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Assessing Indirect, Total and Overall Effects

13.1 Study Designs for Dependent Happenings

Due to the dependent happenings in infectious diseases (Ross 1916), widespread
vaccination in a population can reduce transmission and produce indirect pro-
tective effects, even in unvaccinated individuals The public health importance
of a vaccine is related to the direct protection of the vaccinated individuals as
well as the indirect protection conferred by increased herd immunity at the
population level. In recent years, interest in estimating the indirect and overall
effects of vaccination programs has increased. Most often, the effects have been
evaluated using surveillance data by comparing the incidence before and after
implementation of a vaccination strategy in a population. In some cases, dra-
matic effects have been observed such as with pneumococcal vaccines (Musher
2006). Up until now, planned, prospective community-randomized studies to
evaluate indirect, total, and overall effects of vaccination strategies are rare.
However, interest in implementing such studies, either pre- or post-licensure is
increasing. Though mathematical models offer useful guidance on examining
potential population effects of vaccination strategies (Chapters 4 and 5), they
cannot replace data from an actual study when such a study is feasible.

Struchiner et al (1990) and Halloran and Struchiner (1991) developed a
conceptual framework for four classes of study designs to evaluate the direct,
indirect, total, and overall effects of interventions. In Chapter 2 we introduced
the general concepts of direct, indirect, total and overall effects of vaccination
and the four basic study designs to evaluate them. In this chapter, we present
the definitions in the general potential outcomes approach to causal inference,
initially using a heuristic approach. Throughout this chapter we distinguish
two levels of intervention, vaccination of individuals and vaccination strate-
gies, allocations or programs within populations. We discuss some of the less
formal approaches to assessing indirect and overall effects, their advantages
and disadvantages. We then present approaches to community-randomized
studies that could be used for more formal estimation and inference of indi-
rect, total, and overall effects. We discuss some further considerations when
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designing interventions to evaluate the effects. We integrate studies of herd
immunity with the literature on group-randomized studies. Then we consider
basic designs, approaches to randomization, sample size determination, and
general considerations of analysis. Finally we formally define causal estimands
of direct, indirect, total, and overall effects and their estimators for group ran-
domized studies.

13.1.1 Definitions and Study Designs

Following Halloran and Struchiner (1991), the direct effect of vaccination in an
individual is the difference between the outcome in the individual receiving
the vaccine and what the outcome would have been if the individual had
not been vaccinated, all other things being equal. This definition of a direct
effect corresponds to the notion of potential outcomes in causal inference in
that it is defined for the unobservable difference between the response in the
observed person and what it would have been in the same person without the
intervention. An example of a direct effect is the reduction in the probability
of becoming infected that results from being vaccinated, given exposure to
infection.

The indirect effect of a vaccination program or strategy on an individual
is the difference between what the outcome is in the individual not being vac-
cinated in a community with the vaccination program and what the outcome
would have been in the individual, again not begin vaccinated, but in a com-
parable community with no vaccination program. It is, then, the effect of the
vaccination program on an individual who personally was not vaccinated. The
combined total effect in an individual of being vaccinated and there being a
vaccination program is the difference between the outcome in the individual
being vaccinated in a community with the vaccination program and what the
outcome would be if the individual were not vaccinated and the community
did not have the vaccination program. The total effect, then, is the effect of
the vaccination program combined with the effect of the person having been
vaccinated. The overall effect of a vaccination program is the difference in
the outcome in an average individual in a community with the vaccination
program compared to an average individual in a comparable population with
no vaccination program.

A simple indirect effect is the reduction in the probability per unit time
of becoming infected that results from reduced exposure to infection conse-
quent to a mass immunization program. Thus, an unvaccinated person in a
population experiences a changed hazard or incidence compared with what
it would have been if the commmunity had had no immunization program.
The analogous total effect would be the effect experienced by a vaccinated
person who has both the benefits of being vaccinated and the indirect effect
of the reduced transmission. The overall effect would be the weighted average
of the reduction in incidence in the vaccinated and unvaccinated individuals
compared to if there were no immunization program.
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These effects can be defined more generally, by allowing that vaccination
occur in the the comparison population as well, however with a different level
of coverage or different allocation strategy. The definitions also apply to sub-
populations of interest with comparison populations, for example, schoolage
children only. The indirect, total and overall effects are defined within the
context of a particular intervention program or allocation strategy. For ex-
ample, one would expect that the indirect effects of vaccinating 30% of the
population might differ from the indirect effects of vaccinating 60% of the
population compared to no vaccination. Common to these effects is the need
to imagine a community in which vaccination had not taken place or with an
alternative vaccination strategy.

The four different kinds of effects of vaccination motivated the definition
of broad categories of study designs (Struchiner et al 1990). based on differ-
ent pairs of comparison populations and subpopulations, according to whether
the studies measure direct, indirect, total, or overall effects as shown in Figure
2.3. In the simple case of having only two comparison populations, the study
designs for dependent happenings are analogous to studies that compare pre-
and post-implementation of a vaccination strategy in a population. However,
since the community level effect is of interest, for statistical inference, one
generally will need several communities in which the intervention takes place
and several comparison communities. If the allocation of the vaccination pro-
gram to the communities is randomized, then the study becomes a group- or
cluster randomized design as discussed in Section 13.3.

The indirect effects of the vaccine given a particular allocation of vacci-
nation is then the comparison of the incidence or other outcome of interest
in the unvaccinated people in the A communities compared to the unvac-
cinated people in the control B communities. These comparisons are called
designs type IIA. The indirect effectiveness measures are designated VE I I A .
The total effects of the combination of being vaccinated and the allocation
is the outcome in the vaccinated people in the A communities compared to
that of the unvaccinated people in the unvaccinated B communities. These
comparisons are called designs type IIB, and the total effectiveness measures
are designated VE I I B . The overall effectiveness of the vaccine and allocation
compare the average outcomes in the vaccinated communities with those of
the control communities. These comparisons are called designs type III, and
the overall effectiveness measures are designated VE I I I .

These study designs are quite general. They do not specify the outcome
measure, the parameter of effect, temporal aspects, sampling methods, or
methods of analysis. In addition, each of these designs makes a comparison
between comparable populations, in that, in the absence of an effect, the out-
comes of the compared populations could be expected to be similar. In partic-
ular, in infectious diseases, one needs to emphasize the need for comparability
of exposure to infection. That is, if there were no intervention program, the
individuals in the comparison communities would be exposed comparably to
infection. This is often not the case, especially when several communities are
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included in the study, in which case the design can incorporate matching or
stratification as described in Section 13.5.

Table 2.2 contains examples of the VE I I A , VE I I B , and VE I I I based on
the usual unconditional measures incidence rate, hazard rate, and cumula-
tive incidence. Many other measures could be used, including average age of
infection or the basic reproductive number, R0.

13.2 Observational Studies

13.2.1 Pre- and post-vaccination comparisons

A common aproach to estimating indirect, total, and overall effects of intro-
ducing a new vaccination program to a population is to compare the pre-
vaccination with the post-vaccination incidence. These comparisons depend
on good data on cases of the illness of interest and some method to determine
the denominators. To determine indirect or total effects, one also needs to
know the vaccination status of the reported cases. One might also want to
know the level of vaccine coverage and the age-appropriate and age-specific
vaccine uptake.

Comparisons or pre- and post-vaccination outcomes include comparison of
incidence or attack rates before and after introduction of vaccination (overall
effects), possibly also stratified by vaccine status (indirect and total effects),
reduction in incidence greater than vaccine coverage, reduction in incidence
in age groups that did not receive vaccination, change in the age distribution
of disease, and increased prevalence of colonization and disease by nonvaccine
strains (Table 13.1).

Table 13.1. Comparisons pre- and post-introduction of a vaccination strategy to
estimate indirect, total, or overall effects

Comparison

Change in incidence or attack rates in target population (overall effects),
possibly stratified by vaccination status (indirect and total effects)

Reduction in incidence in age groups that did not receive vaccination
strategy (indirect)

Reduction in incidence greater than vaccine coverage (overall)

Change in age distribution of disease

Increased prevalence of colonization and disease by nonvaccine strains

If the reduction in overall incidence, including both the vaccinated and
unvaccinated individuals combined, is higher than the level of coverage, there
is a strong indication of indirect effects of vaccination. Thus, even with a
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100 percent efficacious vaccine, if coverage were 60%, one would not expect
a greater than 60% reduction in incidence if there were no indirect effects.
Thus, an observed 80% reduction in incidence would be evidence for indirect
benefits of vaccination. Another indication that herd immunity is playing a
role is a reduction in incidence in age groups that are too young or too old to
be in the age group targeted by the strategy. Reduction of incidence in these
groups is evidence of a purely indirect effect of the vaccination program. The
mean and median age of first infection will generally increase as transmission is
reduced, since it will take on average longer for a person (child) to be exposed.
As transmission is reduced, incidence in all age groups may decrease, but the
relative proportion of cases in the older age groups could increase. The change
in age of first infection is also an indication that the reproductive number R is
changing. In cases of infectious agents with many circulating strains, only some
of which are contained in the vaccine, such as Streptococcus pneumoniae, there
is interest in whether the prevalence of colonization and incidence of disease
due to the nonvaccine strains will increase as the prevalence of vaccine strains
is reduced.

If an observed change in outcome, such as a change in incidence rate, is
to be attributed to the vaccination strategy when comparing only the pre-
and post-vaccination situation, one needs to make an assumption of minimal
secular trends. When the pre- and post-vaccination differences are small, and
one is comparing only one pre- to one post-vaccination population, one can-
not be sure that some other cause than vaccination is not responsible for any
observed changes. For example, change in sanitation or simple cyclical vari-
ation of the infection rates might decrease incidence. Also, if the duration of
observation is short, for instance, a comparison of influenza one year and then
the following year in which a vaccination campaign was done, one cannot be
sure that the second year was not simply a milder year.

Another approach to estimating effects of widespread vaccination is to
compare data from different regions with different levels of coverage. Ali et al
(2005) re-analyzed an individually randomized trial of cholera vaccine by com-
paring incidence in areas with different the coverage levels (Section 13.2.6).
However, the level of vaccine uptake may be related to other factors related
to the level of incidence. Thus the estimates of indirect effects could be con-
founded, unless the coverage levels were randomized.

13.2.2 Pertussis in Niakhar, Senegal

Préziosi et al (2002) studied pertussis in a prospective cohort of children in
rural Niakhar, Senegal over a 13-year period comprising time before and after
introduction of a pertussis vaccination program. Children under age 15 years
who were residents of the Niakhar study area were followed prospectively
between January 1984 and December 1996 for the occurrence of pertussis.
(See Chapter 10.2.3 for further details.) From 1980 to 1985, sporadic immu-
nizations were performed, reaching fewer than five percent of the children.
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From November 1986 to January 1987, Senegalese authorities conducted Ex-
panded Program of Immunization (EPI) mass immunization campaigns tar-
geting children under age 5 years. After August 1987, infants were immunized
by monthly visits of the EPI mobile teams, with rigorous record keeping. From
1987 to 1989, children received whole cell pertussis vaccine as part of DTP-
IPV at approximately 3, 5, and 10 months of age. From 1990 to 1996, clinical
trials of the relative efficacy of whole cell pertussis and acellular pertussis vac-
cines were conducted with vaccination at 2, 4, and 6 months of age. A child
who had received three doses of pertussis vaccine regardless of vaccine type
was considered to be fully immunized.

Vaccine uptake was measured by the number of children who received
three doses of pertussis vaccine before the end of the calendar year of their
first birthday, divided by the number of live births. Vaccine coverage was
evaluated by the number of fully immunized children resident on December
31st of the year, divided by the corresponding number of residents per age
group. Pertussis incidence rates were calculated using a person-time incidence
density approach. One unit was added to each monthly total to avoid null
values and a moving average over five months was used to smooth variations.

Pertussis in West Africa 893
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FIGURE 1. Pertussis cases per month, vaccine uptake, and age-specific vaccine coverage per year, Niakhar, Senegal, 1984–1996.

yielding a total of 6,180 episodes. In addition, 3.4 percent
(204 of 6,060) of these children had histories of pertussis
reported either on the initial census in 1983 (n ! 67) or on
immigration into the area (n ! 137). Pertussis was
endemic, with annual peaks and with epidemics every 3–4
years. Three epidemics were centered on 1986, 1990, and
1993 (figure 1). There has been a decrease both in the
number of cases between epidemics and in the magnitude
of the epidemic peaks. At the beginning of the period,
there was a high level of endemicity of pertussis (an inci-
dence of about 60 per 1,000 person-years in children
under age 15 years in 1984–1985). From late 1987 (1 year
after the launch of EPI) onward, there was a drop in the
number of cases reported between epidemic years. A
decrease in incidence was observed in every age group,
more prominently among children under age 5 years. The
latter, in whom the incidence had been highest initially,
experienced a declining incidence that eventually reached
the same incidence rate as the oldest age group. The great-
est decline was achieved in children less than age 2 years.
The declining trend was with a time lag according to the
age group; it was more obvious in the early periods when
the age of disease was lower (figure 2). The same obser-
vations applied when plotting the age per birth cohort
(figure 3), where each line represents a longitudinal series
of rates depicting the evolution of incidence within an age
group.

