possible to estimate
pathogenicity from the data (Chapter 9). Contacts were supposed to complete
diary cards once or twice daily for 14 days or more, depending on the study,
with details of symptoms and temperature. The definitions of clinical symp-
tomatic influenza cases essentially included fever and symptoms, though they
varied across the four studies. The period for inclusion of secondary cases in
the original analyses varied across the studies.

Analogous to the vaccine efficacies in equations (10.2), from the appropri-
ate SARjk’s, in principle, we can estimate the stratified antiviral efficacies,
AVES , AVEI , and AVET . Three main design issues are illustrated by these
studies that are applicable for vaccine studies as well. First, household ran-
domization restricts the efficacy parameters that can be estimated, discussed
later in this chapter. Secondly, asymptomatic infections in contacts were ascer-
tained, so that pathogenicity and the effect of prophylaxis on pathogenicity,
AVEP , could be estimated. Third, each of the efficacies AVES , AVEI , and
AVET could be based on laboratory-confirmed influenza illness, AVE·d, or
simply laboratory-confirmed infection, AVE·i, in the eligible contacts.

10.4 Measles vaccination

Measles vaccines are generally much greater than 90 percent efficacious against
clinical disease. One of the considerations is at what age infants or children
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should be vaccinated. Maternal antibodies transferred before birth protect
very young infants and interfere with the live vaccine virus being able to in-
duce an immune response in the infant. If vaccinated too young, vaccination
will not be effective. On the other hand, if vaccinated too late, then the mater-
nal antibody protection will have waned, and the child could easily contract
measles before being vaccinated. In the US, vaccination against measles occurs
between 12 and 15 months. However, in developing countries, this is often too
late because exposure is more wide spread. Considerable research has been
directed at understanding the optimal age to vaccinate infants in developing
countries. In addition, new vaccines with high titers of vaccine virus were tried
that were thought could induce antibodies at a younger age.

10.4.1 Niakhar, Senegal

The clinical efficacy of three measles vaccines was studied in a randomized
trial in Niakhar, Senegal, in the same population described in Section 10.2.3.
Garenne et al (1993) evaluated the efficacy of measles vaccines after controlling
for the level of exposure to infection within the compounds. They conducted
two analyses of efficacy, one based on the unconditional cases per person-time
at risk, the other based on the secondary attack rate within compound. The
first analysis was based on a randomized vaccine trial conducted from August
1987 to July 1990 to compare two high-titer vaccines, the Edmonston-Zagreb
and the Schwarz, and the standard Schwarz. (Garenne et al 1991). The ran-
domized trial covered the cohorts of children born between February 1987 and
January 1989. The children were randomized into the three vaccine groups,
with the two high-titer vaccines being administered at 5 months and the
standard Schwarz at 10 months. The unvaccinated group were those children
who were not available to be vaccinated on their scheduled day. An unvacci-
nated control arm was unethical. A total of 1,566 children were vaccinated,
with vaccine coverage of 81.6% of the resident target population. The anal-
ysis controlling for the level of exposure within compound was nested in the
randomized study.

Three measles outbreaks occurred during the study period. In the first, 27
cases occurred between May and September 1988, 161 cases between Octo-
ber 1988 and July 1989, and 413 cases between August 1989 and July 1990.
When a family suspected a case of measles or a case was seen in the clinic,
a specifically trained physician went to the compound. The physician visited
the compound twice a week until the last case was cured. For serologic con-
firmation, an initial blood sample was obtained by fingerprick in susceptible
children in the family during the first visit, with a second sample obtained
from clinical cases at least four weeks after the onset of rash.

Exposure was defined as being susceptible (those who had never had
measles) and being present in a compound where there was a clinical case
of measles. Secondary cases were defined as those occurring in the same com-
pound 7 to 18 days after the index case. The mean time lag between index



224 10 Household-based studies

Table 10.8. Incidence and secondary attack rates of measles in a randomized trial
of three measles vaccines in 30 villages 1987–1989, Niakhar, Senegal (Garenne et al
1993).

Prospective study Compound exposure study
Resident Cases Incidence Cases

Group January 1, reported/ rate per reported/ SAR
1990 confirmed 1,000 p-yrs Contacts confirmed (%)

Schwarz 740 1/0 0.80 54 1/0 1.85
HT EZ 552 5/3 4.12 53 3/2 5.66

HT Schwarz 274 5/2 6.67 24 2/1 8.33
Unvaccinated 348 54/21 40.63 46 30/13 65.22

and secondary cases was 12.2 days, similar to that found in previous analyses
(Hope-Simpson 1952; Bailey 1957). Different levels of exposure within com-
pounds were defined using a linear score: 1 = living in a different compound;
2 = living in same compound but eating from a different kitchen; 3 = eating
from the same kitchen but sleeping in a different hut; 4 = sleeping in the same
hut. Reported clinical cases could be either directly or indirectly confirmed.
Direct confirmation required fulfilling the clinical case definition and having
at least a fourfold rise in HIA to measles virus during the acute phase. Indirect
confirmation was by epilink, that is, when it occurred in a compound where
another case was directly confirmed.

10.5 Pneumococcal carriage

Pneumococcal diseases are a major health problem all over the world. The
etiologic agent is Streptococcus pneumoniae (Pnc), a bacterium surrounded
by a polysaccharide (sugar) capsule. There are about 90 different serotypes of
Pnc differentiated by the composition of the capsule. Pneumococcal bacteria
are prevalent in populations. Generally the pneumococcal bacteria colonize
the nasopharyngeal area without causing symptoms. Sympomatic disease can
be either invasive or noninvasive. Invasive disease includes pneumonia, menin-
gitis, and bacteremia with fever. Noninvasive disease includes otitis media and
bronchitis. Generally, the cases of disease, especially invasive disease, are not
considered infectious for others, at least not important for transmission. In
contrast, the asympomatic carriers are considered to be the main sources of
infection. People have the ability to acquire colonization in the nasopharynx
and to clear it repeatedly without developing complete immunity. Given the
numerous serotypes, a person may acquire one type of infection, clear it, then
acquire either the same type or another.

The original pneumococcal vaccines were based on the polysaccharide cap-
sule with up to 23 of the serotypes. The first was licensed in the US in 1977,
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with an improved version in 1983. Immunogenicity was not great, so a new
generation of conjugate vaccines was developed based on purified polysac-
charide joined to a harmless variety of diphteria toxin. The conjugate pneu-
mococcal vaccine was licensed in the US in 2000. These vaccines contain 7
to 11 serotypes and induce a T-cell dependent immune response. They have
been shown to be effective in children and a strong population effect is be-
ing observed. In preparation for introducting the new vaccines, a series of
household-based carriage studies were done in a number of different coun-
tries. The studies were to study the acquisition and clearance of the different
serotypes, their relative prevalence, and possible difference in their acquisition
and clearance rates. One question of scientific interest was whether vaccina-
tion against the vaccine serotypes would increase not only the relative but
also absolute prevalence of nonvaccine serotypes.

In pneumococcal carriage studies, the time of onset and the time of clear-
ance of carriage are not observed, so households are not generally ascertained
on an index case. Households may be ascertained on some aspect of the index
person, such as having a young infant in the household. Household members
are examined at regular intervals to determine whether they are carrying the
bacteria. Follow-up is active. The data are longitudinal, also called panel data,
with repeated sampling of the same individuals at fixed, or nearly fixed, time
intervals.

10.5.1 Finland

Auranen et al (2000) analyze data from the FinOM cohort study concerning
the epidemiology of acute otitis media with a special emphasis on Strepto-
coccus pneumoniae (Pnc) bacteria (Syrjänen et al 2001). Healthy unselected
babies born to Finnish-speaking mothers and not previously immunized with
a pneumococcal vaccine were consecutively enrolled at their first routine visit
to a local well-baby clinic in Tampere, Finland between April 1994 and August
1995. Nearly all babies in Finland attend such clinics. During the enrollment
period, 53% of the families with a newborn chose to participate in the study.
The infants were followed for nasopharyngeal carriage of Pnc over a period
of two years. Auranen et al (2000) analyzed a subset of 97 infants and their
families for which carriage information was collected from all family members.
The 97 infants were enrolled consecutively between December 1994 and May
1995.

During the follow-up, 14 younger siblings of the index children were born.
All family members (N = 370+14) were examined for Pnc carriage when the
index child was 2, 3, 4, 5, 6, 9, 12, 15, 18, and 24 months old, for a total of 10
time points over the two-year follow-up period. Time is defined for each family
from birth of the index child. At each observation, the absence or presence
of Pnc was identified for the seven Pnc serotypes that were to be included
in the new vaccine. The proportion of recorded observations was 86% of the
potential number, which is high for such extensive follow-up. In 40 of the 97
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families, there was no observed carriage in anyone in the family during the
follow-up period.

10.5.2 France

A five month longitudinal study of 3- to 6-year old children in 81 schools
was conducted in France from January to May 2000 (Guillemot et al 2005).
Children were examined for Pnc carriage using oropharyngeal swabs approx-
imately once a month over a five month period (Figure 10.1). Oropharyngeal
swabs are less sensitive than using nasopharyngeal swabs. The mean time be-
tween consecutive swabs was 37 days (sd 15 days). During the observation
period 9,857 swabs were collected for serotyping. The 4,488 3- to 6-year old
childen attending the schools represented 88% of the children in the area un-
der study. Of these, 2,445 (55%) gave at least one swab. The mean number
of swabs was four (range: one to five) among children providing at least one
swab. All children attending the schools were included in the analysis as a
density factor, even if they had not provided a single observation of follow-
up (Cauchemez et al 2006). The analysis was restricted to the 16 serotypes
isolated in at least 30 swabs in the selected schools. The analysis divided the
serotypes into two groups, those contained in the seven-valent vaccine and
those not. The study preceded the introduction of the vaccine into France, so
all participating children were unvaccinated. Cauchemez et al (2006) analyzed
this study using methods similar to Auranen et al (2000).

10.5.3 United Kingdom

A study of 121 preschool children < 3 years old and all household members was
conducted in the United Kingdom during the follow-up period from October
2001 to July 2002 (Hussain et al 2005). Enrollment was through primary
health care registers in Hertfordshire. Families were visited once a month over
a 10 month period. All family members were examined for carriage using
nasopharyngeal swabs. At least one swab was obtained from 489 individuals
in 121 families for a total of 3,753 swabs, of which 932 (25%) were positive
for Pnc. Melegaro et al (2004) modeled the household transmission similarly
to Auranen et al (1996). However, they used maximum likelihood estimation
to estimate the transition rates between carriage and noncarriage (Section
11.4.1).

10.5.4 Bangladesh

A study in a community-based project in a transitional area in Savar,
Bangladesh enrolled 99 children born between May 2000 and April 2001 and
their families (98 because 2 newborns were twins). (Granat et al 2007). The
families were visited every two weeks until the index child was 4 months old,
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Transmission model
Here, we present a dynamic model for S. pneumoniae
transmission in schools. The model detailed the individ-
ual rate of colonization and decolonization by S. pneumo-
niae for all children attending the schools (even those that
gave no swab at all). In the subsequent section "Estima-

tion of transmission parameters", we show how model
parameters may be estimated from the data.

In the model, we assumed that dual colonization was
impossible (a child colonized by one serotype may not
acquire another unless first clearing). Non-colonized chil-
dren could be colonized within their school (see § Within-

Swabs collected in a school participating in the studyFigure 1
Swabs collected in a school participating in the study. "0" indicates that the sample was taken but no serotype was 
detected; otherwise, serotype number is given.

0 50 100 150

0
1

0
2

0
3

0
4

0

Time (day)

In
d

e
x
 o

f 
th

e
 c

h
ild

in
 t

h
e

 s
c
h

o
o

l

0 0 23F 0 6A
0 0 23F 0
0 0 0
0 0 0 0 0
0 0

0 0 0
0 0 0 0
0 0 6A 6A 18C
0 0 0 0 0

18C 0 0 0 0
0 0 6A 6A
0 0 0 0 0

23F 0 22F 0 0
0 0 0 23F
0 0 0 0
0 0 6B 0
0 0 0 0 0
0 0 0 18C 22F

9V 0 0 0 0
14 0 0 18C 0
0 0 0 0 18C
0 0 0 0 6B

18C 0 0 6A 0
0 6A

0 0 0
0 0 0

6A 0
6A 0

6A
0

0
17F

0
0
0
0
0

0
0
0

Fig. 10.1. Longitudinal data in a school participating in a pneumococcal carriage
study in France (Guillemot et al 2005). A “0” represents a sample in which no
pneumococcal serotypes was detected. The other symbols represent the pneumococ-
cal serotype abbreviation of the detected bateria. (from Cauchemez et al 2006d)

then monthly up to 1 year of age, for a total of 16 visits. The goal of the
study was to describe the development of pneumococcal carriage in a de-
veloping country setting. Swabs were taken from the infant and from other
children and family members present and consenting during the visit. A total
of 1,459 samples (92% of those planned) were collected from the 99 index
children and 2,865 from the other family members. Approximately 50% of
the infants had acquired pneumococcal carriage by 8 weeks of age. The point
prevalence of pneumococcal carriage in the first 5 years was about 50% and
declined thereafter to between 7 and 8% in adults.
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10.6 Design Considerations

10.6.1 Transmission units and contacts

The scientific question of interest will influence the design of the study in
households or other transmission units. The concept of a contact is very broad
and must be defined in each particular study. The transmission mode of an
infectious agent determines what types of contact are potentially infectious.
Contacts can be defined between two individuals, or an individual and a vec-
tor. Contacts can be defined within small transmission units, such as house-
holds. Within small transmission units, mixing is often assumed to be random.
A small transmission unit can also be defined as two individuals, such as a
steady sexual partnership or a household with just two susceptible people.
The definition of a contact within a study can depend on the definition of the
transmission units. The individuals in a small transmission unit exposed to
an infectious case can be thought of as a minicohort (Orenstein et al 1988)
that has its own reference date for exposure to infection. An advantage is that
vaccination status is less likely to change over the time of follow-up. A small
transmission unit can also be thought of as a minicommunity if the indirect
effects of vaccination of a fraction of the people in the transmission unit are
of interest.