If we consider the three epidemic years, an overall 25 per-
cent decline in incidence was observed at each successive
epidemic (table 1). The most spectacular decline was for the
children aged 6–23 months, with a 79 percent total inci-
dence reduction. However, the reduction was also obvious
for infants under age 6 months, even for very young infants
(<2 months), whose incidence dropped from 207.8 per
1,000 in 1986 to 56.4 per 1,000 person-years in 1993.

Age and gender distribution of cases

The median age of pertussis cases rose steadily from 4.1
years in 1986 to 5.3 years in 1990 and 6.2 years in 1993 (figure
2), with a comparable rise in nonepidemic years. Children less
than age 5 years represented 60 percent of the cases in 1986, 48
percent in 1990, and 38 percent in 1993. This reduction was
mainly due to a decrease in the number of children under age 2
years, who were 25 percent of the cases in 1986 but only 11
percent in 1993 (table 1). Annual incidences were always
higher among girls (table 1), with an overall gender ratio of 1.1
(95 percent confidence interval: 1.0, 1.1) for the period.

Mortality and case-fatality rate

The greatest mortality was observed for children under
age 5 years, among whom pertussis represented 9 percent of
the causes of death in 1986, affecting mainly children under

Fig. 13.1. Pertussis cases per month, vaccine uptake, and age-specific vaccine cov-
erage per year, Niakhar, Senegal, 1984–1991 (Préziosi et al 2002)

EPI vaccine uptake rose from 13 percent in 1986 to 72 percent in 1990, and
finally reached a level of 82 to 84 percent (Figure 13.1). High vaccine coverage
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(>80 percent) was achieved in the youngest age group (6 months to 1 year)
by 1991, but remained relatively low at 40 percent in the 5 to 14 age group
even up to 1996. Pertussis was endemic, with annual peaks and epidemics
every 3 to 4 years, centered on 1986, 1990, and 1993. Both the number of
cases between epidemics and the magnitude of the epidemic peaks decreased.
(Figure 13.1).

From late 1987 onward, the number of cases reported dropped between
epidemic years (Figure 13.2). The decrease in incidence was observed in every
age group, but especially in children under age 5 years. The greatest decline
was in children under age 2 years. The declining trend was with a time lag
according to age group . The overall effect of the pertussis vaccination program
as measured by the reduction in incidence in the 0 to 14 year olds between the
first and third epidemic peak was VE I I I = (127.3−68.9)/127.3 = 0.46 (Table
13.2). The most dramatic decline was for the children aged 6 to 23 months,
where the reduction in incidence, or overall effectiveness of the program was
VE I I I = (170.5 − 36.3)/170.5 = 0.79. The indirect and total effects are not
estimable from the data in Table 13.2 since the incidence rates by vaccine
status are not given. The median age of pertussis cases rose steadily from 4.1
years in 1986 to 5.3 years in 1990 and 6.2 years in 1993 (Figure 13.2).

894 Préziosi et al.

Am J Epidemiol Vol. 155, No. 10, 2002

FIGURE 2. Age-specific incidence rates of pertussis per period, Niakhar, Senegal, 1984–1996.

FIGURE 3. Age-specific incidence rates of pertussis per cohort, Niakhar, Senegal, 1984–1996. As an example, the first point of the “<5 years”
line in 1984 represents the incidence for children born in 1984 during the period when they were under age 5 years. Incomplete lines are due
to the restriction of the observation period to 1984–1996 and to the age grouping of the data for improved readability. For example, in the younger
group (<2 years), the first complete information was available for the cohort born in 1984 and the last for the cohort born in 1994.

age 2 years (table 2). In 1990, mortality declined, with no
deaths in children above age 2 years, but the mortality rate
remained high (9.0 per 1,000 person-years) for infants less

than age 6 months, dropping to 1.7 per 1,000 person-years
in 1993. The same observations also applied for the case-
fatality rates. Rates were higher in girls.

Fig. 13.2. Age-specific incidence rates of pertussis per period, Niakhar, Senegal,
1984–1996. (Préziosi et al 2002)
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Table 13.2. Pertussis case distribution and incidence per age, during epidemic
years, Niakhar, Senegal, 1984–1996 (Préziosi et al 2002)

First outbreak (1986) Second outbreak (1990) Third outbreak (1993)

Age Cases No. of Incidence/ Cases No. of Incidence/ Cases No. of Incidence/

No. % PYR 1,000 PYR No. % PYR 1,000 PYR No. % PYR 1,000 PYR

0-5 mo 97 7 582 166.6 68 6 557 122.1 38 4 575 66.1
6-23 mo 246 18 1,443 170.5 144 12 1,700 84.7 58 7 1,598 36.3
2-4 yr 492 35 2,530 194.5 348 30 2,850 122.1 241 27 2,969 81.2
5-14 yr 570 40 6,481 88.0 612 52 7,422 82.5 555 62 7,811 71.1

Total 1,405 100 11,036 127.3 1,172 100 12,529 93.5 892 100 12,953 68.9

13.2.3 Pertussis in England and Wales

Miller and Gay (1997) discuss the effect of vaccination on pertussis epidemi-
ology in England and Wales. Vaccine uptake dropped dramatically after 1974
(Figure 13.3) followed by a resurgence of pertussis cases in 1978. There has
been considerable discussion in the literature about whether pertussis vaccina-
tion actually alters the transmission of pertussis in a population (See Chapter
12). Although there had been speculation that the drop in cases before 1974
had been due to improved social conditions, the steep increase with decreasing
uptake is evidence that the drop in cases before 1974 was due to vaccination.
Miller and Gay suggest that the decline in incidence is greater than would be
expected given the low protective efficacy estimates of pertussis vaccination
(see Chapter 10). They present modeling results assuming a VE I = 0.80 and
graphically compare the number of cases from the transmission model with
the observed number of cases in childern less than 3 months of age, too young
to have received the vaccine. The results are consistent with pertussis vacci-
nation lowering transmission and therefore likely there are indirect effects of
vaccination. Also the age distribution of pertussis cases increased in England
and Wales, though not as much as predicted by the transmission model. Un-
derdiagnosis of pertussis cases in adolescents could result in underreporting
of cases in that age group.

Taranger et al (2001) considered that mass vaccination of children with
pertussis toxoid decreased incidence in both vaccinated and nonvaccinated
persons in Sweden.

13.2.4 Pneumococcal vaccine in Alaska

Hennessy et al (2005) evaluated invasive pneumococcal diseases (IPD), an-
timicrobial resistance, and nasopharyngeal colonization before and after in-
troduction of pneumococcal conjugate vaccine (PCV7) in Alaksa Natives. On
January 1, 2001 PCV7 was introduced into the childhood vaccination schedule
for all Alaskan children. Population-based surveillance for IPD among persons
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Fig. 13.3. Pertussis (whooping cough) notifications: cases and deaths. England and
Wales 1940-94. (Miller and Gay 1997)

of all races throughout Alaska was conducted by the CDC Arctic Investiga-
tions Program, in place since 1986. Hennessy et al (2005) used the statewide
surveillance for IPD to compare rates of disease in the six years prior to rou-
tine use of PCV7 (1995-2000) with disease rates in the three years after PCV7
use (2001-2003).

From October 1, 2001 to September 30, 2003 the proportion of 3-15
months old Alaska Native children who were age appropriately vaccinated
with PCV7 increased from 51.9% to 73.2%. The proportion of 16-27 months
old children with 4 or more PCV7 doses increased from 0 to 57.7%. By
September 30, 2003, 95% of 19-35 months old Alaska Native children had
received at least one dose of PCV7. From 1995 to 2003 a total of 1,113
case of IPD were reported in Alaska. Isolates were available on 90% of the
cases. Table 13.3 shows the before and after rates and number of cases of
IPD. The overall effectiveness against all serotypes in Alaska Native chil-
dren <2 years was VE I I I = (403 − 142)/403 = 0.65 and in non-Natives was
VE I I I = (133− 51)/133 = 0.62, both of which were found to be statistically
significant, ignoring that comparison is just before and after in one popula-
tion. In children aged 2–4 years the overall effectiveness against all serotypes
in Alaska Native children was (73.9 − 12.7)/73.9 = 0.83 but was just 0.10 in
non-Natives. Most of the dramatic decline was in the vaccine serotypes. Over-
all effectiveness against PCV7 serotypes among children >2 years for Alaska
Natives was (275− 25)/275 = 0.91 and in non-Natives (101− 20)/101 = 0.80.

Colonization studies were also conducted from 1998 to 2003 community-
wide in eight rural Alaska villages and in urban clinics from 2000 to 2003 in
children aged 3-59 months. The proportion of persons colonized with S. pneu-
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Table 13.3. Rates (per 100,000) of invasive Streptococcus pneumoniae by time
period, age group, race and vaccine serotype, Alaska, 1995–2003 (Hennessy et al
2005)

Age Alaska Natives Non-Alaska Native

group 1995–2000 2001–2003 P -value 1995–2000 2001–2003 P -value
(years) rate(number) rate(number) rate(number) rate(number)

Conjugate vaccine serotypes (4, 6B, 9V, 14, 18C, 19F, 23F)
<2 275.3 (84) 24.7 (4) <.001 101.3 (86) 20.0 (9) <.001
2–4 47.0 (21) 0 (0) <.001 13.6 (17) 7.5 (5) .247
5–17 5.9 (12) 0.9 (1) .035 1.0 (6) 2.5 (8) .095
18–44 6.1 (6) 5.7 (8) .909 4.3 (52) 1.09 (7) .792
≥45 15.1 (23) 13.6 (11) .792 11.4 (102) 7.4 (35) .023

Non-conjugate vaccine serotypes
<2 95.1 (29) 105.0 (17) .738 23.6 (20) 28.8 (13) .568
2–4 13.4 (6) 8.4 (2) .610 4.0 (5) 7.5 (5) .333
5–17 7.8 (16) 5.5 (6) .484 2.6 (16) 1.5 (5) .307
18–44 16.6 (44) 17.8 (25) .779 3.6 (43) 2.8 (18) .403
≥45 32.9 (50) 54.6 (44) .016 10.4 (93) 7.0 (33) .043

All cases (including unknown serotypes)
<2 403.2 (123) 142.0 (23) <.001 133.1 (113) 51.0 (23) <.001
2–4 73.9 (33) 12.7 (3) <.001 18.4 (23) 16.6 (11) .792
5–17 15.2 (31) 8.3 (9) .103 3.9 (24) 4.6 (15) .616
18–44 25.3 (67) 24.9 (35) .947 9.2 (111) 4.7 (30) <.001
≥45 57.9 (88) 75.7 (61) .112 23.5 (210) 16.9 (80) .010

moniae of PCV7 serotypes declined substantially after PCV7 introduction.
Decreased vaccine-type colonization and invasive disease in adults demon-
strate indirect effects. Although not all denominators are given, Hennessy et
al (2005) estimate that in ≥5 year olds, who were not eligible to receive PCV7,
41 cases of vaccine type IPD (95% CI 20-64 cases) were indirectly prevented
by PCV7 introduction.

13.2.5 Meningococcal vaccine in the United Kingdom

In November 1999, the United Kingdom introduced routine meningococcal
serogroup C vaccination for infants. The vaccine was also offered to everyone
aged under 18 years in a phased catch-up program. Adolescents were vacci-
nated first and the program was completed by the end of 2000. Ramsay et
al (2003) compared cases in unvaccinated children from each age group in
the period from July 1, 2001 to June 30, 2002 with those in the same age
groups for the period from July 1, 1998 to June 30, 1999. The denominator
was mid-1999 population estimates from the Office of National Statistics for
the age group, adjusted for the proportion of each cohort vaccinated. The
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cases were identified at the Public Health Laboratory Service by confirma-
tion of serogroup C disease. They investigated the vaccination history of all
such identified cases. They computed vaccination coverage from data from
immunization coordinators and departments of child health in England. They
identified a total of 37 cases in the 2001-2002 period in the cohorts targeted
for vaccination, eight in vaccinated children and 29 in unvaccinated children.

Table 13.4. Attack rate of confirmed meningococcal serogroup C infection in unvac-
cinated children before and after the launch of the vaccination campaign (Ramsay
et al 2003)

July 1998–June 1999 July 1998–June 1999
Date AR per Date Est AR per Indirect
of 100,000 of coverage Est. 100,000 effect

Cohort birth Cases Population (95% CI) birth Cases (%) pop (95% CI) (95% CI)

Adolescent 96 1,818,034 5.28 (4.2, 6.3) 11 66 614,110 1.79 (0.7, 2.8) 66 (37, 82)
Grades 7–10 141 2,546,938 5.54 (4.6, 6.4 ) 4 86 359,118 1.11 (0.02, 2.2) 80 (46, 93)
Grades 1–6 76 3,911,606 1.94 (1.5, 2.4) 5 87 498,068 1.00 (0.1, 0.9) 48 (−28, 79)
Preschool 81 2,055,120 3.94 (3.1, 4.8) 6 76 501,449 1.20 (0.2, 2.2) 70 (30, 87)
Toddlers 41 601,045 6.82 (4.7, 8.9) 2 84 97,369 2.05 (−0.7, 4.9) 70 (−24, 93)
Infants 24 320,562 7.49 (1.5, 10.5) 1 80 64,112 1.56 (−1.5, 4.6) 79 (−54, 97)

Total 459 11,235,305 4.08 (3.7, 4.5) 29 2,134,226 1.36 (0.86, 1.85) 67 (52, 77)

Table 13.4 contains the number of cases in the unvaccinated children before
and after launch of the vaccination campaign. The estimated indirect effect
in children based on the attack rate over all age groups is VE I I A = (4.08 −
1.36)/4.08 = 0.67 with a 95% CI (0.52, 0.77) with a range of 0.48 to 0.80
in the different age groups. Using a denominator of 9,119,078 for the eight
vaccinated cases for an attack rate of 0.09/100,0000, the estimated direct
protective efficacy of the vaccine is (1.36− 0.09)/1.36 = 0.93, with a 95% CI
(0.86, 0.97).

13.2.6 Cholera vaccine in Bangladesh

Ali et al (2005) re-analyzed data from a large-scale, double masked, individ-
ually randomized field trial of killed whole-cell cholera vaccines given orally,
either with or without cholera toxin B subunit in Bangladesh to ascertain
whether there was evidence of indirect as well as direct vaccine protection of
individuals. The trial was done in the Matlab field area of the International
Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B): Centre for
Health and Population Research during the 1980s (Clemens et al 1990). All
children aged 2 to 15 years and women older than 15 years were randomized to
receive either one of the cholera vaccines or Escherichia coli K12 placebo. The
main objective of the original trial was to assess whether receipt of three doses
of vaccine was associated with lower incidence of cholera than that observed
after receipt of three doses of placebo. At one year of follow-up, protective effi-
cacy was 62% for B subunit-killed whole-cell oral cholera vaccine and 53% for
killed whole-cell only oral cholera vaccine. The re-analysis to assess indirect
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effects was motivated by the lack of enthusiasm for introducing the vaccine in
populations with endemic cholera because of the moderate direct protective
effects.

A bari in Bangladesh is a patrilinearly-related household living in clus-
ters. Ali et al (2005) chose the bari as the unit of analysis because they are
geographically discrete and because there may be transmission within these
units. A total of 6,423 baris were included in the analysis, with the median
number of individuals in a bari eligible for the trial being 17 (interquartile
range 7-26). The analysis was restricted to the first year of follow-up to have
a more stable population and minimize the effects of migration. Level of vac-
cine coverage was defined as the number of vaccinated individuals divided by
the number of people who were eligible for participation in the trial by age
and sex criteria. Then because the coverage of nearby baris might affect the
risk of cholera of bari residents, the vaccine coverage of the bari was defined
as the coverage of bari residents and those living within a 500 meter radius
according to a geographic information system mapping.

For the indirect and total effects, models based on generalized estimating
equations with a logit link and exchangeable correlation matrix including po-
tential confounding variables were used (see Section 13.7). The occurrence of
cholera in each analyzed individual was the dependent variable. The vaccine
status of the individual (vaccine or placebo) and level of vaccine coverage of
the individual’s bari coded as a percent, as well as other potential confounding
variables were fitted as independent variables. This analysis did not backtrans-
form to the relative risk scale as in Préziosi and Halloran (2003) (Chapter 12),
but assessed vaccine effects based on the odds ratios by exponentiating the
coefficients of the logit model.

Table 13.5. Risk of cholera in placebo and recipients of killed oral cholera vaccines,
by level of coverage of the bari during the first year of follow-up (Ali et al 2005)

Level of Vaccine recipients Placebo recipients Protective
vaccine Target Risk per 1000 Risk per 1000 Efficacy
coverage population N Cases population N Cases population (95% CI)

< 28% 24,954 5627 15 2.67 2852 20 7.01 62 (23 to 82)
28-35% 25,059 8883 22 2.48 4429 26 5.87 58 (23 to 77)
36-40% 24,583 10772 17 1.58 5503 26 4.72 67 (36 to 83)
41-50% 24,159 11513 26 2.26 5801 27 4.65 52(14 to 73)
> 51% 22,394 12541 16 1.28 6082 9 1.48 14(-111 to 64)
Total 121,149 49,336 96 1.94 24,667 108 4.37 56(41 to 67)

Table 13.5 presents a summary of the data divided into quintiles by level
of coverage of the baris and the protective efficacy for each quintile. The risk
of cholera in recipients of two or more doses of either vaccine or placebo is
inversely related to the level of vaccine coverage of the bari. The trend is
statistically significant in placebo recipients (Spearman’s correlation coeffi-
cient −1.00, p = 0.02), but not in vaccine recipients (−0.90, p = 0.08). Three
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analyses were done using the generalized estimating equations, one using all
recipients with ≥2 doses (overall effect), one for those with vaccine (total ef-
fect), and one for those with placebo (indirect effect). The odds ratios for the
level of cholera vaccine coverage of the bari were 0.97 (95% CI 0.96-0.98), 0.98
(0.96-1.00), 0.96 (0.94-0.98). respectively. Thus, there was a significant gradi-
ent by level of coverage for the overall effect and the indirect effect, with a
borderline significant gradient for the total effect. They conclude there was an
inverse, monotonic trend for the relation between the level of vaccine coverage
in a residential cluster and the incidence of cholera in individual vaccine recip-
ients or placebo recipients residing in the cluster after controlling for potential
confounding variables.

13.2.7 Drawbacks of unplanned evaluation

Often evaluation of indirect, total or overall effects based on the pre- and
post-vaccination surveillance data can provide good evidence, at least of the
overall effects. However, if the change is to be attributed to the vaccination
program, one must assume there are no major secular trends. Without any
planned studies, the indirect effects of Hib vaccination took quite a while to
estimate (Moulton et al 2000). A particular example of the difficulty of using
unplanned studies, or studies based on comparing just one or two populations
is influenza (Halloran and Longini 2006). Attempts have been made before to
demonstrate the community-wide effectiveness of vaccinating school children
against influenza. Just before the epidemic in 1968, Arnold Monto and col-
leagues vaccinated 85 percent of the school-age children in Tecumseh, Michi-
gan, against influenza, resulting in a 67 percent decrease in the influenza-like
illness attack rate in Tecumseh compared with neighboring Adrian (Monto et
al 1969). In an ongoing community vaccination study in Central Texas with
LAIV, Paul Glezen and colleagues are attempting to demonstrate that vac-
cinating school children reduces incidence of influenza-like illness in adults
(Piedra et al 2007). Although these studies are rigorous, they each have only
one or two comparison community.

A larger scale study with numerous comparison communities is needed
to gather convincing data to counter any remaining scepticism. A study in
several schools in the former Soviet Union used a nonspecific outcome as
well, so the results are difficult to interpret (Monto et al 1993). A com-
pelling example of the need to plan evaluation prospectively is provide by
the Japanese national vaccination strategy, which for over two decades until
1987, was targetted at school children precisely to reduce epidemic influenza.
A retrospective reassessment suggesting that the Japanese strategy reduced
excess deaths among elderly adults (Reichert et al 2001) is open to criticism
because it is based on non-specific mortality data over time. The time trends
could result from factors not related to influenza vaccination. More recently,
the province of Ontario, Canada, has been promoting wide spread vaccina-
tion for all age groups. The analysis of the Ontario experience suffers from
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similar weaknesses as the Japanese. A review of 14 studies concluded that
further evidence is needed of the indirect effects of influenza vaccination in
children (Jordan 2005). King et al (2006) tried to demonstrate that school-
based influenza vaccination reduced spread of influenza in households and
communites, but used an influenza-like illness outcome, not influenza. The
use of a nonspecific case definition compounds the difficulty of evaluating the
indirect effects of influenza vaccination strategies.

13.3 Group-randomized Studies

Ideally, to evaluate indirect, total, and overall effects of a vaccination strategy,
one would randomize several communities to receive the vaccination strat-
egy of interest and several communities to serve as controls, and then the
outcomes in the intervention communities would be compared with those of
the controls. Most commonly, the luxury of conducting a prospectively de-
signed study of a vaccination strategy in multiple groups or populations to
estimate indirect, total, and overall effects will not be an option. The more
feasible approach will often be to plan well for a comparison of the pre- and
post-implementation incidence in the relevant populations as the studies de-
scribed in the previous section. Despite the increasing interest in using group-
randomized studies to evaluate population-level effects of vaccination, few ac-
tual studies have been conducted up to now. However, prospectively designed
community-randomized studies may become more common in the future.

Community- or group randomized studies are those in which the interven-
tion, or intervention strategy is randomized to groups of individuals. With
vaccines, one can randomize the vaccination strategy at the group level and
further randomize vaccination or control at the individual level, if desired.
There is an extensive literature on group-randomized designs (Murray 1998).
Often cluster-randomized studies are conducted because it is not feasible to al-
locate the intervention individually, even though the effects on the individuals
are of interest. Occasionally, vaccination studies use a group-randomized de-
sign even when the direct protective effects are of interest because of practical
or ethical consideration. Group-randomized designs are occasionally used in
households where the parents or other household members might be unwilling
to do a discordant, individual randomization. We discuss group-randomized
studies here primarily for our interest in measuring indirect, total, or overall
effects.

One often distinguishes the unit of assignment, the unit of intervention,
the unit of observation, and the unit of analysis. The unit of assignment
could be the unit that is assigned the allocation strategy, say a community is
randomized to receive the vaccination strategy of interest, and another is as-
signed to receive a control vaccination strategy. With vaccines, the additional
unit of assignment is the individual within community. The assignment at the
individual level within each community may be randomized or not. For a se-
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lected target group, such as children under 2 years of age, one might vaccinate
whoever comes to a clinic to be vaccinated. But then the children who are
vaccinated are not a random sample, but subject to a selection mechanism as
in an observational study, the rule of which is unknown to the investigator.
The unit of intervention could be health clinics or physician’s practices within
a community, or the nurse practitioner’s office within a school. The unit of
observation for cases is generally the individual, whether it be individual cases
picked up through surveillance systems or clinical studies. However, in commu-
nity studies there may also be community-level covariates, such as prevalence
or incidence levels, amount of rainfall, distance from roads or distance from
health clinic. So the community can be the unit of observation. There is much
discussion in the literature about the appropriate unit of analysis. In general,
the unit of analysis is determined by the study design. “A unit is a unit of
analysis for an effect if and only if that effect is assessed against the variation
among those units” (Murray 1998, page 105). Several of the design consider-
ations in group-randomized studies to estimate the different types of effects
are summarized in Tables 13.6 and 13.7.

Table 13.6. Design considerations in group-randomized studies to estimate indirect,
total, or overall effects of vaccination strategies

Design consideration

Primary and secondary questions of interest

Vaccination strategy

Clinical endpoints

Study population and subpopulations

Sources of transmission

Case ascertainment

Choice of randomization unit (group)

13.3.1 Scientific or public health question of interest

Studies can be designed to evaluate direct as well as indirect, total, and overall
effects. However, one of the effects may be of primary interest and another
effect is or other effects are of secondary interest. For example, the primary
interest may be in evaluating the total effects of vaccination compared to no
vaccination, as in the pneumococcal vaccine study designed by Moulton et
al (2001) (Figure 13.4). In this case, one would want to vaccinate as many
individuals in the target population as possible to maximize the total effects.
A similar reasoning holds if the overall effect of vaccination in the target
population is of interest.
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immunization (i.e., the benefit that accrues to the individual as a function of be-
coming protected against challenge by an infectious agent). In such a design,
individuals in both arms of the trial are assumed to be mixing independently
with each other in the community. Our group-randomized study design is de-
picted in Figure 1. “Units” are geographically distinct areas to which either
study or control vaccine is randomized. Eligible, consenting individuals within
any unit are all administered study or control vaccine, depending on the treat-
ment arm to which their unit was allocated. Many factors may determine
which individuals within a given unit decide to participate in the trial. Some of
these factors may be related to risk of disease (or more accurately, risk of be-
coming diagnosed as a case), including socioeconomic status, distance to the
nearest health facility, number of siblings, and day-care utilization. Thus, in
our trial, comparison of attack rates between study participants (vaccinated)
and nonstudy participants (unvaccinated) within 7VPnC vaccine units, which
estimates direct effects, may result in a substantially biased estimate of vaccine
efficacy. For example, if nonstudy participants have a much higher underlying
risk of disease, then the efficacy of the vaccine will be biased upward.