Different definitions of a potentially infective contact and transmission
unit, for the same infectious agent, even within the same study, are possible.
In a study of chickenpox transmission, a potentially infective contact could be
defined as being in the same school on one day with someone with chickenpox.
Alternatively, it could be defined as living in the same house during the pre-
sumed infectious period of the person with chickenpox. In the first case, the
transmission unit is the school, and in the latter, it is the household. In the
first case, the contact is defined over one day, and in the latter, it is defined
over the entire infectious period. In tuberculosis, a contact could be defined
as riding on the same bus with someone with open tuberculosis, or as living
in the same household with someone with tuberculosis. In the former case,
the transmission unit is the bus, and in the latter, it is the household.

There could be different definitions of a contact for one definition of trans-
mission unit. In an HIV study, a potentially infective contact could be defined
as each sex act between two sexual partners in a steady relationship, one of
whom is infected with HIV. Alternatively, the partnership over its entire du-
ration or over the duration of the study could be defined as one potentially
infective contact.

Different levels of potentially infective contacts can be defined. In the
measles vaccine study in Niakhar, Senegal, four levels of exposure within a
compound were defined and given a linear score. In another study of measles
transmission in Niakhar, Senegal, the SARs estimated in schools, at homes and
in huts differed (Cisse et al, 1999). Kendrick and Eldering (1939) differentiated
definite and indefinite exposures.
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10.6.2 Ascertainment

The method of ascertaining households for inclusion in a study is central.
Households can be ascertained when a case develops within the household or
a group of households can be ascertained before a case develops and followed
prospectively over time. The index case of a household can be ascertained in a
number of ways. A case may appear in a clinic for treatment, then the family
is enrolled in the study. A case may be notified to the local authorities, and
the family visited for inclusion in the study.

Prospective enrollment of households can occur in several ways. Population-
based active surveillance in households at regular intervals is one method. An
example is the population-based surveillance in Niakhar, Senegal. Enrollment
of families prospectively, such as in the influenza studies in Tecumseh, Michi-
gan, USA, and Seattle, Washington, USA, is another approach. In the Finnish
pneumococcal carriage study, families were enrolled when the infant attended
the well-baby clinics.

Ideally one would have a random sample of households in the study,
whether ascertained on an index case or enrolled prospectively. Ascertain-
ment of a household by the index case is prone to ascertainment bias. A
household with a higher number of potential cases has more chance of being
ascertained than a household with a smaller number. If the size of the house-
hold has an influence on the results of the analysis, then the result will be
subject to ascertainment bias. It could be that households with two or more
cases would more likely be ascertained than households with single cases, so
that secondary attack rate would be estimated higher. However, following a
large number of households prospectively could be very expensive compared
to a study based on ascertaining index cases. The potential biases need to be
weighed against the efficiency of the study.

In an individually randomized vaccine trial, the households of the individ-
uals in the vaccine study can be included in a further study. If the household
is included whether or not the trial participant or anyone in the household is
infected, then the household is also randomized. If the household is included
in a nested household study only if a case develops in the household, whether
or not the first case is the vaccine trial participant or a sibling, the nested
study is subject to potential selection bias.

A second issue is how are the cases within the household ascertained. If the
index case is the first case in the household, then it is also the primary case.
Then all further cases in contacts will be ascertained prospectively. If there
are cases in a household that preceded the index case, then these cases will be
ascertained retrospectively. In the PHLS pertussis vaccination study (Section
10.2.4), index cases were those cases notified to the area health authority.
The household was visited, and cases within the household were ascertained
both retrospectively and prospectively. Fine et al (1988) found that vaccine
efficacy based on the retrospective incidence cases was lower than that based
on prospective incidence cases. They proposed three possible reasons for the
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observation. First, a higher number of cases in a household could result in a
higher probability of ascertainment (ascertainment bias). Second, there may
have been more diagnostic errors in the retrospective incidence cases (mis-
classification bias). False positives would reduce the efficacy estimates. The
third explanation draws on the idea of the all-or-none protective effects, or at
least heterogeneous protection. If the vaccine failed in some of the people, the
cases in the vaccinated, unprotected people would occur early after the pri-
mary case. So the retrospective incidence cases would be enriched in vaccine
failures. The vaccinated children observed prospectively would be enriched in
highly protected children. Fine et al (1998) question whether retrospective
incidence cases and prospective incidence cases should be lumped together in
the same analysis due to potentially different sources of bias. The pertussis
analysis is somewhat extreme in that a substantial portion of the retrospec-
tive incidence cases occurred more than 10 weeks before the initial visit to the
household.

Onset of symptomatic disease is easier to ascertain than onset of infec-
tion. In active surveillance of symptomatic disease, surveillance could be at
regular intervals and time of onset of disease retrospectively ascertained. Po-
tential cases can be ascertained prospectively by asking family members to
keep symptom diaries. When symptoms appear, they may be instructed to
contact the study coordinator, or the families may be contacted regularly to
check about onset of symptoms. In the carriage studies where symptoms do
not occur, participants are tested at regular intervals for carriage. With in-
fection or carriage data, the infection times between observations cannot be
ascertained, but may be imputed using statistical methods.

If ascertainment of households are on an index case, then the duration
of follow-up for each household needs to be determined. Household exposure
studies can be used as natural challenge studies when trying to identify im-
munological surrogates of protection (Storsaeter et al 1998). In this situation,
a decision needs to be made about the choice of timing of the immunological
measurement.

10.6.3 Case definition

The problem of case definition is similar to other types of study designs. When
households are ascertained on an index case, a different case definition is some-
times used for the secondary cases than for the index case. Retrospectively
ascertained cases can often not be confirmed biologically.

10.6.4 Data structure

There are three basic data structures for outcomes of interest for household
studies. The three are time-of-onset data, final value data, and longitudinal
data. In time-of-onset data, one observes the time of onset of symptoms or in-
fection of each of the cases in the household. In final value data, only whether
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an infection or illness occurred between the beginning and end of the study
period is observed for each person in the household. In longitudinal data, the
members of households are followed over time and observed (sampled) repeat-
edly at intervals. Combinations of the types of data are possible. For example,
active surveillance of households could occur at intervals. However, if a case
occurs, and shows up in a clinic, then an observation occurs outside of the
usual longitudinal follow-up. Time-of-onset data can be reduced to final value
data for the analysis. Also, one can decide to ignore the household structure in
the analysis and just analyze the data using unconditional approaches based
on survival analysis or final value data.

Another important aspect of the data structure depends on the method of
ascertainment. If ascertainment of a household is on an index case or index
infection, then there is at least one case (infection) in each household. If
ascertainment is prospective in that households are included before developing
the first case, then some of the households may have zero cases. The statistical
analysis may need to account for the difference in the two data structures
resulting from the ascertainment method.

10.6.5 Assignment mechanism

We consider first that we are interested in estimating VES , VEI , and VET

from a household-based study. As is evident from equations (10.1) and (10.2),
which of these efficacy parameters will be estimable depends on which sec-
ondary attack rates or transmission probabilities can be estimated. This in
turn depends on who in the households are vaccinated and who are not. For
example, to estimate the secondary attack rate from an infected vaccinated
person to a susceptible unvaccinated person, SAR10, some of the households
must have vaccinated primary cases and unvaccinated contacts. To estimate
SAR11, some of the households must have vaccinated primary cases and vac-
cinated contacts.

Most household-based studies of vaccine efficacy up to now are observa-
tional studies or studies nested within individually randomized studies. In
these studies, the allocation of vaccination within households is not under the
control of the investigator. Theoretical and simulation studies have shown that
to estimate VES , VEI , and VET in the same study, discordant or individual
randomization within households is better than randomization by household
(Datta et al 1999, Yang et al 2006). If everyone in a household is randomized
either to vaccine or control, only VET will be estimable.

Consider the four household-based influenza antiviral trials described in
Section 10.3.5. The Zan II and Osel II studies both did not treat the index
case, then randomized all contacts in the household to either drug or control.
Thus, in both of these studies the stratified AVES01/00 = 1−SAR01/SAR00 is
estimable (AVE for antiviral efficacy). In the Osel I study, the index cases were
all treated, then all household contacts randomized to either drug or control.
In Osel I, the other stratified AVES10/11 = 1 − SAR11/SAR10 is estimable.
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Table 10.9. Estimable antiviral efficacies from each of four household based, house-
hold randomized, influenza antiviral efficacy studies. AVEI is not estimale from any
of the studies alone.

Zanamivir Oseltamivir

Zan I Zan II Osel I Osel II
Hayden et al Monto et al Hayden et al Welliver et al

2002 2002 2004 2001

AVES01/00 = 1− SAR01
SAR00

– AVES01/00 – AVES01/00

AVES11/10 = 1− SAR11
SAR10

– – AVES11/10 –

AVEI11/01 = 1− SAR11
SAR01

– – – –

AVEI10/00 = 1− SAR10
SAR00

– – – –

AVET = 1− SAR11
SAR00

AVET – – –

In contrast, the Zan I study randomized everyone in a household, index cases
and contacts, to either drug or control. In Zan I, AVET = 1− SAR11/SAR00

is estimated. Without careful examination, one might believe that all three
studies were estimating the same parameter, but there could be not so subtle
difference that could be important for interpreting the studies. Table 10.9
provides an overview of the efficacy estimates that can be obtained from each
study. None of the four studies alone provides information to estimate AVEI ,
the effect of the drug in reducing the infectivity of the infected index case.
By combining the two oseltamivir studies or the two zanamivir studies, one
can obtain estimates of AVEI , though combining separate studies with other
subtle design differences is not ideal.

In the pertussis vaccine study in Niakhar, there were sufficient numbers of
discordant vaccinated and unvaccinated children to estimate all of the vaccine
efficacies (Chapter 12.2). If it is possible control allocation of vaccination or
other intervention within households at the design phase, careful consideration
should be given to exactly what one would like to estimate. A study needs to be
larger to get a good estimate of VEI than to estimate VES . VEI is estimated
based on exposure to vaccinated compared with exposure to unvaccinated
cases. If a vaccine has a strong protective effect, it may not be possible to get
a good estimate of VEI . However, if VES is high, VEI has less public health
importance and less influence on the results of simulation models.

10.7 Related designs

10.7.1 Case-contact design

An alternative to ascertaining clearly defined transmission units is the case-
contact design. In the case-contact approach, an index case is identified, then
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the people who have made contact with the index case are identified. For
example, in tuberculosis, SARS, or HIV, through contact tracing, the people
who have made contact with the infective person might be identified and
their infection status ascertained. One difficulty in estimating the transmission
probability from such a study is in determining the temporal order of infection
in the contacts.

10.7.2 Cluster designs

In dengue studies, ascertainment of clusters by index cases has been used
for focal mosquito control. Traditionally, a radius of 100 meters around the
household of the index cases was targeted for intensive mosquito intervention.
The rationale was that the usual mosquito vector of dengue virus Aedes aegypti
has a short flight range. More recently, index cases have been used to locate
clusters of people with the purpose to identify early infections in people to
study the immunopathogenesis of dengue infection (Beckett et al 2005). People
within a short radius of the index case are bled and followed for 14 days. The
idea is that the people around an index case would be enriched for infected
people compared to the general population, so that the cluster approach is
more efficient than a cohort study to identify newly infected people.

Secondary attack rates in neighborhood clusters can also be used to eval-
uate vaccine efficacy in urban or semi-urban settings (Orenstein et al 1985).
The study can be conducted by identifying neighborhood clusters, each with
at least one known case. The study participants are those of the age of interest
who live close to the known case. The proximity could be defined as living
no more than one house away from the front doorway of the house with a
case. The cluster starts at the known case in the neighborhood. The adjacent
households are visited. If a case occurred in a house in the period of interest,
then the houses next to it are visited until no further cases are found. Thus,
all participants live within about an equal proximity to a case. The exposure
is less well defined than in a household study, but perhaps better than in a
population-based study. A second visit to the neighborhood will be necessary
to confirm suspected cases and to detect further secondary cases.

10.7.3 Susceptibles exposed to infective contacts

In contrast to studies within transmission units, another study design ap-
proach to estimate the transmission probability or VES conditioning on po-
tential exposure to infection (Yang et al 2009) is to assemble a cohort of
susceptibles. The study then follows the susceptibles and collects information
on their contacts with infectives or potential infectives. This type of study
could be particularly useful for studies of sexually transmitted diseases or dis-
eases transmitted by injecting drug users where contacts can be fairly easily
defined. Also, the transmission probability per contact might be low. Study
subjects might give information on the average number of contacts rather than
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the exact number of contacts they each make per unit time. From this, the
expected number of contacts during the study period can be estimated. The
binomial model is probably the most commonly used model for estimating the
transmission probability when susceptibles make more than one potentially in-
fectious contact. It can take on complicated forms, depending on assumptions
about variability in the transmission probability, time-varying covariates, and
the amount and quality of data available. The model can be embedded in
complex Markov or survival models. The principles of the binomial model
were discussed in Chapter 4. The data required are infection outcome, num-
ber of potentially infective contacts, and covariate status for each person in
the study. Yang et al (2009) used an errors-in-variables approach to estimate
VES controlling for exposure to infection and errors in reporting number of
contacts.