Comparing the disease incidence among study participants in the vaccine
units with study participants in the control units yields an estimate of the total
effect of immunization. It includes both direct and indirect effects of the immu-
nization program. We expect that immunizing the majority of infants and tod-
dlers in the vaccine units will reduce the secondary attack rate through
reduction of the number of infected individuals and of the number of those
who carry 

 

S. pneumoniae

 

 in the nasopharynx. The result would be a synergistic
effect, commonly referred to as the effect of herd immunity [20]. The sum of all
the benefits to the participants is referred to as the total effect. The overall effect
of immunization is estimated by comparing attack rates among all residents of
the vaccine units with all residents of the control units, recognizing that only
some fraction of the residents in each type of community actually received
study or control vaccine. Because the overall effect is so dependent on the at-
tained coverage (proportion enrolled), it is perhaps less generalizable than the
other effect measures. However, it will permit some extrapolation to other
populations with similar expected coverage levels. For example, if two thirds

Figure 1 Schematic of trial study hypotheses according to the nomenclature of Hallo-
ran et al. [19]. Participants in each vaccine unit receive 7VPnC vaccine, while
those in each control unit receive MnCC vaccine.

Fig. 13.4. Figure will be replaced. Schematic of the questions of interest in the
pneumococcal vaccine trial in Native American. Participants in each vaccine unit
receive PCV7 vaccine, and those in each control unit receive MnCC vaccine (from
Moulton et al 2001).

If pure indirect effects were of primary interest, then the best approach
would depend on the which subgroups were receiving the vaccines and in which
subgroups the indirect effects were to be measured. For example, if they were
the same subgroups, then there would be a trade-off between vaccinating too
many people in the intervention communities so that there are few people left
unvaccinated and few events in the unvaccinated people in the intervention
community and not vaccinating enough people so that there is a measurable
indirect event. On the other hand, if one were interested in estimating the
indirect effects in adults of vaccinating children, then the goal would be to
vaccinate as many children as possible in the intervention communities (Fig-
ure 13.5). If in addition to indirect or total effects, one is also interested in
evaluating the direct effects of vaccination, then one would want to vaccinate
few enough people that sufficient transmission remains to produce the number
of events necessary to estimate the direct effects.

13.3.2 Vaccines and vaccination strategy

Exactly what the intervention program of interest is will depend on the vac-
cine, the vaccination schedule for that vaccine, and which subgroups suffer the
greatest morbidity. The comparisons may be made between different levels of
vaccination coverage, between allocation within different age groups or other-
wise defined subgroups. In a parallel design, it might be necessary to consider
using a different active vaccine as a control. This would help preserve masking
and inactive placebos are often considered unethical for vaccine studies. The
active vaccine as a control also provides a comparable group, in that those
people who actually receive the vaccine in each group might be assumed the



13.3 Group-randomized Studies 289

appropriate groups for comparison in estimating total effects. For example,
in the pneumococcal vaccine study of total effects, the control vaccine was
an investigational meningococcal C conjugate vacccine (Moulton et al 2001).
In a phased implementation design (Section 13.4), an active control vaccine
would not be necessary.

Fig. 13.5. Possible comparisons within subgroups to estimate different effects (fig-
ure to be added).

13.3.3 Clinical endpoints

Clinical endpoints can be defined as a combination of clinical symptoms
and/or by biological confirmation of the infectious agent targeted by the vac-
cination. The infectious agents can further be identified as being contained
in the vaccine or not contained in the vaccine. For example, in pneumococcal
vaccine studies, the cases can be categorized as being a vaccine serotype or a
nonvaccine serotype. In influenza vaccine studies, the infections are classified
either as homologous with the vaccine type or heterologous, indicating some
degree of antigenic mismatch between the vaccine strains and the circulating
strains.

Two possibly related problems may arise in large, group randomized stud-
ies. First, if the disease is common, such as in influenza, the number of sus-
pected cases in the large study may be too many for all cases to be confirmed
biologically. Secondly, surveillance may not be specific for the illness of in-
terest. For instance, influenza incidence in post-licensure vaccine studies is
generally measured using non-specific case definitions, such as influenza-like
illness or medically-attended acute respiratory illness, which include many
diseases in addition to influenza. A nonspecific case definition can attenuate
the estimates of indirect and overall effects. In Chapter 8 the concept of using
validation sets to obtain more accurate efficacy estimates when the main case
definition is non-specific was discussed. Especially in studies to evaluate total
or overall effects, validation sets might be helpful to improve the ability to
detect a signal above the noise.

As an illustration, Figure 13.6 shows results of 100 stochastic simulated
estimates of the indirect effects of vaccinating 50 percent of the children with
an influenza vaccine in one community as compared with another community
without vaccination (Halloran and Longini 2001). Each population has 10,000
people, half children and half adult. The indirect effects are set to 0.25. In
each pair of populations, the population in which children were vaccinated
had an influenza incidence rate reduced by a factor of 0.25. VES is assumed
to be 0.90 (leaky). The top histograms of estimates based on ascertainment
of all true influenza cases in children and adults are centered around 0.25.
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FIGURE 2. Estimated indirect effects of vaccination of children
among children in a community trial when the indirect effects are set
to 0.25. Estimates were based on true influenza cases (top), the val-
idation set approach (middle), and all influenza-like illness (bottom),
from 100 simulations. Other simulation parameters are described in
the text.

FIGURE 3. Estimated indirect effects of vaccination of children
among adults in a community trial when the indirect effects are set
to 0.25. Estimates were based on true influenza cases (top), the val-
idation set approach (middle), and all influenza-like illness (bottom),
from 100 simulations. Other simulation parameters are described in
the text.

the indirect effects of vaccination on people who were not
vaccinated and the overall benefit to the community of
widespread vaccination (2, 33, 34). The denominators for
the estimation could be either the number of people in each
relevant stratum in the community as a whole, a health
maintenance organization catchment population, or some
other relevant catchment population for the observed cases.

Many features complicate community-based vaccination
studies. Chief among them is the comparability of the com-
munities included in the study with respect to the baseline
incidence and the background incidence of any disease
included in a nonspecific case definition. Even if the commu-
nities are comparable, however, a nonspecific case definition
can attenuate the estimates of indirect and overall effects.

In figures 2 and 3, we present results of 100 simulated
estimates of the indirect effects of vaccinating 50 percent of
the children in one community as compared with another
community without vaccination. This scenario is similar to
that depicted in figure 1, with 10,000 people in each popu-

lation, half children and half adults. The incidence rate of
true influenza in adults is only half that in children, while
the incidence rate of noninfluenza in adults is the same as
that in children. The baseline incidences of true influenza
and background noninfluenza are multiplied by random
numbers between 0.85 and 1.15, so the baseline incidences
in the two comparison communities are similar but not iden-
tical. To estimate indirect effects in children (figure 2), one
compares the incidence proportion among unvaccinated
children in the community that has the vaccination program
with the incidence proportion among (unvaccinated) chil-
dren in the community without vaccination. A similar com-
parison is made among the adults (figure 3), all of whom are
unvaccinated. We have set the indirect effects to 0.25. The
top histograms of estimates based on ascertainment of all
true influenza cases in children and adults are centered
around 0.25, the set value. However, if we use all influenza-
like illnesses, the estimates are much lower (bottom rows).
The histogram is centered around 0.14 in children and 0.10

Fig. 13.6. Estimated indrect effects of vaccination of children among children (left)
and among adults (right) when the indirect effects are set to 0.25. Estimates were
based on true influenza cases (top), the validation set approach (middle) and all
influenza-like illnesses. The expected incidence in children varied weekly over the
12-week epidemic period as (0.014, 0.024, 0.034, 0.05, 0.06, 0.055, 0.05, 0.044, 0.038,
0.024, 0.015, 0.01). The expected incidence of influenza in adults was half that. The
expected incidence rate of noninfluenza in both children and adults was set to 0.02
per week. The baseline incidences of true influenza and background noninfluenza are
multiplied by random numbers between 0.085 and 1.15 so the baseline incidences in
each comparison pair are similar but not identical. (Halloran and Longini 2001)

However, if we use all influenza-like illnesses, the estimates are much lower
(bottom rows). The histogram is centered around 0.14 in children and 0.10
in adults. However, by incorporating a random sample of the influenza-like
illnesses that are biologically confirmed, we can adjust the estimates based
on the influenza-like illnesses (middle row). The histograms are once again
centered around 0.25, although the histograms based on the validation set
approach show more variability than the histograms based on confirming all
true influenza cases.

Although it may not be feasible to confirm biologically every clinically
determined case in a large study to evaluate indirect, total, or overall effects, a
small random sample of confirmed cases could be quite useful. There are trade-
offs in using a nonspecific outcome on more groups and reducing the number
of groups and using validation sets. Given the variability and background
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noise between communities, schools, or other group, for a fixed budget, it is
probably better to use fewer groups in general and get more specific outcomes
on some of the participants. These potential trade-offs have yet to be studied
rigorously.

13.3.4 Study population

The choice of study population will be determined by the vaccine and the abil-
ity to conduct a large-scale study in the population. The ability to administer
the vaccine, keep records, and also to obtain data on the clinical outcomes are
important.

13.3.5 Sources of transmission

Consideration of the likely transmission patterns and sources of exposure to
infection in a population is required in anticipating possible detection of indi-
rect effects. These transmission patterns will greatly influence the magnitude
of the indirect effects of an intervention strategy. For example, many influenza
researchers believe that school children are the primary sources of transmis-
sion in the community. Widespread vaccination of school children could be
expected to have considerable indirect effects on reducing influenza in a com-
munity (Halloran and Longini 2006; Piedra et al 2007). On the other hand, in
the study aimed to evaluate the total effects of vaccinating children < 2 year
olds with pneumococcal vaccine (Moulton et al 2001; Moulton et al 2006), the
contribution to transmission of school children or adults who are colonized
with the bacteria is not well-understood. If the older children who are unvac-
cinated are important sources of transmission, then the vaccination strategy
at least in the early years upon introduction will have low indirect effects, and
the total effects will be dominated by the direct protection.

13.3.6 Case ascertainment

In large community studies to evaluate indirect, total, or overall effects, us-
ing either a pre- versus post-vacccination or a group randomized study, good
methods for thorough case ascertainment is important. Examples include ac-
tive population surveillance as in the Niakhar study, biological confirmation
of suscepted cases in reference laboratories, or general surveillance and report-
ing systems. Active population surveillance can demand a lot of resources. If
considerable underreporting of cases is suspected, and two or more sources
of surveillance or case reporting are available, capture-recapture methods can
be considered to provide better estimates of the number of cases (Gjini et al
2004).
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13.3.7 Choice of randomization unit

The choice of at what level to randomize the units, that is the choice of the
group, depends on both practical and theoretical considerations. One wants
the groups to be transmission-dynamically separate. If communities receiving
vaccine interact with communities not receiving vaccine, the contamination
among groups could dilute the indirect, total or overall effects of the vacci-
nation program. The contiguity can occur through spatial patterns or social
mixing patterns among units. If there is contamination across units, then the
power of the study will be diminished. The vaccination delivery system may
determine the randomization units. These could be health care clinic or EPI
vaccination team catchment areas. Political units such as towns or counties
might be natural randomation units. One can also use smaller randomiza-
tion units, such as schools (King et al 2006) or households, such as in the
mini-community design (Chapter 12).

Given a study population, there is a trade-off on size of cluster with num-
ber of expected cases and the number of clusters. If incidence rates are rela-
tively high, and the effect to be measured is also expected to be substantial,
then one can divide the population into fewer clusters. However, there will be
a loss of efficiency as the number of individuals per randomization unit in-
creases. However, care should be taken that the randomization units are not
too small. The efficiency of a study also depends on the intragroup correlation
which could be affected by the size of the community chosen as the unit of
randomization (Hayes et al 2000). If small communities are chosen, then the
intracommunity correlation might be quite high, while in large communities,
the correlation might be smaller. Also, small randomization units might have
considerable mixing among the units, resulting in diminished indirect, total,
and overall effects. In general, one would prefer to increase the number of
communities to have more randomization units with fewer individuals if they
are transmission-dynamically separate. The choice of the randomization unit
for any particular study will depend on the local conditions.

13.4 Parallel and Stepped Wedge Designs

The three general approaches to designing group-randomized studies are par-
allel designs, stepped wedge designs, and cross-over designs (Table 13.7)(Hughes
2003). Any of these three study types can be used when the randomization
unit is either an individual or a group, but the focus here is the context of
group-randomized studies to evaluate indirect, total, and overall effects. In the
parallel design, the groups are randomized to receive one or other of the inter-
ventions at the beginning, and the intervention assignment does not change
until the end of the trial. In the stepped wedge design, the intervention is
introduced in more and more groups over time. This allows the groups in
which the intervention is not yet introduced to serve as control groups. In the
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crossover design, the groups are first randomized to receive one or other of
the interventions at the beginning, then at some point, the interventions are
switched. This latter design likely has no application in vaccine studies, since
in general one cannot de-vaccinated people or populations. We do not consider
it further here. Both the parallel design and the stepped wedge design can be
used to evaluate direct, indirect, total, and or overall effects, depending on the
design and implementation. That is, groups can be randomized to vaccination
or control, then individuals within groups may or may not be randomized to
receive vaccine or not.

Table 13.7. Community-randomized designs and randomization schemes

Design Randomization scheme Covariate constraints

Parallel Completely randomized Unconstrained
Stepped wedge Stratified Constrained
(Cross-over) Matched-pairs

13.4.1 Parallel Designs

The simplest parallel group randomized design is one in which N groups are
randomized to either vaccination or control, for a total of 2N groups. It would
also be possible to have an unbalanced allocation.

13.4.2 Parallel Pneumoccocal Vaccine Study

Moulton et al (2001) designed a group-randomized, double-masked phase III
trial of a Streptococcus pneumoniae conjugate vaccine in American Indian
populations in the US. The study had a parallel design. The goal of the trial
was to evaluate the total effects of vaccination as well as the indirect effects,
and at the same time to serve as a pivotal vaccine study. At the time of
the design of the study, another phase III study with standard individual
randomization was ongoing in northern California (Black et al 2000). However,
the number of invasive pneumococcal cases occurring in that trial was small.
The group randomized study was designed to estimate the total efficacy, which
takes the direct protective effects on the vaccinated individuals as well as the
indirect effects into account, so that the effects could potentially be greater
than the effects in the individually-randomized study. The study was the first
group-randomized vaccine trial in the United States designed to be a pivotal
trial for licensure.

There were 4,164 infants enrolled in the PCV7 communities and 3,926 in
the MnCC communities between April 1997 and December 1999. The study
had 38 geographically defined randomization units which had been formed
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to minimize the degree of social mixing, and hence contamination, between
randomization units. Half the units were randomized to study vaccine, a seven-
valent conjugate pneumococcal vaccine (PCV7 vaccine), the other half to an
active control, a conjugate meningococcal group C vaccine (MnCC vaccine).
The goal in each randomization unit was to vaccinate as many children under
2 years of age as possible to achieve the highest total effects.

Originally the trial was designed to continue until 48 cases of invasive
pneumococcal disease due to vaccine serotypes had accumulated. However,
on February 17, 2000, the FDA approved the licensure of the PCV7 vaccine
based on the results of the primary efficacy study in northern California (Black
et al 2000). Ethically the study could not be continued and PCV7 vaccine was
offered in the MnCC communities. Only nine cases had accrued at that time.

Later, Moulton et al (2006) estimated the indirect effects on the unvacci-
nated children in the communities (Section 13.7.2). To estimate indirect effects
they compared the incidence rate of invasive pneumococcal disease in vaccine
units among non-enrolled children versus the incidence rate in control units in
non-enrolled children. By using the non-enrolled children in both communi-
ties, they hoped to have comparable children in their analysis. By combining
the information from the study with information from Indian Health Service
User Population data and birth logs, they were able to obtain denominators
for each of the 38 randomization units. They were also able to interpolate the
number of non-enrolled children at any day btween April 1997 and October
2000. The numerator for invasive disease was obtained from surveillance data
that had been subject to a standard protocol during the study. There were
21 cases of invasive disease due to study vaccine serotypes among nonstudy
children living in MnCC randomization units, and 27 cases among those in
the PCV7 units.

13.4.3 Stepped Wedge Designs

Stepped wedge designs can be used when a parallel design is unfeasible either
for practical or for ethical reasons. For example, if a vaccine is already licensed,
then it may be unethical to randomize some communities or individuals not
to receive vaccine during the trial. It may be that practical considerations
preclude introducing the vaccine everywhere at once, either because insuffi-
cient vaccine is available or for logistic reasons of not being able to administer
it everywhere or to everyone at once. By the end of a trial using a stepped
wedge design, all randomization units will have received the vaccine. Thus
the clusters are not randomized to receive the vaccine intervention or not, but
rather the time of the introduction of the vaccine intervention to each cluster
is randomized (Figure 13.7).

Considerations of design and power in the stepped wedge design revolve
around the timing of the individual observations, the interval at which the
intervention is introduced into groups, and the number of groups switched
from control to intervention at any given time. Observation of individuals
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Fig. 13.7. Example of a stepped wedge design (this figure will be replaced with an
original figure. from Moulton et al 2007)

could occur continuously, or somehow be aligned with the timing of switching
the groups from control to intervention. The number of time points chosen to
introduce a given number of clusters into a trial influences the power of the
study. The higher the number of time points, the higher the power, especially
if the number of observations on individuals is correlated with the number of
time points (Hussey and Hughes 2007). However, if individuals are observed
continuously, then there is less effect on power. In vaccine studies in which
cases are reported as they occur, the effect on power would be lower.

The stepped wedge design is gaining in popularity (Moulton 2007; Hussey
and Hughes 2007; Hughes 2008), though at the time of this writing, we do
not know of any group randomized vaccine trial in which this design was used
to estimate indirect, total, or overall effects. Not all outcomes of interest can
be studied by a stepped wedge design. For example, if one is interested in the
change in age of first infection, then one would possibly conduct the study over
several years. If a vaccine is unlicensed, this may be unfeasible, since one would
not want to wait for years to license the vaccine on this outcome. If a vaccine
is licensed, such a long term study would likely not be ethical. Thus, the
observational studies of pre- and post-vaccination will have to suffice (Section
13.2.1) or mathematical models can be substituted as a means of experiment
(Chapters 4 and 5).

13.4.4 The Gambia Hepatitis Intervention Study

One of the first stepped wedge designs was a hepatitis B vaccine study in the
Gambia (Gambia Hepatitis Study Group 1987). Though this study was not
designed to evaluate indirect or overall effects of vaccination, it is presented in
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this chapter because of its early use of the stepped wedge group-randomized
design.

Chronic liver disease and liver cancer, are thought to be partially caused
by hepatitis B viral infection. In West Africa, including The Gambia, chronic
liver disease and liver cancer are important public health problems. It used
to be that nearly everyone in The Gambia was infected with HBV during
childhood and between 10 to 20% became chronic carriers. The goal of the
hepatitis B vaccination study was to evaluate the effect of infant vaccination
on preventing chronic liver disease and liver cancer later in life. Thus, a long-
term follow-up for over 30 years was planned. However, it was undesirable to
do a parallel randomized study in which half of the children were followed for
30 to 40 years before initiating mass vaccination campaigns. Thus, a phased
implementation, or stepped wedge design was proposed. Because at that time,
four injections were required for full immunization, and the vaccine was to be
administered along with the routine EPI vaccines, it was considered logisti-
cally unfeasible to do an individually randomized trial, as well as potentially
ethically questionable.

The choice of study designs was further influenced by the expense of the
vaccine and its limited availability prohibiting immediate universal hepatitis B
vaccination. To avoid confounding by secular trends, the stepped wedge design
provided the ability to have comparison groups available from the same time
period. They also hoped that the hepatitis B vaccine would be widely available
by the end of the study. Based on these considerations, phased introduction
of hepatitis B vaccine to the EPI schedule was planned, with injections within
one month of birth, and at 2, 4 and 9 months of age. There were 17 EPI
vaccination teams each assigned a portion of 104 delivery points that were
visited at least once every two weeks. The study plan randomized one of the
teams every 10 to 12 weeks to introduce the hepatitis B vaccine to the EPI
schedule by vaccinating all newborns who report to the vaccination points
served by the team. This was to continue for a period of about four years,
when all teams would be giving the vaccine, so that country-wide coverage
would be achieved (Figure 13.8). The alternative parallel design, in which
EPI vaccination teams would have been randomized to give HBV or not for
four years is statistically more powerful, but would have been less acceptable
(Jaffar et al 1999).

Evaluation of the protective effect of HBV vaccination against liver can-
cer and chronic disease was planned through the long-term follow-up of those
children born during the 4-year period over which HBV vaccine was intro-
duced. For children born in each three month period, incidence of later liver
cancer and chronic liver disease would be compared among those receiving
HBV vaccine and those not. For example, those newborns entering in the first
three months of the study would be compared later in life to those newborns
reporting to the 16 other vaccination teams. This approach to comparison
controls for secular trends that might affect the risk of developing liver can-
cer. Randomization of the order in which the EPI teams introduce the HBV
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Fig. 13.8. Stepped wedge design in the Gambia (from the Gambia Hepatitis Study
Group 1987)

vaccine minimizes the bias in the comparison of the vaccinated and unvac-
cinated groups. To further avoid bias, the plan is to restrict the analysis to
comparison of those who attend the vaccination clinics at all four ages at
which HBV would be given.

Considerable efforts were undertaken to enable identification of the per-
sons enrolled 30 to 40 years after enrollment, which in The Gambia can be
a challenge. These efforts make interesting reading but are not relevant here.
For follow-up, a nationwide cancer registry and active surveillance were es-
tablished. A number of studies to assess intermediate endpoints were built
into the long-term follow-up. A subset was followed for serological data on a
regular basis through childhood and adolescence. Cross-sectional studies were
also performed to compare acquisition of HBV markers at different ages. This
is a superb example of the need to plan for long-term studies and follow-up
in vaccine studies.

13.5 Randomization

13.5.1 Approaches

Group-randomized trials often have only a limited number of identifiable
groups to assign to the different interventions. Two key issues arise in choos-
ing a randomization scheme when the number of groups is limited. First, in
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a completely randomized study, variability among communities could swamp
out the estimates of the effects of the vaccination strategy. In a completely
randomized parallel study, groups are randomized to intervention or control
without any consideration of variability among the groups. In a completely
randomized stepped wedge design, the order of introduction of the intervention
is randomized without any consideration of variability among the groups. Sec-
ondly, generally there will not be enough groups to ensure that the potential
sources of bias among the intervention conditions will be evenly distributed.
Even if the groups or communities contain thousands of participants, if there
is important variability of characteristics between groups, a study that is
completely randomized at the group-level could have imbalances in impor-
tant covariates. If these characteristics are also related to the outcome of the
study, an example would be the incidence rate of the disease of interest in the
community, then the results of the study may be difficult to interpret. Even
if it is possible to do some adjustment at the time of analysis, the results
will be open to criticism. For example, consider a study to evaluate the to-
tal effectiveness of widespread vaccination, with five communities randomized
to intervention and five to control. It could happen that the five communities
with the lowest baseline incidence of the disease in question would be random-
ized to receive vaccination. If that were to happen, the results of the study
could be criticized as being biased in favor of the vaccination strategy by the
realized randomization.

Two main approaches have been proposed to increase power and to re-
duce the chance of unbalance on covariates when there is considerable vari-
ability among communities. One is to stratify groups by pre-randomization
group-level covariates of interest, including transmission characteristics, then
randomize to intervention or control within strata. The other, an extreme
version of stratification, is to match pairs of communities on the covariates
of interest, so the strata contain only two communities, then randomize to
intervention or control within the pairs. Groups rather than individuals are
stratified/matched prior to randomization. Hayes et al (1995) matched on
transmission characteristics in a community trial of the effect of improved
sexually transmitted disease treatment on the HIV epidemic in rural Tan-
zania (Grosskurth et al 1995). Pre-randomization stratification or matching
requires information on factors related to the primary endpoint used for the
stratification/ matching prior to randomization.

13.5.2 Covariate-constrained randomization

An appealing approach to randomizing groups that avoids gross imbalances on
known and measured variables is covariate-based constrained randomization
(Moulton 2004). In the constrained, or restricted randomization, certain bal-
ancing criteria are determined before randomization that still retain validity
of the design. Then the final randomization scheme is randomly chosen from
among those that both satisfy the constraining criteria and are still valid. A
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completely randomized design is valid if each pair of randomization units has
the same probability of being allocated the same treatment (Bailey 1983).
A design is biased, if, across the randomization units, there is any difference
in probability of assignment to a given treatment. Even in stratified or pair-
matched designs, an unlucky randomization can result in the intervention al-
ways being assigned to the lower incidence groups. Constrained randomization
can be used in completely randomized, stratified, or pair-matched designs. We
consider it primarily in the context of a completetly randomized parallel de-
sign. We then consider briefly using constrained randomization in the stepped
wedge design.