10.7.4 Augmented vaccine studies

It is possible to design studies prospectively that intentionally make use of
multilevel information in estimating vaccine efficacy. One such design is the
augmented trial design (Longini et al 1996, Datta et al 1998). In the augmented
study design, individuals are recruited and possibly randomized to interven-
tion. Then the trial can be augmented by including information on contacts
and transmission units such as households or partnerships of the primary trial
participants. This is one method to preserve the individual level analysis and
randomization. The primary analysis can still focus on estimating VES , al-
though estimation of VEI is also possible. The individual recruitment and
randomization is similar to standard randomized studies that aim to estimate
relative risks based on one of the unconditional measures, such as incidence
rate. However, then individuals with whom the primary study participants
make contact, such as in a household or partnership, are also recruited. That
is, the transmission unit of the participant is recruited into the study, and
augments the original primary study. The augmented participants may or
may not be also randomized to intervention. Studies of vaccine efficacy based
on household exposure that are nested in individually randomized clinical
trials of vaccines are examples of augmented designs in which households of
trial participants are recruited once a case develops in the household. The
augmented study design can be thought as an extension of the idea of small
transmission units within a community, as in Chapter 11, or the augmenting
transmission units can be thought of as independent units, as in Chapter 12.

10.7.5 Mini-community designs

In a study design we call the mini-community design, households of individual
study participants are recruited into the study, regardless of whether a case
has developed in the household. The scientific goal of these types of studies is
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to estimate the indirect effect of vaccination of the study participants on pro-
tecting the other household members. The goal is to estimate unconditional
estimates of the type VEIIa for indirect effects. In these studies, follow-up
is over some defined period of calendar time. The goal is therefore different
than in studies based on the secondary attack rates or tranmission probabili-
ties. Similar to the community trials design, one hopes and assumes that the
households are independent of one another.

If just one child in a family is in a trial, then the proportion of the family
vaccinated may be too low to observe an indirect effect. That is, other sib-
lings or household members might provide enough source of infection to mask
any reduction in transmission due to the vaccinated child. If the interest is in
estimating indirect effects of vaccination in families, one could consider vac-
cinating a larger fraction of the household. For example, in a study in South
Africa, interest is on studying whether vaccinating children in the family with
pneumococcal conjugate vaccine could protect HIV infected household mem-
bers against pneumococcal disease. In this study, all children in some house-
holds and none in others could be vaccinated to have the maximal contrast in
indirect effects.

The mini-community design is an example of a community-randomized
design (Chapter 13), just that the communities are very small. The mini-
community design seems particularly useful for infectious agents with a high
ratio of asymptomatic infection or carriage to symptomatic disease, such as
with pneumococcal bacteria. Further methodological development of the mini-
community design is an open topic for future research.

10.8 Problems

10.1. Different analyses
(a) Create a hypothetical community composed of small transmission units.
Assign to each individual a covariate status (0,1) and also an infection time
and infection status at the end of an epidemic. Consider the various approaches
for estimating the effect measures, such as the conventional secondary attack
rate, the secondary attack rate and the community probability of infection
simultaneously, and the simple incidence proportion.
(b) How do the data being used for each approach differ? What parameters
can be estimated? What is the interpretation of the measures under each
approach?

10.2. Ignoring household structure
(a) Consider the data in Table 10.4. Ignoring the household structure, compute
the attack rate for each different household size and the study population as
a whole.
(b) Is there any trend in the attack rates by size of household? Would you
expect one? Why or why not?
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10.3. Exposure in measles study
(a) Consider the data in Table 10.8. Define the rate of exposure to measles
as the number of children exposed divided by the number at risk on January
1, 1990. Compute the rate of exposure for the three vaccine groups and the
unvaccinated group. Are there any differencs in the exposure rates among the
groups?
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Analysis of Households in Communities

11.1 Overview

In this chapter, we consider analyses that assume that the households or other
transmission units are nested in a community. Community-acquired infection
serves as a source of initial infection within households as well as possible fur-
ther cases in the household. Infected household members can infect others in
the household. To start, we discuss general aspects of these models. All mod-
els in this chapter are variants of the basic models presented in this section.
They use different data structures, assumptions, and methods of estimation,
but the underlying parameters are similar. The data can be final-value data,
time-to-event data, or longitudinal (panel) data.

Each model has two general types of parameters, one for infection from
the community, the other for transmission from an infective to a susceptible
within the household. The first is an unconditional parameter, that is, it does
not condition on exposure to infection, the second a conditional parameter.
The models can be formulated in discrete time or continuous time. For some
data structures, such as contact data on sexual contacts, contacts can be sub-
stituted for time. Models formulated in discrete time have a parameter for the
probability of infection from the community per unit time and a parameter
for the probability of transmission from an infective to a susceptible within
the household per unit time. Continuous time models have analogous rate pa-
rameters. One parameter describes the rate of community-acquired infection,
the other the rate of transmission from an infective to a susceptible within a
household. Both continuous and discrete time parameters can be transformed
into the probability of acquiring infection from the community over the pe-
riod of time of interest, called the community probability of infection, CPI,
and the secondary attack rate within the household, SAR. If an estimate of
prevalence of infection in the population is available, then the transmission
probability in the community at large can also be estimated (Hudgens, et al,
2001).
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The approaches in this chapter are not used as often as the conventional
secondary attack rate (Chapter 12) for vaccine evaluation, but they could be.
Not much standard software is available for the methods in this chapter. The
approaches generally require statistical knowledge and computer program-
ming skills.

Discrete-time model

Consider a study from time period 0 to time period T . Let a be the probability
a susceptible household member becomes infected from the community in one
time unit. Let b = 1 − a be the corresponding escape probability. Then the
probability of escaping infection from the community over the T time periods
is B = bT = (1− a)T , and the community probability of infection

CPI = 1−B = 1− bT = 1− (1− a)T . (11.1)

Let q = 1− p be the probability of escaping infectious contact in a house-
hold within one time unit. Then if a person is infectious for TI time units,
the probability of escaping infection from an infective within a household is
Q = qTI = (1− p)TI , and the secondary attack rate

SAR = 1−Q = 1− (1− p)TI . (11.2)

Continuous-time model

In the continuous time model, a parameter α denotes the instantaneous risk
of infection from the community and a parameter β denotes the instantaneous
risk of infection from an infective in the household. In the simplest form, if
the study duration is from time 0 to time T and the duration of infectiousness
is TI , then

CPI = 1− exp(−αT ),
SAR = 1− exp(−βTI). (11.3)

Vaccine effects and other covariates

Vaccination status and other covariates can be easily entered into the models.
Either separate values of each parameter can be estimated for each category
or parameters representing the effects of covariates can be included in the
model. Typically the parameter θ denotes the relative susceptibility of a vac-
cinated compared to an unvaccinated person, so that VES = 1− θ. Similarly,
the parameter φ denots the relative infectiousness per contact of a vaccinated
compared with an unvaccinated person, so that VEI = 1 − φ. If p is the per
time unit (or per contact) transmission probability between two unvaccinated
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people in a household, then θp is the per time unit (or per contact) transmis-
sion probability to a vaccinated susceptible from an unvaccinated infective.
The secondary attack from an unvaccinated infective individual to a vaccinate
susceptible is SAR01 = 1− (1− θp)TI .

If only the infective person is vaccinated, then SAR10 = 1 − (1 − φp)TI .
If both people are vaccinated, then SAR11 = 1 − (1 − θφp)TI . This latter
model assumes that the vaccine’s effects on infectiousness and susceptibility
in reducing the transmission probability are independent and multiplicative.
Alternatively, one could use another parameter ψ to denote the vaccine’s effect
on the transmission probability if both the infective and the susceptible in
the contact. are vaccinated, so that SAR11 = 1 − (1 − ψp)TI . The vaccine
parameters enter similarly into the continuous time models. For example,
SAR11 = 1− exp(−θφβTI).

The CPI involves only the susceptibles directly. One could introduce an-
other parameter θc denoting a different effect of vaccination on reducing sus-
ceptibility to infection from the community. However, introducing more pa-
rameters into a model sometimes cannot be supported by the amount of data
available. Often the assumption is made that the effect of vaccination on
protecting against infection from the community and from an infective in a
household are the same, so that just one parameter θ is estimated. This is
a strong biological assumption, since exposure within a household could be
more intense (Fine et al 1988).

Other covariates such as age can be entered similarly into the model.
Commonly, child- and adult-specific transmission probabilities or rates are
estimated Covariates such as vaccination or treatment status can change over
time in models that incorporate time. The parameters a and p, or α and β
can also be time-dependent. Information about the prevalence of infection can
be used to estimate the community probability or rate of infection as varying
over time, so that a or α can be functions of time. Infectiousness of an infec-
tive within a household can vary with time after being infected, so p or β can
be functions of time after being infected.

Note that if we define VES,p = 1− θ, this will not necessarily equal

V ES,SAR = 1− SAR01

SAR00
= 1− 1− (1− θp)TI

1− (1− p)TI
. (11.4)

See Problem 11.1.

Estimation

Estimation is most often in a likelihood or Bayesian framework. The like-
lihood component of the Bayesian model is sometimes exactly the same as
that in the likelihood framework. In general, though, a Bayesian framework
that uses Markov chain Monte Carlo (MCMC) methods for estimation allows
for relaxation of some assumptions of a straight likelihood approach, though
sometimes at the expense of making other assumptions.
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In the next two sections, we consider models for final value data and time-
of-onset data for diseases in which individuals acquire infection or disease just
once over the course of the study. These correspond to either the SEIR or SIR
models. In Section 11.4 we present models for longitudinal data for infections
with repeated acquisition and clearance of infection, such as in pneumococcal
carriage studies. These correspond to SIS models.

11.2 Final-value data

11.2.1 Data structure

The data required are the number of susceptibles in each household at the
beginning of the observation period and the number of infections that occurred
in each household by the time the observation period is over. Household final-
value data for influenza infection are in Table 10.4. Data further categorized
by covariates, such as vaccination, antibody titers (Table 10.5), or age, allow
the estimation of the effects of covariates.

Assume that observations are made on infections in a community, start-
ing in time period t = 0 and ending in time period t = T . This period
could correspond to an epidemic season or some other period of epidemio-
logical interest. The main criterion is that all, or nearly all, of the outbreaks
in the sample of households should essentially have run their course within
[0, T ]. The final value data on n households are observed, where ajk = ob-
served number of households with k original susceptibles of which j become
infected, k = 1, 2, . . . ,K and j = 0, 1, . . . , j, where

∑
k

∑
j ajk = n. For ex-

ample, a13 = 4 means that there are four households with three household
members in which one person became infected. This analysis requires biologic
confirmation of susceptibility before and infection after. Categorical covari-
ates such as vaccination status or age could also be observed. For example,
people could be either unvaccinated or vaccinated, denoted 1 and 2 respec-
tively. Then a(j1,j2)(k1,k2) = observed number of households in which (j1, j2)
of (k1, k2) susceptibles in each household become infected.

11.2.2 Discrete-time model

Longini and Koopman (1982) present a model for the distribution of the to-
tal number of cases in households from a homogeneous community and use a
maximum likelihood approach for estimation. To derive the final-size distri-
bution of household infections, three key assumptions are made: (1) sources of
infection from the community are distributed homogeneously; (2) household
members mix at random within the household; (3) each household member
can be infected either from within the household or from the community.

Infection from the community is modeled by defining at as the probability
a susceptible household member becomes infected from the community in
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time period t, and bt = 1− at is the corresponding escape probability. Define
B as the probability that a susceptible individual is not infected from the
community during the period of observation. A general expression for B is

B =
T∏

t=0

f(bt), (11.5)

where f(·) is bounded function describing infection rates in the community.
A simple form for f(·) is f(bt) = bt.

Now consider the effect of secondary spread within a household following
introductions from the community. An individual is infected in time period
t0 and will pass through a series of stages in time periods t1, t2, . . . , until
becoming immune. Define pt as probability that an infective who was infected
at time t = t0 will make infectious contact in the household with another
individual in time period t. Then {pt} describes pattern of infectiousness over
time. The structure of {pt} is

pt = 0 when t0 ≤ t ≤ tl, the latent period
pt > 0 when tl+1 ≤ t ≤ tm, the infectious period
pt = 0 when tm+1 ≤ t < t∞, the immune period.

Let qt = 1−pt be the daily probability of escaping infectious contact. Then
if there is an infected individual in the household who became infected at time
t = t0, let Qtr be the probability that a susceptible individual has escaped
infection within the household at time tr, t0 ≤ tr < tm+1. The probability Q
that the susceptible individual escapes infectious contact from the infective
during his entire period of infectiousness is

Q =
tm∏

t=t0

qt = Qtm

As described in Section 11.1, the secondary attack rate SAR = 1−Q, and the
community probability of infection CPI = 1−B.

Final-size distribution

Assume all households under consideration are free of infected members at the
beginning and end of the period of observation. Let Pr(j|k) be the probability
that j of k initial susceptibles within a household are infected the course
during the course of the epidemic. Write mjk = Pr(j|k) to simplify notation.

When k = 1, it follows from the above assumptions that m01 = B and
m11 = 1 − B. When k = 2, m02 = B2. For m12, there are two possible
ways it can occur. Either the first susceptible individual becomes infected
with probability B, and the second susceptible escapes infection from both
the community and the infective in the household, or the first susceptible
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escapes infection from both sources and the second becomes infected in the
community. Thus

m12 = 2(1−B)BQ = 2m11BQ.

For m22, similarly

m22 = 2(1−B)(1−Q)B + (1−B)2

= 1−m02 −m12,

since the probabilities must sum to one. In general, there are
(k

j

)
ways to get j

infected individuals from k originally susceptible ones. The general expression
for mjk is

mjk =
(

k

j

)
mjjB

k−jQj(k−j), j < k,

mkk = 1−
k−1∑

j=0

mjk. (11.6)

The density function (11.6) provides the final-size distribution for the modified
Reed-Frost model of Sugiyama(1960).

If it is assumed that there is spread only within the household, then B = 1.
If there are initially i infectives within the household, then equation (11.6)
becomes

mjk =
(

k

j

)
mjjQ

i+j(k−j), j < k,

and i + j is the final number of infectives in the household, equivalent to
equation (4.8).

When Q = 1, there is no spread in households, and the disease in question
is presumably not infectious. Then (11.6) reduces to the binomial distribution:

mjk =
(

k

j

)
(1−B)jBk−j , j ≤ k. (11.7)

This is the distribution of infection in household we would expect if the disease
were not contagious, and we would analyze final attack rate data in a commu-
nity of households. If household structure is ignored or there is no household
spread, then CPI = 1−B is the incidence proportion, or attack rate.

In some cases, the zero class a0k is not present. This occurs when house-
holds are surveyed only after an initial infective has appeared. Then the zero-
truncated distribution is used. The general expression for mjk is then

mjk =
(

k
j

)
mjjB

k−jQj(k−j)/(1−Bk), j < k. (11.8)
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Table 11.1. Observed and expected distributions of Asian influenza data
(Sugiyama, 1960) in households of size three as analyzed by Longini and Koopman
(1982)

Number of Observed number Expected number
cases of households of households

0 29 29.17
1 9 7.87
2 2 3.62
3 2 1.34

Total 42 42.00

Likelihood Estimation

The parameters Q and B can be estimated by maximum likelihood. The
likelihood function is

L(Q, B) =
∏

k

∏

j

m
ajk

jk .

The explicit form of the log likelihood function from (11.6) is

lnL = c +
∑

k

∑

j

ajk{lnmjj + (k − j) lnB + j(k − j lnQ}).

The ML estimates Q̂ and B̂ are solutions of the score functions that can be
solved iteratively by the method of scoring. The information matrix provides
variances and covariances. Estimates from the data provide starting values. In
the truncated case, the ML procedure can proceed, using a different approach
to get initial guesses. Becker (1989), pp. 182–193 discusses a similar model
with an approximate approach for estimation. Becker (1989) and Haber, et
al.(1988) use a generalized linear model.

Analysis of data from an Asian influenza epidemic

Table 11.1 presents data from an Asian influenza epidemic from households
with three initially susceptible people. The data are the number of households
that had either 0, 1, 2, or all 3 people infected by the end of the epidemic.

Using model (11.6), B̂ = 0.856, var(B̂ = 0.0009) and Q̂ = 0.834,
var(Q̂ = 0.0063). Thus, the estimated probability of a susceptible individ-
ual being infected by an infective in his household during the course of his
infectious period is ŜAR = 1 − Q̂ = 0.166. Assuming that the latent period
l = 2 days and infectious period TI is 4 days, and pt = p for t = 3, 4, 5, 6,
then the estimated daily probability of escaping infection in the household



244 11 Analysis of Households in Communities

Table 11.2. Comparison of CPI and SAR from the influenza A(H3N2) epidemic
seasons 1977-1978 and 1980-1981 combined, In Tecumseh, Michigan, stratified by
age group and pre-season antibody titer (from Longini et al 1988)

Pre-season antibody titer (1 : x)

Age Low level (x < 8) High level (8 ≤ x ≤ 64)

Children dCPI 0.231 ± 0.032 0.094 ± 0.028

(0–17 years) ŜAR 36.6 ± 6.2 3.4 ± 4.7

Adults dCPI 0.131 ± 0.018 0.089 ± 0.015

(18+ years) ŜAR 18.2 ± 4.4 1.6 ± 3.7

is q̂ = Q1/TI = 0.8340.25 = 0.956. The daily probability of infection in a
household p = 1− q = 0.044.

The estimated ĈPI = 1− B̂ = 0.144. The approximate percentage of cases
from the community can be calculated by setting Q = 1. Then from (11.7), if
there no spread within the household, the expected number of cases would be

nk(1− B̂) = 14.4,

but the total number of observed cases allowing spread within the household
(Q̂ = 0.834) is 19. Hence, approximately 75% of total cases were due to
infection from the community.

To further illustrate the role of the mixing assumptions in this model,
we can estimate the usual attack rate from these data by simply ignoring
the household structure. Suppose we do not have information on households.
There are 42 households with three people each, so the total population is
126 people. From Table 11.1, 19 people became infected. The attack rate
is AR= 19/126 = 0.151. The attack rate is interpreted as the probability
of becoming infected without any further assumptions about the dynamics
of interaction in the community or households. The estimated AR is higher
than the estimate of community probability of infection, CPI. The simple AR
is higher than the CPI because the AR includes the portion of the infected
individuals who, under the model that included the SAR, were estimated to
have been infected within households. This example illustrates the importance
of considering the mixing assumptions within a population when developing
models for estimating meaningful population parameters in infectious disease
epidemiology.

Extension to covariates

Longini et al (1988) extended the model to include categorical covariates such
as age group, antibody level, or vaccine status. Assuming that people are
equally infectious regardless of stratum, they computed the SAR and CPI
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for children and adults stratified further by the level of pre-season antibody.
The summary data are in Table 10.5 and the estimates are in Table 11.2. An
antibody efficacy similar to vaccine efficacy can be computed as

Antibody efficacy = 1− Risk(high antibody titer)
Risk(low antibody titer)

, (11.9)

using the estimates of SAR and CPI in Table 11.2 and AR in Table 10.5 as
the measures of risk (See Problem 11.2)

Using Markov chain Monte Carlo methods

O’Neill et al (2000) used Bayesian inference to estimate the probability of
escape from infection in the community and from an infective in a household.
The likelihood part of their Bayesian model was the same as in Longini and
Koopman (1982), with a different recursive approach to obtain the final-size
distribution. Using uniform prior distributions for the parameters B and Q,
the posterior density should be equivalent to the likelihood. A Metropolis-
Hastings algorithm was used for Bayesian inference. Figure 11.1 shows the
joint posterior distribution of the two parameters of interest for the Tecumseh
data in Table 10.4, where in the figure qc = B = 1−CPI, qh = Q = 1− SAR.
Applying a simple numerical maximization technique to the MCMC output
yielded estimates for the Tecumseh data that were virtually identical to those
in Addy et al (1991) (Section 11.2.3). Both O’Neill et al (2000) and Addy et
al (1991) obtained qc = Q = 0.8677. O’Neill et al (2000) obtained qh = B =
0.8408 and Addy et al (1991) give qh = B = 0.8406.

11.2.3 Generalized stochastic model

A stochastic infectious disease model was developed by Ball (1986) in which
the distribution of the length of the infectious period is allowed to have any
distribution that can be described by a Laplace transformation. Addy, et al
(1991) extended this model to allow for infection from an unspecified source
in the community or transmission within a household. The model allows for
discrete covariates, such as age group or vaccine status, for heterogeneous sus-
ceptibility and infectivity. The model for the probability of escaping infection
in the community, B = 1−CPI is formulated in discrete time. However, the
transmission parameter to be estimated is βik, the rate at which a susceptible
of type i has contact with infective of type k. The final size distribution is
found recursively. In the special case of a constant infectious period, the final
size distribution is the same as that described above.

If TI is a constant duration of infectivity and β does not vary, then
exp(−βTI) is the probability of escaping infection by an infective. Then
SAR= 1 − exp(−βTI). When TI is variable, the SAR is calculated by tak-
ing the expectation, and SAR= 1 − E{exp(−βTI)} = 1 − φ(β), where φ(·)
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Fig. 11.1. Joint posterior distribution, qc = B = 1 − CPI, qh = Q = 1 − SAR,
analyzing Tecumseh influenza data from Addy et al (1991). MCMC sample values
(1000 values, at sampling interval 10): ——–, contour lines surrounding highest
posterior density credible intervals at 50%, 90%, 99% and 99.9% levels; - - - -,
posterior probability density function values of 10%, 1% and 0.1% of its maximum
(from O’Neill et al 2000).

is the Laplace transform of the length of the infectious period. The standard
error of the SAR is calculated using the delta method on the Laplace trans-
form, if TI is variable. Estimates were obtained using maximum likelihood.
The results of the analysis of the Tecumseh influenza data in Table 10.4 is in
Table 11.3 for constant TI assuming homogeneity and in the second analysis
allowing for age-group specific transmission rates.

11.2.4 Other final-value analyses

Becker and Angulo (1981) use household data that includes smallpox vaccina-
tion status from an epidemic of variola minor, a mild form of smallpox (An-
gulo 1976) to estimate the protective effects of smallpox vaccination. Becker
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Table 11.3. Maximum likelihood estimates and standard errors for parameters
of model of influenza A(H3N2) infections in 1977-1978 and 1980-1981 combined
epidemics in Tecumseh, Michigan assuming contant period of infectiousness TI =
4.1 days (from Addy et al 1991). For transmission, the first subscript refers to
susceptibility, the second to the infective. SAR given in %.

Estimate Transformation

Homogeneity:
β = 0.0423 ± 0.0061 SAR= 15.9 ± 2.1
B = 0.8677 ± 0.0097 CPI= 0.1323 ± 0.0097

Log likelihood = −532.974

Child= 1, Adult= 2
β11 = 0.0805 ± 0.0208 SAR11 = 28.1 ± 6.1
β12 = 0.0354 ± 0.0291 SAR12 = 13.5 ± 10.3
β21 = 0.0268 ± 0.0135 SAR21 = 10.4 ± 5.0
β22 = 0.0401 ± 0.0127 SAR22 = 15.2 ± 4.4
B1 = 0.8184 ± 0.0254 CPI1 = 0.1816 ± 0.0254
B2 = 0.8897 ± 0.0128 CPI2 = 0.1103 ± 0.0128

Log likelihood = −522.333

et al (2003) reanalyze those data and use Bayesian inference to estimate the
probability that smallpox vaccination is completely protective and the rela-
tive susceptibility and infectiousness in those only partially protected. Magder
and Brookmeyer (1993) use a generalized linear model and EM algorithm to
estimate the community probability of transmission and transmission param-
eters on the example of intravenous drug users and HIV. In a study of dengue
transmission, Dantes et al (1988) used the model to estimate the relative risk
of transmission at both the individual and the household level.

11.3 Time-of-onset Data

11.3.1 Likelihood approach

Yang et al (2006) developed likelihood methods to estimate the prophylactic
effects of interventions in households using time-of-onset data. They compared
randomization schemes and prospective versus retrospective ascertainment.
The methods were an extension of the discrete time data approach (Rampey
et al 1992). The methods were motivated by the influenza antiviral household
studies in Table 10.7 and use to analyze the two oseltamivir trials. They are
also applicable to vaccines and other prophylactic agents. The model assumes
that the distributions of the latent and the infectious period (Table 11.4)
and does not take asymptomatic infection into account. The latent period is
assumed to be of the same duration as the incubation period, so that a person
is assumed infectious once symptoms develop.
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Table 11.4. Empirical cumulative distributions of the latent period and the infec-
tious period for influenza (Elveback et al., 1976).

Latent Period Infectious Period
Duration Cumulative Duration Cumulative
(days) Probability (days) Probability

1 0.2 3 0.3
2 0.8 4 0.7
3 1.0 5 0.9

6 1.0

Let the trial start on day 1 and end on day T . The simplest data for
each participant are the first date with symptoms of the disease of interest,
the assigned treatment, and the treatment period. Let p be the transmission
probability per daily contact within the household between a susceptible per-
son and an infective person if both have not received the treatment. Let b
be the daily probability that a susceptible, untreated person is infected by a
source of infection from the community.

Analogous to vaccine efficacies, the antiviral efficacies can be estimated.
Let AVES = 1−θ, where θp is the reduced transmission probability resulting in
illness if the susceptible person is taking an antiviral agent and exposed to an
untreated infected person in the household. The model assumes that efficacy
is the same for contacts outside the household, i.e., the reduced transmission
probability resulting in illness for a person taking an antiviral agent is θb.
AVEI = 1−φ, where φp is the reduced transmission probability if the infective
person is treated. AVET is the total effect on transmission when both people
in a transmission pair are treated. The analysis considered the two different
assumptions of independence and multiplicativity of θ and φ as well as that
a separate parameter ψ be estimated if both the infective and the susceptible
in a contact received treatment. Here we present just the former.