Different constraints can be used for different types of constraining vari-
ables. For continous covariates such as incidence rates of the disease of inter-
est, one can choose some measure based on the standard deviation or absolute
mean difference. For dichotomous covariates, ± some percentage points might
be appropriate. For example, suppose there was a difference in the incidence
of disease between the north and south regions of the study area. Then one
would not want all of the intervention sites in the north and control sites in
the south. One could assign a 0,1 dummy variable for north and south and
require that the difference between the intervention and control values be less
than 10%. Other important aspects, such as sources of water, proportion of
the population with a certain educational level, health clinics, or roads within
geographic areas can also be balanced within some specified range. Composite
scores or more than one covariate can be used for defining the constraints that
need to be satisfied. The constraining criteria can vary among the covariates.

Once constraints are set, then one needs to identify all of the possible
allocations that satisfy the constraints. To do this, form a list of all the possible
allocations. For a completely randomized (at the group level) design, there will
be

(2m
m

)
entries, where 2m is the total number of groups. For a pair-matched

design, there will be 2m entries, where m is the number of pairs. Making a pass
through all of these entries, select those allocations that meet the specified
criteria. These criteria could mean achieving some level of balance on a given
set of covariates.

Once the allocations that meet the set of constraints have been identified,
they need to be checked to see whether the possible allocations meet the re-
quirement of validity of the randomization scheme. For example, some pairs of
groups may always be in the same arm of the study, while others may never be
in the same arm. To check the allocations, make a matrix whose elements are
the number of times, from among those allocations satisifying the constraints,
each pair is together. Examine the list for signs of over- or underrepresented
pairs. If the allocations seem overly constrained, then relax one or more of the
constraining criteria. Identify the allocations that satisfy the new constraints,
and check them once again. Repeat the relaxation of the constraints until
the allowable allocations seem appropriate. Then randomly select one of the
allowable allocations. If there are too many possible allocations to enumerate,
one can construct the matrix from a large number of acceptable designs, and
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choose one of them. A SAS program is available to perform this algorithm
(Chaudhary and Moulton 2006).

13.5.3 Hypothetical dengue vaccine study

As a simple example, suppose that we are designing a dengue vaccine study in
four communities where interest is in the overall effects of vaccination. Two of
the villages will be randomized to receive vaccine and two not. This small num-
ber of communities is chosen only for illustrative purposes. Generally more
communities would be required. The expected annual incidence of dengue
in each community is correlated with the outcome of interest, thus there is
concern about the balance of the dengue incidence in the two vaccine commu-
nities and the two control communities. With four communities, there are six
possible unique allocations of vaccination and control (Table 13.8). Baseline
surveillance over the three previous years yielded estimates of average annual
incidence 3, 5, 11, 14% in the four communities. If no constraints were placed
on the randomization, then one of the six allocations would result. However, in
allocation A, the two communities with the lowest incidences receive vaccine,
and in allocation B, the two communities with the highest incidences receive
vaccine. The mean absolute difference in baseline incidence is 8%, higher than
the overall average incidence. There is a 1 in 3 chance of selecting one of these
randomizations. Alternatively, one could say that only those allocations are
acceptable that yield exact balance on the average annual incidence. In this
example, allocations C and D satisfy this constraint, though generally one
could not expect that any allocation would yield an exact balance.

However, the problem now is that in allocations C and D, the two com-
munities with incidence rates of 3% and 13% and the two communities with
5% and 11% are always together. This violates the validity principle stated
above, since for example the pair 5 and 13 do not have a chance of being ran-
domized together. In essence, each pair of communities in allocation C and
D is acting as a single community. To alleviate this problem, the constraint
could be relaxed, so that the mean difference in annual incidence is less than 3
percent. Then allocations B, C, D, and E would satisfy the contraint. Though
the communities with 3% and 5% and those with 11% and 13% could never be
together, this is the same as would happen if it were a pair-matched design,
(3% and 5%, 11% and 13%) with randomization within pairs. More details
are in Moulton (2004).

13.5.4 Constrained randomization for a stepped wedge design

One would also like to achieve balance in group-level covariates when ran-
domizing the sequence of groups converting from control to intervention in
stepped wedge design. For example, it would be undesirable for all of the low-
incidence communities to be randomized to introduce the vaccination strategy
early in the stepped wedge study. One might want to aim for a balance on
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Table 13.8. Baseline average annual dengue incidence rate (percent) over the past
three years in each of six communities to be included in the dengue vaccine trial. The
balance of the randomization is measured by the mean difference in average annual
incidence between the communities to receive vaccine and the control communities.
(adapted from Moulton (2004))

Communities

Allocation Vaccine Control Mean difference

A 3 5 11 13 −8
B 3 11 5 13 −2
C 3 13 5 11 0
D 5 11 3 13 0
E 5 13 3 11 2
F 11 13 3 5 8

group-time spent in the control and vaccination program status with respect
to the group-level covariates of interest. Moulton et al (2007) developed a
method for constrained randomization in the stepped wedge design of a study
introducing screening for tuberculosis in HIV clinics in Rio de Janeiro, where
more details are found. The general idea in designing the stepped wedge con-
strained randomization is that for each possible sequences of introduction of
the vaccination strategies, the constraints are checked to see whether they
are satisfied. If the number of groups is too large to enumerate all possible
sequences, then sequences are sampled randomly from all possible ones by ran-
dom permutations of the group labels. For each permutation, the constraints
are checked to see whether they are satisfied. Then when a large number of
acceptable sequences have been identified, one is randomly selected from it.

Moulton et al (2007) suggested the following ad hoc approach to checking
the constraints. For each jth covariate of the ith group, i = 1, . . . , N , x i j , for a
given time of entry t j , t = 1, . . . , T , let c j be a proportional covariate-specific
tolerance. The constraint can be expressed as

1
1 + c j

<

∑N
i=1; ti6=T (T − 1− (t i − 1))x i j

∑N
i=1; ti6=T (t i − 1)x i j

< (1 + c j ). (13.1)

Then the sum of the covariate values weighted by the number of time units in
the intervention status must be within c j × 100% of that for control status. A
similar approach to that described in Section 13.5.2 is followed. One tries to
avoid constraints that always pair two groups to enter simultaneously, as this
would effectively reduce them to a single randomization unit.
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13.6 Power and Number of Communities

13.6.1 General considerations

In group-randomized studies, the sample size calculation needs to take into
account that randomization is by group rather than by individual. In gen-
eral, group-randomized designs are less efficient than individually randomized
studies due to the related factors of intra-group correlation and intergroup
variability. That is, the more similar the individuals within each group are
to each other and the more different the groups are from one another, the
greater the group design effect on sample size will be. For a given sample size,
a stepped wedge design will generally be less efficient than a parallel design,
so further allowance needs to be made when planning a stepped wedge design
study.

Two different measures are used in calculating sample size for group ran-
domized studies. One is the coefficient of variation k, the standard devia-
tion/mean of the incidence rate, or other outcome measure of interest such
as proportions (attack rates) or mean of a continuous variable in the groups
in the study. Another approach uses the design effect D, or variance inflation
factor, σ. For trials with equal numbers of individuals in each community,

D = σ = 1 + (n− 1)ρ, (13.2)

where n is the number of individuals per community, ρ is the intra-cluster
correlation coefficient, and D is the factor by which the sample size needs to
be increased above that required for an individually randomized trial to make
up for randomization by cluster (Donner and Klar 1994).

We consider sample size calculations based on incidence rates, proportions
(attack rates), and means of continuous outcomes. For clarity, the following
discussion is just about rates, but could applies to proportions (attack rates)
and means as well. The sample size calculations require estimates or assump-
tions about the baseline incidence rate λ0, and an assumption of the effect of
the intervention strategy, or equivalently, the rate in the intervention group
λ1. Exactly what the λ0 and λ1 of interest are will depend on whether the
primary interest is on estimating indirect, total, or overall effects, or possibly
even direct effects. For example, if the total effect of a vaccination strategy is of
interest, then λ0 might be the incidence rate in the children receiving a control
vaccine, and λ1 the incidence rate in children receiving the vaccine of interest.
If overall effects were of interest, λ0 and λ1 could be the incidence rates in
all age-appropriate children (or all children) in the control and the vaccina-
tion intervention groups. If the indirect effects of vaccinating schoolchildren
against influenza on the incidence rates in adults were of interest, then λ0 and
λ1 could be the rates in the adults in the control and intervention groups. If
more than one effect is of interest, then sample size calculations can be made
for more than one effect.
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Hayes and Bennett (1999) provide simple formulae to determine sample
size for parallel design group-randomized studies. The next section is based
primarily on their paper, where further details, references, and examples are
available. Many group-randomized studies of vaccination strategies may re-
quire more complex computations than these. In some cases, stochastic simu-
lations of the populations with the planned intervention strategies can be used
to estimate expected effects, power, and sample sizes for the studies (Halloran,
et al 2002). Sample size requirements under randomization tests are similar
as those for model-based inference procedures (Murray 1998, page 117).

13.6.2 Sample size calculations for parallel unmatched studies

Assuming that there are equal numbers of groups in the intervention and the
control arm, let N be the number of groups in each study arm. Then the total
number of groups in the study is 2N . Let zÞ =2 and zþ be the standard normal
distribution values corresponding to upper tail probabilities of α/2 and β.
The corresponding sample size will give a power of 100(1− β)% of obtaining
a significant difference (P < α on a two-sided test), assuming that the true
population rates in the intervention and control groups are λ1 and λ0. If the
outcome is based on person-time, let y denote the person-time of follow-up in
each group. Then the number of groups required in each arm is

N = 1 + (zÞ =2 + zþ )2
(λ0 + λ1)/y + k2(λ2

0 + λ2
1)

(λ0 − λ1)2
. (13.3)

If the outcome is based on proportions (attack rates), let π0 and π1 be
the true population proportions (attack rates) in the intervention and control
groups. Let n be the number of individuals in each group. Then the number
of groups required in each arm is

N = 1 + (zÞ =2 + zþ )2
π0(1− π0)/n + π1(1− π1)/n + k2(π2

0 + π2
1)

(π0 − π1)2
. (13.4)

If the outcome is based on a continuous reponse, such as parasite density,
then the objective is to compare the mean of that variable in the vaccine
intervention and control groups. Let µ1 and µ0 be the true population means
and σ1 and σ0 be the within-group standard deviations of the outcome variable
in the intervention and control groups. Let n be the number of individuals in
each group. Then the number of groups required in each arm is

N = 1 + (zÞ =2 + zþ )2
(σ2

0 + σ2
1)/y + k2(µ2

0 + µ2
1)

(µ0 − µ1)2
. (13.5)

If one is interested in direct protective effects, these equations are analo-
gous to those for individually-randomized trials in equations 6.12, 6.13, and
6.14. The design effect associated with the group-randomization can be esti-
mated by dividing the equation in this chapter by the corresponding equation
in Chapter 8.
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13.6.3 Sample size formulae for parallel pair-matched studies

When pairs of groups are matched before randomization on the basis of fac-
tors expected to be correlated with the main study outcomes, the hope is the
matching will minimize the degree of between-group variation within matched
pairs. However, there is a trade-off between the increase in power and preci-
sion by increasing the comparability of the intervention and control groups
and the loss of power due to the reduced degrees of freedom that is well-
discussed in the literature (Martin et al 1993; Hayes et al 1995). Much has
been done on characteristics of the general size and correlation between the
endpoint of interest and matching covariates and power in cluster-randomized
trials in general (see for instance Murray 1998). Hughes (2005) more gener-
ally considers using baseline data in designing a group randomized trial to
choose between an unmatched or pair-matched design, choice of effect mea-
sure, and the power to be expected from the various strategies. Equations
13.3, 13.4, and 13.5 can be adjusted to take account of matching with two
changes. First, to adjust for the required number of degrees of freedom, add 2
instead of 1 to required number of groups in each arm (Snedecor and Cochran
1967). Secondly, the coefficient of variation k is replaced by km , the coefficient
of variation in true rates (or means or proportions) between groups within the
matched pairs prior to intervention.

13.6.4 Coefficient of variation

Since a value for the coefficient of variation is needed for the sample size
calculations, in the absence of any empirical data, an assumption about the
value must be made. In this case, one can compute power curves and examine
the number of clusters required for plausible values of k. Sometimes data may
be available from baseline surveillance studies. Alternatively, data may be
available from a pilot study conducted to check the implementation plan that
is also used to collect data to estimate the inter-group variability of the main
outcome of the trial. A subset of the groups can be selected and data on a
small fraction of the population of interest be recorded. Alternatively, data
might be available on similar groups in different areas of the country. Hayes
and Bennet (1999) provide formulae for estimating the coefficient of variation
for unmatched (k) and matched (km ) studies. Generally k will be larger than
km . The coefficient of variation is for the variation in the true rates between
groups, not the variation in the estimated rates which contains an element of
within-group random variation. The general idea is to compute the empirical
variance of the group-specific results, then substract the component of the
variance due to sampling error. Moulton et al (2007) has an example.