Notation and escape probabilities

Let t̃i denote the day of illness onset for an infected person i. Let ri(t) = (0
untreated, 1 treated) indicate the treatment status of person i on day t. Let
the function f(t|t̃j) denote the probability that person j is infectious on day
t given the day of illness onset t̃j . Assuming independence between θ and φ,
the probability that a susceptible person i escapes infection by an infective
family member j on day t is given by

qij(t) = 1− θri(t)φrj(t)pf(t|t̃j), (11.9)

Let Di denote the set of people in the same household with person i. Then

ei(t) = (1− θri(t)b)
∏

j∈Di

qij(t) and Qi(t) =
t∏

τ=1

ei(τ) (11.9)
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Table 11.5. Maximum likelihood estimates by age (1-17 vs 18+) for pooled os-
eltamivir trials conducted in 1998-1999 and 2000-2001, North America and Europe
(Yang et al 2006).

Assumption
ψ = θφ Parameter MLE 95% C.I. SAR Estimate 95% C.I.

Yes bc
† 0.0023 (0.0015, 0.0035)

ba 0.00055 (0.0003, 0.001)
pcc 0.038 (0.023, 0.063) SARcc

‡ 0.15 (0.074, 0.21)
pca 0.012 (0.007, 0.021) SARca 0.049 (0.021, 0.075)
pac 0.018 (0.008, 0.040) SARac 0.071 (0.014, 0.13)
paa 0.022 (0.014, 0.034) SARaa 0.086 (0.047, 0.12)
AVES 0.85 (0.52, 0.95)
AVEI 0.66 (-0.10, 0.89)
AVET 0.95 (0.77, 0.99)

†, ‡ Subscription c denotes child (1-17), a denotes adult (18+), and ca denotes
child-to-adult transmission.

‡ SARvu is based on the average 4.1 days of infectious period, i.e.,
SARvu = 1− (1− pvu)4.1.

are the escape probabilities for person i on day t and up to day t, respectively,
The probability that person i is infected on day t is given by

Zi(t) = Qi(t− 1)(1− ei(t)). (11.10)

Allowance must be made that we do not observe the exact infection times, but
just the onset of illness. Assuming the duration of the latent (and incubation)
period is known, then it is possible to compute the maximum and minimum
duration of the latent period. Let ti and ti be the earliest and latest potential
infection day for person i. Let g(t̃i|t) be the probability of illness on day t̃,
given infection on day t. Then the contribution to the likelihood of person i
is

Li(b, p, θ, φ, ψ|t̃j , j ∈ Di) =

{
Qi(T ) if i is not infected
∑ti

t=ti
g(t̃i|t)Zi(t) otherwise

(11.11)

MLEs can be obtained using usual methods. Results are in Table 11.5.

11.3.2 Bayesian latent variable approach

Cauchemez et al (2004) adapted the Bayesian hierarchical model of Auranen
et al (2000) (Section 11.4.1) for influenza household studies. The essential
difference is that unlike in the pneumococcal carriage studies, individuals can
have only one episode of influenza. That is, the model for influenza assumed
an SIR model, rather than an SIS as in Section 11.4.1. A main difference in
this approach compared to the likelihood method in Section 11.3.1 is that the
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distribution of the duration of the infectious period is estimated whereas in
the previous model it was assumed known. In this latent variable model, it is
assumed that individuals became infectious as soon as infected, that is, there
is no latent period. In the likelihood model, the latent period distribution
was assumed known and greater than 0. This model assumes there are no
inapparent infections, similar to the likelihood model above that does not
take asymptomatic infections into account.

The study motivating the analysis is described in Chapter 10.3.4. The
data were times of ascertainment of culture-confirmed index cases in physi-
cians’ practices and the time of onset of clinical influenza (not biologically
confirmed) within ascertained households. Similar to Auranen et al (2000),
the unobserved start and end of the infectious period for each case of in-
fluenza were imputed using a data augmentation algorithm. Let I(t) be the
collection of infectives in a household. Let αi be the rate of transmission from
the community for individual i. Let εiβj/n be the rate of transmission from
an infective j to a susceptible i in a household of size n. For an individual i
susceptible just before t, the rate of transmission is

λi(t) = αi + εi

∑

j∈I(t)

βj/n, (11.12)

similar to model (11.15). The distribution of the infectious period was assumed
to be a gamma distribution, for infective i with mean µi, standard deviation
σi, and density dµi,δi . The distribution of the infectious period was estimated
from augmented data for the unobserved dates of the start and end of the
infectious period. A strong gamma prior was used for the distribution of the
infectious period.

The community probability of infection (CPI) is defined as the probability
that participant i would be infected from the community during the 15 day
follow-up period of the household,

CPIi = 1− exp(−15αi).

The secondary attack rate, SAR, defined as the probability that an infective
j infects susceptible i in a household of size n is

SARij(n) = 1−
∫ +∞

0
exp

(
−ε

βj

n

)
dµj ,δj (t)dt (11.13)

The interest was in exploring the role of children in the infection process, so
parameters were stratified by children under 15 and adults.

The mean duration of influenza infectious period was estimated at 3.8 days
(95% CI [3.1,4.6]) with standard deviation of 2.0 days (95% CI [1.1,2.8]) for a
95% credible interval for the infectious period of (0.8,8.6) days for influenza.
The overall household SAR attack for clinical influenza decreased from 0.43
(95% CI 0.39, 0.48) for households of size 2 to 0.21 (95% CI 0.18,024). This
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result could be partly model dependent. The overall CPI over the 15 days of
followup was 0.08 (95% CI 0.04, 0.12). They found similar age-specific trends
in transmission parameters as others.

11.3.3 Other time-of-onset analyses

A data-augmentation method was developed to analyze the two zanamivir
trials in Table 10.7 (Yang et al 2007). Similar models were used as the ba-
sis for a resampling-based test to detect person-to-person transmission of an
infectious disease (Yang et al 2007a) and to detect human-to-human transmis-
sion of Avian A(H5N1) influenza (Yang et al 2007c). The software TranStat
is publicly available for this purpose.

11.4 Longitudinal Data

Many bacterial infections are characterized by repeated acquisition and clear-
ance of infection. Asymptomatic carriage of pneumococcal bacteria and H.
influenza b (Hib) bacteria are two examples. To estimate the acquisition and
clearance rates, one needs longitudinal data where a collection of individu-
als in households is sampled over time at a number of time points. Several
field studies that gathered longitudinal data from repeated sampling within
families or schools are described in Chapter 10.5. The problem with longitudi-
nal data of asymptomatic carriage is that neither the acquisition or clearance
times are observed. Different approaches to statistical models can deal with
this problem making a variety of assumptions.

Motivated by two studies of Hib carriage, Auranen et al (1996) proposed
the use of a susceptible-infected-susceptible (SIS) model for estimating the
acquisition and clearance parameters. At any given time, individuals can be
in either the non-carrier, susceptible state S, or the asymptomatic, infectious
carrier state C. People can make the transition between states, S → C and
C → S. The mini-epidemic in the family is represented by an individual-
based stationary Markov model that describes the dynamics of infection in
the family. The approach is also appropriate for use with pneumococcal car-
riage studies. Other problems with pneumococcal studies include combining
multiple serotype data, missing data, competition, and errors in diagnosis.

The key parameters in the model are the hazard rates of transitions S → C
and C → S. Let C(t) be the number of carriers in the family at time t. The
basic model before allowing for covariates, for the transition S → C is a
combination of the effective contact rate within the familly β and the rate of
infection from the community α. The rate of transition S → C

λ(i)(t) = α(i) + β(i)C(i)(t). (11.14)

One can also make the transitions age-group dependent, such as children and
adults. The constant rate of transition C → S is denoted by µ(i). The spread
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of carriage within a family is modeled by a Markov process. The state at
time t is the combined state of the individuals in the family. The possible
transitions within a family in any time interval can be described by a matrix
of transition probabilities. However, the matrix is of large dimension leading to
possible computational difficulties. This approach is discussed in more detail
in Section 11.4.2.

A second approach was suggested by Auranen et al (2000) that makes use
of Bayesian data augmentation. For each individual, the unobserved times of
acquiring and clearing carriage are included in the model as latent, unobserv-
able variables. If the acquisition and clearance times of each individual were
known, the conditional likelihood of the data is simple. Markov chain Monte
Carlo methods are used to augment the data with the acquisition and clear-
ance rates. The approach considers histories of infection events separately for
each individual.

Pneumococcal carriage studies and the models in this section fit well within
the context of a general framework of estimating vaccine effects. Vaccine pa-
rameters for susceptibility and infectiousness, also vaccine-dependent clear-
ance rates, could be added to the models. The question of how to use these
approaches in pivotal trials of vaccines for licensure is open.

11.4.1 Bayesian Latent Variable Approach

Auranen et al (2000) modeled the sequences of binary observations on Pnc
carriage by constructing latent point processes of acquiring and clearing car-
riage. The study motivating this analysis is described in Chapter 10.5.1. The
model allows for carriage of different serotypes s. The study identified seven
Pnc serotypes that were going to be included in the planned vaccine. The anal-
ysis was confined to the three most prevalent types, 6B, 19F, 23F. The data
for children under 5 years old are summarized in Table 11.6. The observed
numbers of changes in the carriage status over the observation intervals are
presented. The data are stratified according to age class, 0 to 2 years, 2 years
to 5 years. They are also stratified by the background carriage in the family
at the start of the observation period. The table summarizes the data over the
three serotypes. Pnc carriage was almost always clustered by serotype within
a family.

The hierarchical model has three stages: 1) the observation model, 2) the
transmission model, and 3) the prior model. In the observation model, the aug-
mented data need to be consistent with the observed data. Any observation of
carriage of that serotype needs to take place during one of the augmented peri-
ods of carriage that results from the imputed acquisition and clearance times.
Figure 11.2 from Cauchemez et al (2006) illustrates the data augmentation
approach. The model assumes conditional independence between consecutive
observations of the same individual as well as between observations of differ-
ent family members. The transmission model allows dependence of the process
within the family.
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Table 11.6. The number of observed changes in the individual carriage status over
the observation intervals (Auranen et al 2000).

Carriage among Age class 0–2 years Age class 2–5 years
other family members Carriage at Carriage at
at start of next observation next observation
observation interval Carriage No Yes Total No Yes Total

No carriage in No 562 33 595 107 10 117
in family

Yes 16 12 28 8 4 12
Total 578 45 623 115 14 129

At least one No 24 1 25 12 6 20
carrier in family

Yes 6 10 16 6 7 13
Total 30 11 41 20 13 33

The transmission model is of the form in model (11.14). Let α be the rate
to acquire carriage of serotype s from community, β be the rate of transmission
from an infective in a family to susceptible, and µ be the clearance rate (no
serotype specific rates), and n be the size of the family. C(s)

i (t) is a 0,1 indicator
if individual i is a carrier of serotype s at time t, Ci(t) indicates any of the
serotypes. Let Ti denote the time of birth of individual i , so that t − Ti is
the age of subject i. The intensities of the point processes of acquiring and
clearing carriage are

λ̃(s)
i =

[
α(t− Ti) + β(t− Ti)

n∑

k=1

C(s)
k (t)

]

×{1− Ci(t)}
µ̃i(t) = µCi(t) (11.15)

Model (11.15) makes several assumptions. The acquisition rates α and β are
assumed to depend on the age of the non-carrying susceptible. The acquisition
rates are assumed to be the same for all three serotypes. The model allows
carriage of only one serotype at a time. The duration of carriage is assumed to
be an exponential random variable that is the same for all three serotypes. The
model also requires an initial carriage state for each individual that is related
to the proportion π of Pnc carriers, assumed to be a single parameter across
all age groups and for all serotypes. The proportion π needed to be estimated
because the initial observation was missing on some of the participants. The
rate µ of clearing carriage was assumed to be µ1 for children under 2 years
old and µ2 for family members over 2 years and older.

The full Bayesian model, notation, and methods for computation are pre-
sented in Auranen et al (2000). The parameters to be estimated were α, β, µ,
and π from the imputed acquisition and clearance times, the serotype data,
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school acquisition), or in the community (i.e. out of the
school, see § Other assumptions).

Duration of carriage
We assumed that the duration of carriage of a given sero-
type had an Exponential distribution with mean !V for
vaccine serotypes and !U for non-vaccine serotypes. This
particular distribution is in good agreement with observed
data [10].

Within-school acquisition
We considered the school as a dynamic environment, i.e
the number Cs(t) of children colonized by serotype s at
time t was a function of time. We assumed that, for each

child who was not colonized at time t, the individual rate
to acquire serotype s in the school at time t was i) propor-
tional to Cs(t), since this increased opportunities for trans-
mission; and ii) inversely proportional to the size n of the
school to allow for reduced frequency of contacts in each
pair of children in larger schools [16]. With these assump-
tions, the individual rate to acquire serotype s at time t was
" Cs(t)/n, where n was the size of the school (including
children that gave no swab at all) and " corresponded to
pairwise child-to-child transmission rate, irrespective of
the size n of the school. Note that this formulation leads
to an aggregate rate of colonization due to intra-school
transmission of " Cs(t) S(t)/n, where S(t) is the number of
non colonized children, in agreement with the standard

Data augmentation strategy to estimate transmission parameters of S. pneumoniae from the longitudinal follow-up of pneumo-coccal carriage in schoolsFigure 2
Data augmentation strategy to estimate transmission parameters of S. pneumoniae from the longitudinal fol-
low-up of pneumococcal carriage in schools. The observed data consist of the times when swabs are collected in the 
school. The data are augmented with the times of colonization/decolonization. In the MCMC algorithm, augmented periods of 
carriage may be added/suppressed, split/combined; and the times of colonization/decolonization may change.

Observed data : swabs

Serotype: S1,…, S15;

No serotype: No.

Augmented data (unobserved):

Carriage in continuous time;

Compatible with the observation.
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No
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Fig. 11.2. Data augmentation strategy to estimate transmission parameters of
Streptococcus pneumoniae in a longitudinal study of pneumococcal carriage. The
observed data are presence or absence of pneumococcal bacteria in the nasophar-
ynx. The data are augmented with the times of acquisition and clearance of carriage
which give the period of carriage. The figure shows two different possible augmen-
tations compatible with the observed data (from Cauchemez et al 2006d).

and the initial carriage status data. The priors on the parameters were as-
sumed to be independent. Vague priors were used on all of the parameters,
with means informed in part by the data. The acquisition rates αf and βf

were assumed to be same for all family members older than 5 years, with rate
ratio ϕ = β/α. An age dependent α(a) was assumed for children less than five
years old. The function was formulated as piecewise constant over the interval
2 and 60 months of age. The rate ratio ϕ = β(a)/α(a) was assumed to be
constant.

The age-dependent community acquisition rate in children under 5 years
old increases up to approximately 0.3 new infections per year at age 18 months,
which corresponds to the increased prevalence of carriage. Further estimates
are in Table 11.7. The posterior mean of the ratio ϕ of the within family (with
at least one carrier in the family) and the community rate of acquisition was
25 in children under 5 years. In family members older than 5 years, the rate
of community acquisition was 0.04 per year and the the rate ratio ϕf was
15. The mean duration (1/µ1) of carriage was longer in children less than 2
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Table 11.7. Summary of the marginal posterior distribution of the parameters
estimated for the Finnish pneumococcol carriage study in households. Parameter
definitions are in the text (Auranen et al 2000).

90% equal-tail
Parameter Mean Median Credible interval

αf (per year) 0.037 0.037 0.016–0.061
ϕ 25 23 14–44
ϕf 15 10 3-42
µ1 (per month) 0.45 0.44 0.30–0.66
µ2 (per month) 0.71 0.69 0.49–1.01
1/µ1 (months) 2.3 2.3 1.5–3.3
1/µ2 (months) 1.5 1.4 1.0–2.0
π 0.023 0.022 0.011–0.037

years old than in older family members (1/µ2). The model was assess using a
number of approaches. A clear pattern in the data was the temporal clustering
of pneumococcal carriage within families.

Cauchemez, et al (2006d) used a similar approach to Auranen et al (2000)
to analyze a longitudinal study in France in schools rather than households
described in Chapter 10.5.2. The primary scientific question of the analysis
was whether the seven Pnc serotypes have a competitive advantage over the
nonvaccine serotypes. The analysis proposed to study this question by com-
paring the mean duration of carriage (1/µ) and within school child-to-child
transmission rate (β) of the seven vaccine serotypes with those of the nonva-
ccine serotypes, denoted by V and U, respectively. No children had yet been
vaccinated. The vaccine serotypes are 6B, 9V, 14, 18C, 19F, 23F. Vaccine
serotype 4 was not included in the analysis because it was isolated in only 10
samples. The nonvaccine serotypes included in the analysis are 6A, 3, 19A,
11A, 15A, 23A, 17F, 10A, and 9L.

The model is similar to that in (11.15), except the term for transmission
within school included the term 1/n, where n is the number of children in the
school regardless of whether they took part in the study. The term 1/n serves
as a density factor and reduces transmission the larger the school is. Thus the
individual rate to acquire serotype s at time t was βCs(t)/n, rather than just
βCs(t), where Cs(t) is the number of children carrying serotype s at time t.

An expression for the secondary attack rate, SAR, the probability that
a child carrying the bacteria transmits to a non-carrying child during the
carriage period, is presented. Comparing the SAR for the vaccine types to
that of the nonvaccine types allows comparison of the overall fitness for trans-
mission since it is a function of the mean duration of carriage and the child
to child transmission rate. Let L be the duration of carriage with density
f(L) = µ exp(−Lµ) and 1 − exp(−βL/n) be the probability that a carrying
child during time period L transmits to a non-carrying child in the school.
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Table 11.8. Summary of the marginal posterior distribution of the parameters
estimated for the study of pneumococcal carriage in schools in France. Parameter
definitions are in the text (Cauchemez et al 2006).

Vaccine serotype Non-vaccine serotype Ratio

95% credible 95% credible 95% credible
Mean interval Mean interval Mean interval

1/µ (days) 23 21–25 22 20–24 1.06 0.94–1.28
β (% day−1) 4.6 4.2–5.0 5.1 4.5–5.6 0.91 0.80–1.05
SAR (%)
n = 30 3.4 3.2–3.7 3.6 3.3–3.8 0.97 0.88–1.06
n = 50 2.1 1.9–2.2 2.2 2.0–2.3 0.97 0.88–1.06
n = 100 1.1 1.0-1.2 1.1 1.0–1.2 0.97 0.88–1.06

Then

SAR =
∫ ∞

0
(1− exp(−βL/n)f(L)dL,

which reduces to SAR = (1+Nµβ−1)−1. The results are summarized in Table
11.8. There was no evidence that the vaccine serotypes had different trans-
mission characteristics than the nonvaccine serotypes. (Note: Cauchemez et
al (2006) define µ as the mean duration of carriage, not 1/µ). Cauchemez
et al (2006c) further investigated heterogeneity among the 15 serotypes us-
ing a clustering step to select a parsimonious description of the transmission
characteristics.

11.4.2 Markov transition model

Another approach to estimating the acquisition parameters α and β in equa-
tion (11.14) and the clearance rate µ is by explicit formulation of the transition
matrix for the Markov process in the households (Auranen et al 1996). The
spread of carriage within the family is modeled by the transition between
states in a Markov process. The state of the family at time t is the combined
state of the individuals in the family. The number of possible states depends
on the number of individuals in the family. In a family with three members,
there are eight possible states. Letting 1 indicate a carrier and 0 a non-carrier,
the possible states are 000, 001, 010, 011, 100, 101, 110, and 111. A family in
which at one observation time, the second person is a carrier, the other two
non-carriers, and at the next observation time, both the second and third are
carriers, makes the transition from state 010 to state 011. The corresponding
intensity matrix Q with elements qij is
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000 001 010 011 100 101 110 111
000 q11 α(3) α(2) 0 α(1) 0 0 0
001 µ(3) q22 0 α(2) + β(2) 0 α(1) + β(1) 0 0
010 µ(2) 0 q33 α(3) + β(3) 0 0 α(1) + β(1) 0
011 0 µ(2) µ(3) q44 0 0 0 α(1) + 2β(1)

100 µ(1) 0 q55 α(3) + 2β(3) α(2) + β(2) 0
101 0 µ(1) 0 0 µ(3) q66 0 α(3) + 2β(2)

110 0 0 µ(1) 0 µ(2) 0 q77 α(3) + β(3)

111 0 0 0 µ(1) 0 µ(2) µ(3) q88

The elements on the diagonals represent the intensity of staying in the
same state. The qii = −

∑
j $=i qij (Karlin and Taylor 1975). The element (4,8)

represents the transition from state 011 to state 111. Individual number 1 has
the transition rate α(1) + 2β(1), representing the rate of acquisition from the
community and the exposure by the two carriers in the household. The model
only allows one family member to make a transition during the time period of
the time step. The 0s in the matrix represent transitions that are not allowed,
thus have 0 intensity. The matrix can represent households of any size and
include age- or covariate- (vaccination status) dependent rates. For the Hib
analysis, Auranen et al (1996) had two levels of the three rate parameters,
one for children under 7 years old and one for everyone older than 7. They
used a Bayesian approach to estimating the parameters.

Melegaro, et al (2004) used a similar model to estimate the acquisition
and clearance rates for a household study of pneumococcal carriage in the
United Kingdom (Hussain et al 2005) presented in Chapter 10.5.3. A density
correction factor (z − 1)w was added, where (n − 1) is the number of other
family members in a household size n, and w corresponds to the level of
density dependence. When w = 0, the model represents density-independent
transmission.

The population was divided in children under 5 years and everyone else
greater than 5 years, denoted by i = 1, 2. C1(t) and C2(t) are number of
carrier children (< 5 yrs) and adults in household. Then the probability of a
transition in a short time interval δt for an individual in age class i is

Pr
i

(S → C)δt =
(

αi +
β1iC1(t) + β2iC2(t)

(n− 1)w

)
· δt,

Pr
i

(C → S)δt = µi · δt.

They use a Markov model with 1-day intervals to analyze 28-day interval
data assuming only one person can change in household per day. The param-
eters were estimated using a likelihood approach. The estimate of the density
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parameter w was significantly greater than 0 (w = 1.2, 95% CI 0.2–2.2) sug-
gesting that transmission within households might depend on density.

In a further analysis, Melegaro et al (2007) extended the model to esti-
mate serotype-specific transmission parameters. Five distinct data sets were
constructed, one for each of the target serotypes. The carriage status of each
study participant was recorded at each monthly visit as 0 (noncarrier), 1 (car-
rier of the target serotype), 2 (carrier of any other serotype), or 9 when the
swab was not taken or the laboratory result was not reported. Estimation
used a likelihood approach.

Problems

11.1. VES,p and VES,SAR

(a) The first part of the problem is described here.
(b) The second part of the problem is described here.

11.2. Comparing antibody efficacies
(a) Compute the antibody efficacies based on the SAR, CPI, and AR for
children and adults using equation 11.9 and the results in Tables 10.5 and
11.2.
(b) Compare the estimates and explain why the antibody efficacy based on
the SAR is much higher than those based on the CPI and AR.

11.3. Problem Heading
(a) The first part of the problem is described here.
(b) The second part of the problem is described here.
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Analysis of Independent Households

In this chapter, we consider methods of analysis that assume that the house-
holds are independent of one another. The most commonly used approach is to
estimate vaccine efficacy based on the conventional secondary attack rate. We
also consider the estimation of indirect effects of vaccination using household
studies.

12.1 Conventional SAR Analysis

12.1.1 Setting up the secondary attack rate analysis.

To estimate the conventional household SAR, the main task is to set up the
analysis. Decisions need to be made on

1. who in the household is eligible to be a secondary case, and
2. who of the eligible household members are the secondary cases.

The first contributes to the denominator of the secondary attack rate, the
second contributes to the numerator.

Data on the time of onset of disease for each case in the household as well
as knowledge of who is susceptible are required. Then one decides who is the
index, or primary case in the household, and which of the other cases in the
household could reasonably have been infected by the primary case. Occasion-
ally one differentiates the index case, the case that results in ascertainment
of the household, from the primary case, the earliest temporal case in the
household. To decide which of the subsequent cases in the household could
have been infected by the primary case, one needs estimates or assumptions
about the minimum and maximum incubation periods, the latent period and
its relation to the incubation period, and the maximum time that a person
remains infectious. These values will vary according to the disease of interest.
Using this information, one then needs to define the time interval after the
primary case that would include the secondary cases. Based on the time of
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onset data within each household, each case is defined as being either a sec-
ondary case or not. Co-primary cases are people who developed disease too
soon after the primary case to have been infected by the primary case. They
are not counted as secondary cases, and are generally simply excluded from
the analysis. They are not included in the denominator of the SAR. Primary
cases are also not included in the analysis. The estimated household secondary
attack rate is the total number of secondary cases in all households divided by
the total number of at-risk susceptibles in all households. In some cases, ter-
tiary or higher generation cases may be included in the analysis by calling the
secondary cases the primary case for further chains of transmission. Tertiary
cases or higher cases are included in the denominator of exposed individuals
for the secondary attack rate, but not in the number of cases in the numerator.
Chapter 10 contains several examples of studies with intervals for determining
the eligible susceptible household members and the secondary cases.

Pertussis vaccination Préziosi and Halloran (2003) defined exposed sus-
ceptibles as children with no history of pertussis living in a compound with an
index case (Section 10.2.3) . Onset of pertussis symptoms was assumed to be
the onset of infectiousness, thus the latent period was assumed to equal the
incubation period. Co-primaries were those cases whose onset of cough was
<7 days after that of the index case. To allow for uncertainty in duration of
infectiousness, a secondary case was defined as a case whose date of onset was
≥7 days after that of the index case and less than a variable cutoff, specifi-
cally none, 56, 42, or 28 days. Similar assumptions were made by Kendrick
and Eldering (1939) (Section 10.2.2). In the PHLS Epidemiologic Research
Laboratory (1982), the co-primaries were those within seven days of the in-
dex case and secondary cases were those that occurred within about 42 days
of the index case and at least seven days after the index case (Section 10.2.4).
In the re-analysis of this study, Fine, et al (1988), co-primaries were defined
as cases within one week of the primary case. Incidence cases were those that
occurred more than one week after the primary cases. These included more
than potentially secondary cases.

Measles For measles, Orenstein et al (1985) recommend 18 days of follow-
up in a household after the onset of rash in the primary case. Garenne et al
(1993) defined secondary cases as those occurring in the same compound 7
to 18 days after the index case (Section 10.4.1). Exposed susceptibles were
children who had never had measles living in a compound where there was a
clinical case.