13.6.5 Another approach

In another approach to sample size calculation for a group randomized study,
one might compute the number of events needed under individual random-
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ization to achieve a certain power, possibly for the lower bound of a 95%
confidence interval to lie about a certain pre-determined efficacy if, in fact,
the true efficacy is some other higher efficacy. Then, to account for intra-group
correlation, multiply the number of events by the usual design effect in equa-
tion (13.2). One can possibly get an initial estimate of the overdispersion σ2

directly from some baseline data from a sample of the communities (Moulton
et al 2001).

13.6.6 Sample size for stepped wedge design

To take account of the stepped wedge design in the sample size, Moulton et
al (2007) suggest a modification to equations (13.3)–(13.5). Essentially the
standard deviates zÞ =2 and zþ used in equations (13.3)–(13.5) are multiplied
by a factor > 1 that accounts for the lower efficiency of the stepped wedge
design. In addition, if the variability between groups is large, they suggest
substituting the harmonic mean for the simple mean.

The multiplicative factor can be computed in various ways. As an example,
consider a stepped wedge design study in which the main analysis was to
compare the incidence in groups receiving the vaccination intervention to those
not yet receiving the vaccination intervention based on a conditional likelihood
as in equation (13.9). Following Moulton et al (2007), one could use a log-rank
test statistic, which is essentially the score test statistic for such a model with
one treatment covariate. One weights the hazard function within the time
unit of interest (week, month) by the log-rank to estimate the effect of the
stepped wedge design. Let T be the last time unit at which control groups
begin the intervention. Let dTi be the number of incident cases in the ith time
unit in the intervention groups and YTi be the number of persons at risk in
those groups, and d i and Y i be the cases and persons in both intervention and
control groups in the ith time unit. Then the log-rank test statistic is

Z =
∑T  1

i=1 [dTi − YTi(d i/Y i)]
{
∑T  1

i=1 (YTi/Y i) (1− (YTi/Y i)) (Y i − d i)/(Y i − 1)}1=2d i
(13.6)

The statistic (13.6) can be computed by generating data sets under two differ-
ent assumptions. First assume that the number of persons at risk in interven-
tion and control groups are equal and constant over the course of the study,
simulating a time-uniform equal allocation parallel design study, and yield-
ing Z E . Second, generate data so that the persons at risk in each month in
the intervention community increases in each time unit according to the plan
of the phased implementation to yield ZS W . In general, for such hypotheti-
cal studies, given the same sample size, incidence and effectiveness, stepped
wedge study’s test statistic will be smaller than that for a parallel study by
a factor of ZS W /Z E , where ZS W is always smaller than Z E (Moulton et al
2007). To account for a stepped wedge allocation, multiply the standard nor-
mal deviates in equation (13.3) by a factor of Z E /ZS W . Finally, one should
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vary the values of the coefficient of variation, the assumed incidence rates, and
the assumed effectiveness of the intervention to determine the range in which
one would have the desired power and Type I error, then examine whether
these conditions are feasible under the conditions of the proposed study.

13.7 Analysis

13.7.1 General considerations

The key issue in analyzing group-randomized studies is to account for the
clustering or group-randomization. The variability of the estimates is deter-
mined not only by the number of individuals in the study, but the amount of
intra- and intergroup variability. There are two general approaches to analysis
that account for potential within-cluster correlation (Donner et al 1994). One
approach is to reduce the data for each cluster to a single observation and to
perform a standard two-sample analysis. Another approach is to do the anal-
ysis at the individual level but account for correlation somehow. Correlation
within the units could be taken into account by doing a bootstrap (Efron and
Tibshirani 1993) at the level of the entire community (Halloran et al 2003;
Moulton et al 2006) (see Section 12.2.1). One could fit a random effects model
or used generalized estimating equations. Another approach is to use a robust
variance estimator (Moulton et al 2006).

The stepped wedge design trials present additional complications. Each
randomization unit spends time in both the control and intervention condi-
tions. There could be substantial secular trends in the incidence of the disease
of interest, confounding the treatment effect. Moulton et al (2006) take an
approach that compares the outcomes at any point in time across all groups,
then combines the results over time at the same time accounting for within-
cluster correlation (see below). They accomplish this by conditioning on each
time unit of the study and comparing incidences in those groups that have
not introduced the intervention with those that have. The analysis is car-
ried out by maximizing a partial likelihood function that is similar to a Cox
proportional hazards model.

13.7.2 Pneumococcal vaccine study

One approach is to use a model based on a non-homogeneous Poisson process
in time and space (Moulton et al 2006). Let λ i t be the rate of disease among
the individuals of interest in randomization unit i on day t. A simple model
for λ i t is given by

λ i t = n i t exp(αt + γz i), (13.7)

where n i t is the person-days of exposure in the ith group on the tth day, αt
represents the effect of the tth day, and γ is the log rate ratio comparing
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those in the intervention communities (z i = 1) to those in the control unit
(z i = 0). The parameter αt is a nuisance parameter that captures any day-
specific secular trends, such as seasonal or weekend effects.

If living in the intervention community (and possibly also receiving the vac-
cine) confers protection on the individuals of interest, then γ will be negative.
One can imagine a number of different comparisons, depending on whether
one is trying to estimate indirect, total, or overall effects. Moulton et al (2006)
were interested in estimating the protective indirect effects on invasive disease
for non-enrolled children under 2 years of age.

The problem with model (13.7) is that it does not allow for different lev-
els of coverage among the randomization units. One option is to group the
coverage levels or enrollment levels, and to use dummy variables in the model
that are crossed with the dummy variable for treatment arm. Moulton et al
(2006) fit the model

λ i t = n i t exp(αt + β1Mnc25  49
i t + β2Mnc50+

i t

+β3Pnc0  24
i t + β4Pnc25  49

i t + β5Pnc50+
i t ) (13.8)

where Mnc25  49
i t is the unity for the ith unit on the tth day if it is a community

randomized to MnCC vaccine, and if 25–49% of the children under age 2 on
that day have received at least one immunization, otherwise it is zero. Since
the communities were not randomized to different coverage levels, there may
be unmeasured confounders associated with the coverage levels. So then it is
of particular interest to compare across treatment arms within coverage levels.
For example, if the difference β4 − β1 is negative, then it suggests presence
of indirect effects at that level of coverage. The rate ratio comparing the two
treatment arms at above 50% coverage is given by exp(β5 − β2).

Moulton et al (2006) suggest an analytic strategy that eliminates the nui-
sance parameter αt by conditioning on each day of the study. The approach
is similar to that in a Cox regression model where each day delineates a risk
set, similar to a stratum in a case-control study. The characteristics of those
randomization units that experienced a case on that day are compared to
those that did not have any cases on that day. This is done for each day, and
then the probabilities are multiplied together to get the conditional likelihood
function:

t=T∏

t=1



n i t exp(x i tβ)/
∑

j 2 R(t)

n j t exp(x j tβ)




Žt

(13.9)

where T is the number of days in the study, δt is one if there is a case on the tth
day and zero otherwise, R(t) is the set of indices of those units at ridk on day
t, and x j t is the row vector of summy variables for the jth unit on day t, with
j = i representing the community with a case on that day. The conditional
likelihood function is maximized to get estimates of β. The computation can
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be done using software for conditional logistic regression with an offset term
of ln(n i t).

Table 13.9 contains the results of fitting the conditional logistic model wtih
linear predictor as in equation 13.8. The analysis did not yield significant
indirect effects on non-enrolled children. One can compare the units with
similar coverage levels. For example, at the coverage levels >50% , exp(β̂5 −
β̂2) = exp(1.96 − 193) = 1.03. Using the naive covariance matrix for the
parameter estimates yields a 95% Wald interval for the ratio 1.03 or (0.31,
3.45). The issue may be that the proportion of the population vaccinated was
quite small, and that carriage from older siblings could have been important.

Table 13.9. Analysis results from fitting conditional logistic models with five
dummy variables to represent six vaccine arm/percentage vaccine coverage com-
binations. Conditional maximum likelihood estimates, standard errors, and 95%
bootstrap percentile intervals. The reference category are units that received MnCC
vaccine which on a given day had less than 25% of children enrolled in the study.
The CMLEs are the log rate ratios comparing incidence in non-enrolled childrein in
the given category in the reference category (from Moulton et al (2006)).

Dummy variable Bootstrap
(arm/% Naive Bootstrap Naive percentile
coverage) CMLE SE SE CI interval

MnCC 0–24% 0∗

MnCC 25–49% 1.18 0.64 0.62 −0.08, 2.43 0.12, 2.74
MnCC 50+% 1.93 0.83 0.81 0.30, 3.56 0.46, 4.25
PCV7 0–24% 1.09 0.59 0.60 −0.06, 2.24 −0.07, 2.58
PCV7 25–49% 0.98 0.66 0.75 −0.32, 2.28 −1.05, 2.59
PCV7 50+% 1.96 0.75 0.85 0.50, 3.43 0.68, 4.37

13.7.3 Other approaches

Ali et al (2005) entered coverage level as a continuous variable in the cholera
study. In a community randomized study, one would also add a variable for
treatment arm. One could deal with a secular trend by examining rate changes
for groups and months when the treatment status is the same, then adjust for
the estimated trend. This approach might produce results that are difficult to
interpret if there is no smooth trend. The model of αt assumes that the secular
trends represented by αt are the same for all randomization units. This might
not be the case if a study such as for a meningococcal vaccine were being done
on different continents. However, then a more complex model that allowed for
some continent or geographic specific secular trends might be possible. One
might also consider a combination of matched-pair design and analysis, even
in the case of a stepped wedge design. Certain other aspects, for example,
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that immunization might not begin simultaneously in all units can be taken
into account by entering the randomization unit into the analysis on the day
of the first immunization in the unit.

13.8 Causal inference for indirect, total, and overall
effects

13.8.1 General approach

In Section 13.1.1 we informally defined direct, indirect, total and overall ef-
fects using concepts from the potential outcome approach to causal inference.
In Chapters 9 and 15 we use causal inference to define estimands of interest.
Defining causal estimands for indirect, total, and overall effects using poten-
tial outcomes is not straightforward. The approach assumes that individuals
could potentially receive each of the treatments under study and that each of
those treatments could be enumerated. Generally the assumption is made that
the outcome in one individual is independent of the treatment assignment in
the other individuals in the study population. This is called the assumption
of no interference (Cox 1958) and is an essential aspect of the stable unit
treatment value assumption (SUTVA) (Rubin 1978). Under the assumption
of no interference, if there are two treatments, such as vaccine and control,
then a person has two potential outcomes, one for each treatment.

The general approach in causal inference using potential outcomes is to
define causal estimands and the conditions under which they can be identified
from the data. One has a population of individuals. The individual causal
effect can be defined, but it is not identifiable. An average causal effect es-
timand for the population is defined that is also not identifiable. Under the
assumption of no interference and a posited assignment mechanism, such as
randomization of individuals to either treatment, then the average causal ef-
fect in the population is estimable from the observed outcomes.

In the dependent happenings in infectious diseases, the assumption of no
interference does not hold and indeed is the source of the indirect, total, and
overall effects of interest in this chapter. The vaccine status of other individ-
uals in the population can affect the potential outcomes of an individual, so
a person can have many more than two potential outcomes, depending on
the vaccine assignment to the other individuals. Rubin (1990) suggested a
general notation in which the potential outcome of a person was defined as
a function of the vector of treatment assignment to the person of interest as
well as the treatment assignments to other individuals in the population. Let
Z = (Z1, . . . , Zn ) be the vector of treatment assignments in the population
of size n, where Z = 1 denotes vaccine and Z = 0 denotes control. Then
the potential outcome of individual i if the population receives treatment as-
signment Z is denoted by Y i(Z). Halloran and Struchiner (1995) defined the
individual direct causal effect of being vaccinated compared with not being
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vaccinated in an individual i when the rest of the population j $= i receives
treatment assignment Z j 6= i as

Y i(Z j 6= i , Z i = 1)− Y i(Z j 6= i , Z i = 0). (13.10)

The direct causal effect is a family of values that depends on the treatment
assignment vector Z in the population.

To define the indirect, total, and overall effects of one vaccination strategy
compared with another, one needs to consider a second strategy, denoted Z 0.
They define the individual indirect causal effect of intervention program Z
compared with Z 0 as

Y i(Z j 6= i , Z i = 0)− Y i(Z 0
j 6= i , Z i = 0), (13.11)

where now the individual of interest has not received the vaccine under either
intervention programs. Halloran and Struchiner (1995) defined the individual
total and overall causal effects analogously. However, they found problems
with taking the usual approach in causal inference to average over the po-
tential outcomes to arrive at causal estimands of direct, indirect, total, and
overall effects.