Mumps In a secondary attack rate analysis of mumps vaccine efficacy
in an outbreak investigation, Kim-Farley et al (1985) defined co-primaries
as cases in family members occurring within 10 days of the onset of disease
in the index case. Cases with onset of disease more than 30 days after the
index case were considered tertiary cases. Children with previous history of
mumps disease, unknown vaccine histories, or unknown dates of vaccination
were excluded from the analysis.
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In the conventional secondary attack rate analysis, the assumption is that
the households or other small transmission units are independent of one
another. There is an asymmetric assumption that the index case and co-
primaries get infected from outside the unit, while the other susceptibles are
exposed only within the unit. This assumption is very different than the as-
sumption in Chapter 11 in which individuals can acquire infection from the
community even if there is an infective in the household. If the transmis-
sion probability or secondary attack rate is estimated without taking into
account the opportunity to become infected outside of the transmission unit,
it will overestimate the actual probability of becoming infected per contact.
In general, ratio measures, such as the vaccine efficacy based on the ratio of
secondary attack rates, are less biased by this problem. Kemper (1980) dis-
cusses biases in conventional SAR estimation. The drawback in using models
such as those in Chapter 11 is that they contains strong modeling assumptions
about the mixing in the community. An advantage of the conventional SAR
studies or case-contact study designs is that they do not make assumptions
about the community at large. They are also quite simple to compute once
the biological assumptions about the time intervals containing the secondary
cases have been made.

12.1.2 Vaccine efficacy from conventional SAR

As described in Chapter 2, the secondary attack rates can be differentiated
by the vaccine status of the primary case and/or the vaccine status of the
secondary cases. In general, there are at least seven measures potentially of
interest. Considering the estimates of VE based on the relative secondary
attack rates, there are three main unstratified vaccine effects:

V ES.1/.0 = 1− SAR.1

SAR.0
, V EI1./0. = 1− SAR1.

SAR0.
,

V ET = 1− SAR11

SAR00
. (12.1)

The traditional measure of VES,SAR to estimate the protective effect of vac-
cination in household studies corresponds to VES.1/.0. When not ambiguous,
we use the notation VES,SAR for traditional estimates. If one stratifies on the
vaccine status of the infective person or the susceptible person, then there are
four further stratified measures of VES and VEI :

V ES01/00 = 1− SAR01

SAR00
, V ES11/10 = 1− SAR11

SAR10
,

V EI10/00 = 1− SAR10

SAR00
, V EI11/01 = 1− SAR11

SAR01
. (12.2)

The confidence interval for any of the VESAR measures is generally based
on log relative risk. If a0, a1 are the number of cases and n0, n1 are the
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number exposed in the relevant comparison groups, then the relative risk is
RR = a1n0/a0n1. The standard deviation of the log relative risk is

σ =
(

1
a1
− 1

n1
+

1
a0
− 1

n0

) 1
2

.

The vaccine efficacy estimate and 95% confidence interval are

V ESAR = 1− a1/n1

a0/n0
, (12.3)

95% CI [1− exp(log(RR) + 1.96 ∗ σ), 1− exp(log(RR)− 1.96 ∗ σ)].

For example, in the Medical Research Council study of pertussis vaccination
(Table 10.2), there were a1 = 37 pertussis cases among n1 = 203 home expo-
sures in the vaccinated children, and a0 = 151 cases among n0 = 173 home
exposures in the unvaccinated children. In the report, the vaccination status
of the exposing children is not included, so only the traditional, unstratified
VES,SAR can be computed. The VES,SAR estimate and 95% confidence inter-
val are 0.79 [95% CI 0.72, 0.84].

This simple approach does not take into account that several children
may be exposed to the same infective, so that there may be correlation within
households. Quite often, one infectious person exposes several people, possibly
within a transmission unit, such as a household. Correlation within transmis-
sion units or unmeasured heterogeneity across transmission units could result,
for example, from differences in infectivity, difference in mixing within the
unit, or genetic variation. This conventional method to estimate the confi-
dence intervals for vaccine efficacy fails to take the structure of the clustered
binary data into account.

12.2 SAR analysis taking correlation into account

Preźiosi and Halloran (2003) and Halloran, Préziosi, and Chu (2003) were
particularly interested in estimating the effect of pertussis vaccination on re-
ducing infectiousness of vaccinated cases, VEI . They analyzed the pertussis
vaccination study in Niakhar, Senegal, described in Chapter 10.2.3. The data
are summarized in Table 10.1. Many of the compounds had several children,
so correlation within compound might be important. They developed meth-
ods for estimating the VE measures based on the SAR that take correlation
within transmission units into account. We present these methods using the
pertussis vaccination study in Niakhar, Senegal, as an example.

Notation

Let n be the number of compounds with a unique index case and mi be
the number of susceptibles in the ith compound. Let yij be the binary (0,1)
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pertussis outcome of the jth susceptible exposed to the index case in the ith
compound for any given case definition. Let xij = (xij1, · · · , xijp)′ denote a
p×1 vector of explanatory variables associated with yij . In particular, let xi·1
denote the vaccine status of the index case in compound i, and xij2 the vaccine
status of the jth exposed susceptible individual in compound i. Complete
pertussis vaccination requires at least three doses of vaccine. This analysis
considers only unvaccinated and fully vaccinated children, with xi·1 = 0 and
xi·1 = 1 for an unvaccinated and fully vaccinated index case. Similarly, xij2

is 0 or 1 for the unvaccinated and fully vaccinated susceptibles.
Let Nvs be the total number of susceptibles in the n compounds with vac-

cine status s exposed to index cases with vaccine status v, and avs be the
total number of cases in the Nvs susceptibles. In this analysis, V, S ∈ {0, 3}.
The subscript 0 denotes unvaccinated, 3 indicates three doses of vaccine. Ad-
ditional levels of vaccination are possible, such as V, S ∈ {1, 2} for partially
vaccinated people, but are not considered here. The · subscript represents col-
lapsing over strata. The number of cases and susceptibles in each grouping of
interest is

avs =
n∑

i=1

mi∑

j=1

IV =vIS=syij , Nvs =
n∑

i=1

mi∑

j=1

IV =vIS=s ,

a.. =
n∑

i=1

mi∑

j=1

yij , N.. =
n∑

i=1

mi ,

a.s =
n∑

i=1

mi∑

j=1

IS=syij , N.s =
n∑

i=1

mi∑

j=1

IS=s ,

av. =
n∑

i=1

mi∑

j=1

IV =vyij , Nv. =
n∑

i=1

mi∑

j=1

IV =v .

Let SARvs denote the secondary attack rate from an index case with vaccine
status v to a susceptible with vaccine status s. Pooling across compounds,
the standard two SARs not stratified by vaccine status of the index case
used in estimating protective VES are SAR·s = a·s/N·s, s = 0, 3. If not
stratified by vaccine status of the susceptible, SARv· = av·/Nv·, v = 0, 3. The
nonparametric estimates of the four SARs stratified by vaccine status of index
cases and susceptibles are SARvs = avs/Nvs, v, s = 0, 3.

The three main unstratified nonparametric VEs in equation (12.1) and
stratified nonparametric VEs in equation (12.2) can be estimated using these
SARs with the standard confidence intervals as in equation(12.3).

12.2.1 Vaccine efficacy based on the logistic model

To take correlation within compounds into account, a marginal model or a
random-effects model could be used. The parametric form in both cases is
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the logistic model, with the SAR as the usual probability p of an event. The
model-based approach allows inclusion of covariates, such as age, either of the
index case as compound-level environmental variables or of the susceptibles
as individual variables. Diggle, Liang and Zeger (1994, pp. 131-135) explain
that in marginal models, inference about population averages is the focus. If
there is heterogeneity across compounds in the baseline transmission, then the
estimated baseline coefficients represent an average over the heterogeneities.
The correlation structure is some function of the marginal mean and possibly
additional parameters.

In the random-effects model, a slightly different baseline transmission is
estimated for each compound, with the degree of heterogeneity estimated in
the variance of the random effect. The vaccine effects in each compound are
interpreted in relation to that compound’s baseline transmission. In consid-
ering vaccine efficacy, out primary scientific question is about the population
average, or marginal, VE measures. Thus, the marginal model is the model
of choice. The coefficients for the marginal and random-effects models are
indicated by β and β∗

The marginal model

The marginal model for the logit of the SARij of the jth person in the ith
household is

logit(SARij) = β0 + β1xi·1 + β2xij2 , (12.4)

where xi·1 denotes the vaccine status of the index case in compound i and
xij2 denotes the vaccine status of the jth exposed susceptible in compound i.
The vaccine status of the index case, xi·1, enters the analysis as a compound-
level, environmental variable. Because we are interested in VE estimates on
the SAR scale, we transform the parameters from the logistic model to the
probability scale. The stratified SARs from model (12.4) are

SAR00 =
expβ0

1 + exp β0
, SAR03 =

exp (β0 + β2)
1 + exp (β0 + β2)

, (12.5)

SAR30 =
exp (β0 + β1)

1 + exp (β0 + β1)
, SAR33 =

exp (β0 + β1 + β2)
1 + exp (β0 + β1 + β2)

.

Parameter estimates from the above model provide estimates for the stratified
VES00/03 and VES30/33, the stratified VEI00/30 and VEI03/33, as well as VET .
Plugging the expressions for the SARs into equations (12.2), and for VET in
equation (12.1), the expressions for the VE measures are
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V ES03/00 =
1− exp(β2)

1 + exp(β0 + β2)
, V ES33/30 =

1− exp(β2)
1 + exp(β0 + β1 + β2)

,

V EI30/00 =
1− exp(β1)

1 + exp(β0 + β1)
, V EI33/03 =

1− exp(β1)
1 + exp(β0 + β1 + β2)

,

V ET =
1− exp(β1 + β2)

1 + exp(β0 + β1 + β2)
. (12.6)

To obtain estimates of the unstratified VEI3./0. and VES.3/.0, we fit additional
submodels, such as logit(SARij) = β′0+β′1xi·1 and logit(SARij) = β′′0 +β′′2 xij2

and transform back to get

V EI3./0. =
1− exp(β′1)

1 + exp(β′0 + β′1)
, V ES.3/.0 =

1− exp(β′′2 )
1 + exp(β′′0 + β′′2 )

. (12.7)

Alternatively, one could use the parameter estimates from the full model
(12.4) and substitute the respective means of xi·1 and xij2. We estimated the
marginal model taking correlation of transmission within compound into ac-
count using generalized estimating equations (GEE) (Liang and Zeger 1986).
The analysis was done using the repeated option in PROC GENMOD in
SAS version 8.2 (SAS Institute I, 1999) assuming an exchangeable working
correlation matrix.

Appropriate confidence intervals on the transformed scale are obtained
using the bootstrap (Efron and Tibshirani 1993). Bootstrap samples were se-
lected using the compound as the sampling unit. The GEE logistic regression
coefficients were estimated for each bootstrap sample, then transformed to the
probability scale to get the VE estimates for that bootstrap sample. Three
different bootstrap confidence intervals were computed, namely the percentile,
the bias-corrected (BC), and the bias-corrected and accelerated (BCa) inter-
vals. Confidence intervals were based on 2000 bootstrap samples (Efron and
Tibshirani 1993, p. 275). Bootstrap confidence intervals sampling on com-
pounds were also computed for the VE estimators based on the nonparamet-
ric SARs described in the previous section. Analytic confidence intervals for
the GEE estimates of VE on the transformed scale were obtained using the
multivariate delta method (Agresti 1990).

The random-effects model

The random effects model for the logit of the SARij of the jth person in the
ith household is

logit(SARij |Ui) = (β∗0 + Ui) + β∗1xi·1 + β∗2xij2 . (12.8)

The simplest model assumes that the random effect Ui ∼ N(0, σ2). On the
logistic scale, the parameter β∗0 would be interpreted as the log odds of trans-
mission from an unvaccinated index case to an unvaccinated susceptible for
a typical compound with random effect Ui = 0. The parameter β∗1 would be
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the log odds ratio of transmission occurring when the index case is vacci-
nated compared to when it is unvaccinated within any given compound. The
parameter β∗2 would be the log odds ratio of transmission occurring when a
susceptible in the compound is vaccinated compared to a susceptible in that
same compound who is unvaccinated.

However, our interest is in transforming to the SAR scale to obtain the
different VE estimates. The compound-specific SARijs are obtained by incor-
porating the random effect into the expression. For example, the compound-
specific SAR00i from an unvaccinated index case to an unvaccinated suscep-
tible is SAR00i|Ui = exp(β∗0 + Ui)/[1 + exp(β∗0 + Ui)]. The marginal SAR00

is the estimated expectation of the SAR00 obtained by numerical integra-
tion over the estimated distribution of the random effects. The VEi estimates
for each compound are obtained from expressions analogous to (12.6). The
marginal VE estimates are the estimated expectations obtained by numerical
integration over the estimated distribution of the random effects. To obtain
estimates of the unstratified VEI3./0. and VES.3/.0, we fit random effects sub-
models similar to those described above.

Two methods were used to estimate the random effects model. The first
is a Bayesian hierarchical model(Carlin and Louis 2000), the second is a non-
linear mixed model (Davidian and Giltinan 1995). Computation was done
using Markov chain Monte Carlo (MCMC) methods in WinBUGS (Spiegelhal-
ter, Thomas, Best 2000). The population mean VE measures were computed
by averaging over the compounds at each iteration. The 95% posterior credible
intervals for the VE measures are available directly on the transformed scale
from the approximation to the posterior distribution from the MCMC chains.
The nonlinear mixed model was fit using PROC NLMIXED (Wolfinger 1999)
in SAS verion 8.2 (SAS Institute I, 1999). Details are in Halloran et al (2003).