Hudgens and Halloran (2008) defined causal estimands of direct, indirect,
total, and overall effects in the presence of interference by positing a popu-
lation of groups, blocks or clusters composed of individuals with interference
within the groups but not between the groups as in the study designs described
in this chapter. Taking as their point of departure the individual causal effects
proposed by Halloran and Struchiner (1995), Hudgens and Halloran (2008)
define average individual, group, and population outcomes over all possible
treatment assignments for a particular allocation strategy or strategies of in-
terest within and across groups (Sobel 2006). They define causal estimands
of the direct, indirect, overall and total effects that are also averages within
the groups and across the population of groups. By specifying an assignment
mechanism at two levels, that is randomization of groups to allocation strate-
gies, and then randomization of individuals within groups to treatment by the
allocation strategy assigned to the group, the average causal direct, indirect,
total and overall effects are estimable from the observed outcomes.

The development of the causal estimands is not specific to infectious dis-
eases, and the causal effects are defined based on differences, not relative risks
as efficacy measures. For example, consider the data from Ali et al (2005) in
Table 13.5. Suppose that the groups with > 51% and < 28% coverage are
thought of as groups A and B. Effects of vaccination can be estimated based
on differences in the incidence of cholera during the first year of follow-up of
the trial. The direct effects are estimated by comparing the incidence (risk
per 1000 population) between vaccinated individuals and unvaccinated indi-
viduals within each group. For example, the estimated direct effect in group
B is 7.01 − 2.66 = 4.35, suggesting vaccination results in 4.35 fewer cases of
cholera per 1000 individuals per year. The estimated direct effect in group
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A is 1.47 − 1.27 = 0.20, considerably lower than in group B. The estimated
indirect effect in the unvaccinated (B−A) is 7.01−1.47 = 5.54. The estimated
total effect (B−A) is 7.01− 1.27 = 5.74. Note the total effect (B−A) estimate
equals the direct effect estimate in group A plus the indirect effect estimate in
the unvaccinated (B−A). The overall effect can be estimated by the difference
in incidence between the two groups, i.e., 35/8479− 25/18, 623 = 2.79/1000.

The approach proposed by Hudgens and Halloran (2008) is a group-
randomized study. A one-to-one mapping of the causal estimands of direct,
indirect, total, and overall effects of Hudgens and Halloran (2008) to the group
randomized studies presented in this chapter is the subject of future research.
The next and final section of this chapter contains a brief summary of the
formal approach in Hudgens and Halloran (2008).

13.8.2 Formalization

Suppose there are N > 1 groups of individuals. For i = 1, . . . , N , let n i denote
the number of individuals in group i and let Z i ≡ (Z i1, . . . , Z i ni) denote the
treatments those n i individuals receive. Assume Z i j is a dichotomous random
variable having values 0 or 1 such that Z i can take on 2ni possible values. Let
Z i( j ) denote the n i −1 subvector of Z i with the j t h entry deleted. The vector
Z i will be referred to as an intervention or treatment program, to distinguish it
from the individual treatment Z i j . Let z i and z i j denote possible values of Z i
and Z i j . Define R j to be the set of vectors of possible treatment programs of
length j, for j = 1, 2, . . .; e.g., R2 ≡ {(0, 0), (0, 1), (1, 0), (1, 1)}. Possible values
z i of Z i are elements of Rni . For positive integer n and k ∈ {0, . . . , n}, define
Rn

k to be the subset of Rn wherein exactly k individuals receive treatment 1.
E.g.,

∑ni

j =1 z i j = k for all z i ∈ Rni
k .

Denote the potential outcome of individual j in group i under treatment
z i as Y i j (z i). The notation Y i j (z i) allows for the possibility that the poten-
tial outcome for individual j may depend on another individual’s treatment
assignment in group i, but the potential outcomes for individuals in group i
do not depend on treatment assignments of individuals in group i0 for i0 $= i.

Treatment Assignment Mechanisms

Let ψ and φ denote parameterizations which govern the distribution of Z i for
i = 1, . . . , N . For example, ψ might correspond to randomly assigning half of
individuals in a group to treatment 1 and the other half to treatment 0, while
φ might correspond to assigning all individuals in a group to treatment 0.
The goal is to assess the causal effects of assigning groups to to the individual
treatment assignment strategy ψ compared to φ.

The experimental design is a two-stage randomization procedure. In the
first stage, each of the N groups is randomly assigned to either φ or ψ. In
the second stage, individuals are randomly assigned treatment conditional on
their group’s assignment in the first stage. For example, in the first stage half
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of the N groups might be assigned to an allocation strategy φ and the other
half ψ; in the second stage, 2/3 of the individuals within a group are randomly
assigned treatment 1 for groups assigned φ, while 1/3 of the individuals within
a group are randomly assigned treatment 1 for groups assigned ψ.

Corresponding to the first stage of randomization, let S ≡ (S1, . . . , SN )
denote the group assignments with S i = 1 if the it h group is assigned to ψ and
0 otherwise. Let ν denote the parameterization that governs the distribution
of S and let C ≡

∑
i S i denote the number of groups assigned ψ.

Average potential outcomes

Similar to Halloran and Struchiner (1995), Hudgens and Halloran (2008) begin
by writing the potential outcomes for individual j in group i under z i j = z as

Y i j (z i( j ), z i j = z), (13.12)

for z = 0, 1. They then proceed to define the individual average potential
outcome under treatment assignment z by

Y i j (z;ψ) ≡
∑

ω 2 R ni−1

Y i j (z i( j ) = ω, z i j = z)Pr  (Z i( j ) = ω|Z i j = z).

In other words, the individual average potential outcome is the conditional
expectation of Y i j (Z i) given Z i j = z under assignment strategy ψ. Averaging
over individuals, they define the group average potential outcome under treat-
ment assignment z as Y i(z;ψ) ≡

∑ni

j =1 Y i j (z;ψ)/n i . Finally, averaging over
groups, they define the population average potential outcome under treatment
assignment z as Y (z;ψ) ≡

∑N
i=1 Y i(z;ψ)/N.

They define the marginal individual average potential outcome by Y i j (ψ) ≡∑
z 2 R ni Y i j (z) Pr  (Z i = z), i.e., the average potential outcome for in-

dividual j in group i when group i is assigned ψ. Similarly, they define
the marginal group and population average potential outcomes by Y i(ψ) ≡∑ni

j =1 Y i j (ψ)/n i and Y (ψ) ≡
∑N

i=1 Y i(ψ)/N.

Causal estimands

Formally, following Halloran and Struchiner (1995) as in expression (13.11),
Hudgens and Halloran (2008) define the individual direct causal effect of treat-
ment 0 compared to treatment 1 for individual j in group i by

CE D
i j (z i( j )) ≡ Y i j (z i( j ), z i j = 0)− Y i j (z i( j ), z i j = 1). (13.13)

The causal estimands are then defined in terms of these various average
potential outcomes. Hudgens and Halloran (2008) next define the individual
average direct causal effect for individual j in group i by by
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CE
D
i j (ψ) ≡ Y i j (0;ψ)− Y i j (1;ψ), (13.14)

i.e., the difference in individual average potential outcomes when z i j = 0 and
when z i j = 1 under ψ. Finally, define the group average direct causal effect by
CE

D
i (ψ) ≡ Y i(0;ψ)− Y i(1;ψ) =

∑ni

j =1 CE
D
i j (ψ)/n i and the population aver-

age direct causal effect by CE
D (ψ) ≡ Y (0;ψ)− Y (1;ψ) =

∑N
i=1 CE

D
i (ψ)/N.

Similar to expression (13.11), Hudgens and Halloran (2008) define the
individual indirect causal effect of treatment program z i compared with z0

i on
individual j in group i by

CE I
i j (z i( j ),z

0
i( j )) ≡ Y i(z i( j ), z i j = 0)− Y i(z0

i( j ), z
0
i j = 0), (13.15)

where z0
i is another n i dimensional vector of individual treatment assignments.

(Note z0
i does not denote the transpose of z i).

Similar to direct effects, they define the individual average indirect causal
effect by CE

I
i j (φ, ψ) ≡ Y i j (0;φ)−Y i j (0;ψ). Clearly if ψ = φ, then CE

I
i j (φ, ψ) =

0, i.e., there are no individual average indirect causal effects. Finally, they
define the group average indirect causal effect as CE

I
i (φ, ψ) ≡ Y i(0;φ) −

Y i(0;ψ) =
∑ni

j =1 CE
I
i j (φ, ψ)/n i and the population average indirect causal

effect as CE
I (φ, ψ) ≡ Y (0;φ)− Y (0;ψ) =

∑N
i=1 CE

I
i (φ, ψ)/N.

Define the individual total causal effects for individual j in group i as

CE T
i j (z i( j ),z

0
i( j )) ≡ Y i j (z i( j ), z i j = 0)− Y i j (z0

i( j ), z
0
i j = 1). (13.16)

Then define the individual average, group average, and population average
total causal effect similar to the indirect causal estimands.

Hudgens and Halloran (2008) define the individual overall causal effect
of treatment z i compared to treatment z0

i for individual j in group i by
CE O

i j (z i ,z0
i) ≡ Y i j (z i)−Y i j (z0

i). Similarly, for the comparison of φ to ψ, define

the individual average overall causal effect by CE
O
i j (φ, ψ) ≡ Y i j (φ)− Y i j (ψ),

the group average overall causal effect by CE
O
i (φ, ψ) ≡ Y i(φ) − Y i(ψ) and

the population average overall causal effect by CE
O (φ, ψ) ≡ Y (φ)− Y (ψ).

Estimation and inference

Assuming the randomized assignment strategies at both levels of randomiza-
tion in which the number of groups randomized to a strategy is fixed, and the
number of individuals within each group randomized to received treatment is
fixed, Hudgens and Halloran (2008) show that the observed data yield unbi-
ased estimators of the causal estimands. Suppose S i = 1. They show that

Ŷ i(z;ψ) ≡
∑ni

j =1 Y i j (Z i)I[Z i j = z]
∑ni

j =1 I[Z i j = z]
for z = 0, 1, (13.17)
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i.e., Ŷ i(z;ψ) is the average of observed outcomes for individuals in group i
receiving treatment z under treatment program Z i is an unbiased estimator
of Y i(z;ψ) Also, ĈE

D
i (ψ) ≡ Ŷ i(0;ψ) − Ŷ i(1;ψ) is a conditionally unbiased

estimator of CE
D
i (ψ) given S i = 1. Finally, they show that or z = 0, 1, let

Ŷ (z;ψ) ≡
∑N

i=1 Ŷ i(z;ψ)I[S i = 1]/
∑N

i=1 I[S i = 1]. is an unbiased estimator of
Y (z;ψ) for z = 0, 1. Thus, unbiased estimators for the population average
direct, indirect, and total causal effects are given by ĈE

D
(ψ) ≡ Ŷ (0;ψ) −

Ŷ (1;ψ), ĈE
I
(φ, ψ) ≡ Ŷ (0;φ)− Ŷ (0;ψ), and ĈE

T
(φ, ψ) ≡ Ŷ (0;φ)− Ŷ (1;ψ)

where Ŷ (z;φ) is defined analogously to Ŷ (z;ψ) for z = 0, 1.
Let Ŷ i(ψ) ≡

∑ni

j =1 Y i j (Z i)/n i and Ŷ (ψ) ≡
∑N

i=1 Ŷ i(ψ)I[S i = 1]/
∑N

i=1 I[S i = 1].
Hudgens and Halloran (2008) show that the unbiased estimator of the over-
all effect causal estimand CE

O (φ, ψ) is given by ĈE
O
(φ, ψ) ≡ Ŷ (φ) − Ŷ (ψ)

where Ŷ (φ) is defined analogously to Ŷ (ψ).
With a further assumption of stratified interference, that is, that the poten-

tial outcomes depend on the number within a group that receives a treatment,
but not exactly which ones, they derive variance estimators.

Problems

13.1. Constrained randomization
(a) Consider designing a community-randomized trial of a cholera vaccine in
six communities. The average annual incidence of cholera in the six commu-
nities is 1, 3, 4, 9, 10, 12%. How many different allocations of the vaccine and
control are there for a pair-matched design? For a completely randomized (at
the group level) design?
(b) What would be a reasonable constraint to ensure a fairly balanced allo-
cation under complete randomization?

13.2. Overall effectiveness in Alaska of PCV7
(a) serotypes age 2–4 years in Alaska Natives and non-Natives
(b) The second part of the problem is described here.

13.3. Computing sample size in stepped wedge design
(a) Assume Z E ZS W = 1.2 Suppose one wants to have power of 80% and Type
I error of 5% in a study. What values of z-score does one need to use in does
one need to use in expression 13.3
(b) By what factor would the sample size in expression 13.3 be multiplied?
(see Moulton et al 2007, p 195)
(c) Suppose one decided to change the entry of groups into the intervention
arm at every three months instead of every two months. What would be the
approximate increase in effective sample size barring any substantial secular
trends?