12.2.2 Pertussis vacccine efficacy

Estimates of the baseline SAR00 for each model are shown in Figure 12.1. Hor-
izontal lines represent point estimates of the nonparametric pooled SAR00, the
marginal GEE model, and the estimated expected SAR00 on the transformed
scale for the two random effects models. Included for comparison are horizon-
tal lines for the estimate of the nonlinear mixed model and the mean from the
Bayesian MCMC chain of the SAR00i when Ui = 0.

For the random effects models, the SAR00is for each of the 109 compounds
are shown in Figure 12.1. For the nonlinear mixed model, the point estimates
of the SAR00i are shown. For the Bayesian model, the mean SAR00i and
95% posterior CI from the MCMC chain are shown. The individual estimated
SAR00is range from about 0.1 to 0.7, though 51 of the 109 compounds had
no secondary cases.

Figure 12.2 shows the point estimates and histograms of 2000 bootstrap
estimates of the VEI , VES , and VET parameters based on the GEE model.
Figure 12.3 shows the different point estimates and confidence intervals for
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Fig. 12.1. Baseline SAR00 for each model represented by horizontal lines.
Compound-level baseline SAR00i’s for the random-effects nonlinear mixed model
(NLMIXED) are also plotted. The posterior mean and 95% posterior CI are plotted
for each Bayesian compound-level SAR00i. The indexes of the compounds are in
order of increading mean from the MCMC chain. ——- nonparametric; · · · GEE; –
– – – Gibbs sampler, mean; — — — Gibbs sampler; —- —- —– NLMIXED, mean;
—- - —- - NLMIXED; · Gibbs sampler; · NLMIXED. (from Halloran et al 2003)

VES , VEI , and VET . Table 12.1 contains selected results. The point estimates
for VEI and VET obtained from the nonparametric SAR and from the GEE
are nearly identical. The bootstrap CIs for the nonparametric VE estimates
are wider than the simple CIs based on the log relative risk. In particular,
the bootstrap CIs for VEI , and to a lesser extent, VET are wider. For ex-
ample, the BC bootstrap 95% CI of VEI3./0. is 1.94 wider than the simple
95% CI. The difference is less pronounced with CIs of VES , with the ratio of
the lengths being between 1.2 and 1.3. Thus, the conventionally used CI sub-
stantially underrepresents the variability in the data. The greater sensitivity
of the variability of the VEI and VET estimators to compound-level effects
might result from the vaccine status of the index case being a compound-level
environmental variable. The nonparametric estimate of VES33/30 is unstable
because the total number of secondary cases was only 20, compared with 134
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Fig. 12.2. Histograms of 2,000 bootstrap estimates of (top row) VE for infec-
tiousness, VEI stratified and unstratified; (middle row) VE for susceptibility, VES ,
stratified and unstratified; and (bottom) total VE, VET , based on the GEE logistic
regression parameters. The dotted line in each histogram indicates the estimate for
the actual dataset (from Halloran et al 2003).

cases for VES03/00, so both the simple and the BC bootstrap CIs are quite
wide.

The bootstrap CIs of the GEE estimates of VEI are also wider than those
based on the simple CI for the nonparametric VE estimates, however, not
as much wider as the bootstrap CIs of the nonparametric VE estimates. For
example, the GEE percentile, BC, and BCa bootstrap 95% CIs for VEI3./0.

compared to the simple SAR 95% CI are 1.63, 1.74, and 1.83 wider, respec-
tively. Thus, the parametric model in the GEE helps stabilize the estimation
compared to the nonparametric approach.

The multivariate delta method CIs on the GEE estimates are symmetric
and similar in length to the percentile bootstrap CIs. However, the normality
assumption of the VEI and VET estimators is clearly violated, so we do
not recommend using the multivariate delta method. Also, CIs based on the
multivariate delta method could theoretically exceed one, which could cause
difficulty since vaccine efficacy is bounded at 1.
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Fig. 12.3. Comparison of approaches to estimating SARs and confidence intervals.
Halloran et al (2003)

Table 12.1. Pertussis vaccine efficacy estimates from the Niakhar region, Senegal,
1993. (from Halloran, Préziosi and Chu 2003)

Vaccine Efficacy (VE) x 100% (95% confidence interval)

VE for susceptibility VE for infectiousness Total VE

Estimator VES03/00 VES33/30 VES.3/.0 VEI30/00 VEI33/03 VEI3./0. VET

SAR (BC∗) 33 (8,55) 36 (−62,88) 38 (16,57) 64 (15,89) 65 (9,90) 66 (28,88) 77 (45,94)
SAR (simple) 33 (11,49) 36 (−48,72) 38 (18,53) 64 (31,81) 65 (36,81) 66 (47,78) 77 (58,87)

GEE (BC) 31 (7,52) 37 (9,60) 33 (9,53) 63 (25,85) 67 (29,87) 67 (32,86) 77 (52,92)

NLMIXED (BC) 35 (5,57) 43 (7,66) 40 (11,61) 71 (32,90) 74 (32,91) 74 (36,91) 83 (54,94)

Bayes median 35 (10,52) 43 (13,62) 39 (15,56) 71 (42,87) 75 (46,89) 74 (47,88) 83 (61,93)
∗ BC = bias-corrected bootstrap confidence interval
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Table 12.2. Antiviral Efficacies for Oseltamivir (Halloran et al 2007)

based on laboratory-confirmed
infection with symptoms

Effect AVE·d 95% C.I. Drug Control

AVES = 1−SAR11/SAR10 (Osel I alone)
1− 7 Days 81 35, 94 3/237 16/241
2− 7 Days 81 35, 94 3/237 16/241

AVES = 1−SAR01/SAR00 (Osel II alone)
1− 7 Days 91 64, 98 2/205 22/195
2− 7 Days 91 62, 98 2/205 21/194

AVEI = 1−SAR10/SAR00 (Osel I/Osel II)
1− 7 Days 81 45, 93 4/180 22/190
2− 7 Days 80 43, 93 4/180 21/189

AVET = 1−SAR11/SAR00 (Osel I/Osel II)
1− 7 Days 91 63, 98 2/195 22/190
2− 7 Days 91 61, 98 2/195 21/189

12.2.3 Varying case definition and cutoff

Préziosi and Halloran (2003) considered the effect of varying the case definition
and the cutoff date on the seven VE estimates. The primary focus of the
analysis was on estimating VEI . The primary method of analysis was the GEE
approach using the bias-corrected and accelerated (BCa) bootstrap confidence
intervals described in the previous section. Based on the main case definition
and no cutoff of secondary cases, vaccine efficacy for infectiousness VEI was
estimated to be 0.85 (95% CI 0.46–95) for children vaccinated with three doses
of a whole cell (94%) or an acellular (6%) pertussis vaccine.

12.3 Estimating influenza antiviral efficacies

Halloran, et al (2006) used the conventional secondary attack rate to an-
alyze the four randomized household studies of influenza antiviral effica-
cies presented in Chapter 10. Each of the efficacies can be based on 1)
laboratory-confirmed influenza illness, AVE·d, or 2) laboratory-confirmed in-
fection, AVE·i, in the eligible contacts. Here we present only the estimates
based on laboratory confirmed influenza illness, AVE·d, for the two oseltamivir
studies (Table 12.2). As discuss in Chapter 10, the randomization schemes in
the studies constrained which SARs, and thus which AVEs could be estimated.
Influenza has a very short incubation period. The interval for co-primaries was
assumed to be either 1 day or 2 days after ascertainment of the index case.
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12.4 Mini-community Designs for Indirect Effects

In the minicommunity design, the household or other small transmission unit
serves as the unit in which to estimate indirect effects of vaccination, similar
to studies in larger communities to estimate indirect, total, and overall effects
(Chapter 13). The gradient from small transmission units, such as households,
to compounds as in Niakhar, to day care centers, to schools, to towns or
whole countries is fairly continuous. Thus, this section could also have been
contained in Chapter 13, but here we focus on households. Similar to many
household-based vaccine efficacy studies, these minicommunity studies can be
nested in either randomized clinical trials or observational studies where the
primary analysis is based on unconditional measures. Unlike the other efficacy
measures in this chapter, the estimates of the indirect effects of vaccination
do not condition on the index case being a case of infection or disease. In the
indirect effect measures, the analysis conditions only on the vaccination status
of the index child or children in the household. The outcomes of interest are
the disease or infection status of the other members of the household. Then
the estimates of the indirect effects in the other members of the household are
based on one of the unconditional risk measures, such as attack rate or case
per person time in the other members of the household. If based on incidence
rates per person-time, then

VEIIA = 1−
no. of cases in household members of vaccinated children
person-time of household members of vaccinated children

no. of cases in household members of unvaccinated children
person-time of household members of unvaccinated children

.

(12.9)

12.4.1 Pertussis

Trollfors et al (1998) nested a study of the indirect effects of pertussis vacci-
nation in households in the Swedish study described in (Section 10.2.5) They
estimated the indirect effects based on equation (12.9) using the ratio of the
incidence rates (pertussis cases divided by total time at risk) in parents and
younger siblings of recipients of DTaP or DT. They used four different case
definitions, the first being similar to the WHO definition, the second based
on criteria developed by themselves. They further divided it by ≥ 21 days of
paroxysmal cough and cough ≥ 7 days. Other criteria were similar to those
discussed in Section 12.2.3. The results are in Table 12.3. Unfortunately, the
original paper does not include the amount of person-time computed for each
group.

Individually randomized studies in which a small transmission unit is ac-
crued into the study, such as a family for a mini-community study, or an
augmented study in which the partner is not randomized to vaccine or con-
trol are essentially the same randomization.
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Table 12.3. Number of pertussis cases in parents and younger siblings of study
children and indirect protection achieved by vaccination of the study child with
pertussis toxoid (from Trollfors et al 1998)

Pertussis Cases Indirect
protection

DTaP DT (%)

Parents
WHO definition
≥ 21 days of paroxysmal cough 11 26 60 (16–82)
≥ 7 days of cough 23 35 38(−9–65)

Göteborg definition
≥ 21 days of paroxysmal cough 14 32 58 (20–80)
≥ 7 days of cough 26 44 44 (7–67)

Younger siblings
WHO definition
≥ 21 days of paroxysmal cough 10 18 43 (−31 –76)
≥ 7 days of cough 11 10 37 (−40 –73)

Göteborg definition
≥ 21 days of paroxysmal cough 10 26 61 (15–83)
≥ 7 days of cough 11 26 56 (9–81)

12.5 Other approaches

Another approach to estimate VES controlling for exposure to infection is to
collect information on the number of contacts and then either use knowledge
about the infection status of the actual contacts or information about preva-
lence of infection in the population from which the contacts are drawn. Yang et
al (2009) developed a model to estimate the VES of an HIV vaccine that used
reported number of contacts and information on the prevalence of infection in
the population. One of the study populations was an cohort of injecting drug
users in Thailand. The contacts were drug injections with needles. Injections
with shared needles were potentially infectious. The second study population
was primarily men who have sex with men. The model allowed for errors in
the reported number of contacts in each time interval. Case-contact studies
are studies in which individuals exposed to a case are followed to find if they
are infected or diseased. In both of these study types, there is no explicit
transmission unit such as a household or a school.

Problems

12.1. Computing mumps VESAR

(a) Table 12.4 shows the data from a family-based mumps vaccine efficacy
study after an outbreak in Ashtabula County, Ohio, in 1982. In study 1, vac-
cine status was verified by the parents. In study 2, it was verified by the
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provider. Compute the secondary attack rates and VES with confidence in-
tervals for both studies.
(b) Compare the estimates.

Table 12.4. Data from family-based mumps vaccine efficacy study in families of
students with mumps illness in the sixth, seventh, and eighth grades in School A,
Ashtabula County, Ohio, February 5 through April 23, 1982 (Kim-Farley et al 1982).

Study 1 Study 2

Case definition Parotitis ≥2 days Parotitis ≥2 days
Case finding Parents Parents
Vaccine status Parents Provider verified
Cases/exposed (vaccinated) 4/36 2/30
Cases/exposed (unvaccinated) 32/74 30/69

12.2. Computing measles VESAR

(a) Table 12.5 contains data from a measles epidemic in Senegal 1994–1995
(Cisse et al 1999). Compute the estimates of the main VES , VEI , and VET ,
the two stratified VES and the two stratified VEI . Compute their confidence
intervals using the standard approach.
(b) Compare the main and the stratified estimates.

Table 12.5. Number of exposed susceptibles, secondary cases, and secondary attack
rates (SAR) by vaccination status of the index case and the exposed susceptible
children (Cisse et al 1999)

Exposed susceptibles and secondary cases
Vaccinated Unvaccinated Combined

Index case cases/exposed SAR cases/exposed SAR cases/exposed SAR

Vaccinated 6/83 0.07 3/17 0.18 9/100 0.09
Unvaccinated 41/374 0.11 47/124 0.38 88/498 0.18
Total 47 /457 0.10 50/141 0.35 97/598 0.16

12.3. Pertussis vaccine efficacy with different cutoffs
(a) Table 10.1 contains the number of secondary pertussis cases using four
different follow-up cutoffs. Compute different VESARs using different cutoffs.
(b) Discuss how and why the SARs and the VESAR estimates change as the
cutoff period increases.


