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Overview of Vaccine Effects and Study Designs

2.1 Introduction

In this chapter, we present a systematic framework about the relation among
many of the different types of vaccination effects and the parameters and study
designs used to estimate them. This framework helps to structure thinking
about the different vaccine effects of interest. We present different versions of
vaccine efficacy and effectiveness as one minus some measure of relative risk,
RR:

V E = 1−RR . (2.1)

We focus on the relation between the vaccine effects of interest and their re-
lation to the choice of comparison groups, the unit of observation, the choice
of parameter, and the amount of information about the transmission system
required for estimation. Although it is not exhaustive, many designs not con-
sidered explicitly in this overview are special cases of these general designs
aimed at evaluating the vaccine effects presented here. Our primary concern
in this chapter is conceptual. More complex methods of estimation and infer-
ence are left to following chapters.

2.2 Vaccine effects of interest

Table 2.1 lists several different vaccine effects of interest. The primary ef-
fect of interest of vaccination has historically been how well it protects the
vaccinated individual. VES , the vaccine efficacy for susceptibility, is a mea-
sure of how protective vaccination is against infection. With many infectious
agents, particularly those with short incubation periods, such as influenza or
pertussis, ascertainment is often by observing diseased individuals, who then
might have a biological test done to confirm the infection of interest. In this
case, asymptomatic infections would not be ascertained. VESD denotes vac-
cine efficacy against disease. However, many times, both in this book and the
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Table 2.1. Vaccine Effects of Interest

Symbol Definition

VES vaccine efficacy for susceptibility
VESP vaccine efficacy for susceptibility to disease
VEcol vaccine efficacy for colonization
VEP vaccine efficacy for progression, pathogenicity
VEI vaccine efficacy for infectiousness
VET total vaccine efficacy
VEIIa indirect effects of vaccination in those not vaccinated
VEIIb total effects of vaccination in those vaccinated
VEIII overall population-level effects

literature in general, the distinction between the two is made clear simply
by the case definition used in the study and the ascertainment method. The
general representation is VES . Whether infection or disease is the outcome
of interest, nonlinearities on the pathway from infection to manifest disease
could mean that the efficacy as measured by the observed outcome would be
quite different from the biologic efficacy if it could be measured along the
pathway (Struchiner et al 1994).

VEcol measures the efficacy against colonization (Auranen et al 2000).
Many infectious agents, such as pneumococcal and meningococcal bacteria,
colonize the nose and throat passages without causing overt disease. Colonized
individuals may themselves not be ill, but can, however, play an important
role in transmission. They can transmit to other susceptible individuals who
in their turn develop severe disease (Auranen et al 2000). Recent interest
is growing in evaluating the effect of vaccination on colonization. It is an
aim of one of the Gates’ Grand Challenge Grants (See www.pneumocarr.org
in Finland.) Pneumococcal carriages acquisition rates can also be estimated
conditional on exposure to infection or unconditionally.

VEP , vaccine efficacy for progression or pathogenicity, measures the ef-
ficacy of vaccination in preventing a post-infection outcome. Depending on
the situation, the measure of interest can be the effect of prophylactic vac-
cination on the rate or probability of progressing to disease, conditional on
being infected. If ascertainment is on disease, VEP could be a measure of
the effect of vaccination on the probability of severe disease. VEP could also
measure the reduction in duration of being infected, such as in pneumococcal
colonization. Although VES , VESD, and VEP are all measures of the direct
protective effects of vaccination, there is an important difference. The main
distinction between VES or VESD and VEP is that studies to estimate VES

evaluate susceptibles and the exposure to infection needs to be taken into
account. Studies to estimate VEP are conditional on the participants already
being infected, so the progression within infected individuals is important.
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A vaccinated person who nonetheless becomes infected may also be less
infectious to other susceptibles or be infectious for a shorter period of time.
The vaccine efficacy for infectiousness, VEI , measures the reduction in the
ability of a vaccinated infected person compared to an unvaccinated infected
person to transmit the infectious agent to others. The combined effect of hav-
ing both individuals in a contact being vaccinated compared to neither being
vaccinated is denoted by VET . Both VEI and VET are of interest because a
vaccine that reduces infectiousness could have important public health conse-
quences (Halloran et al 1994; Farrington 2003).

Widespread vaccination can have indirect effects for unvaccinated people
as well as for vaccinated people. The indirect effects are due to the change
in collective level of immunity in the population, or herd immunity, due to
vaccination. Differentiation of the population-level effects in the unvaccinated
and vaccinated groups is important because they might not be the same. The
former is called indirect effectiveness, the latter total effectiveness (Table 2.2,
middle, columns 4 and 5). The overall effectiveness of a vaccination strategy
or allocation within a particular population is the weighted average of the
outcomes in the vaccinated and the unvaccinated people (Table 2.2, middle,
column 6).

To evaluate the direct protective effects of vaccination, VES and VEP ,
usually the individual is the unit of observation. To evaluate VEI , generally
small transmission units, such as households or partnerships in which con-
tacts can be defined, are needed (Fine et al 1988, Preziosi and Halloran 2003,
Halloran et al 2003). This type of study in small transmission units can also
be used to evaluate VES . To evaluate the population level effects, the unit of
observation becomes the population, so that several populations need to be
included in the study. Table 2.2 provides an overview of several different types
of effects and the parameters used to estimate the effects.

2.3 Vaccine efficacy for susceptibility, VES (VESP)

We first consider study designs for estimating the protective effects of vac-
cination, VES (VESD). In Table 2.2, these are represented in the column
labeled “susceptibility”. The estimates of VES are obtained from the relative
risk of infection or disease in the vaccinated individuals compared with the
unvaccinated individuals:

VES = 1− R(vaccinated people)
R(unvaccinated people)

,

where R denotes one of the measures of risk. The measure of risk can be a form
of the transmission probability, which conditions on exposure to infection, or
the incidence rate, hazard rate, or cumulative incidence (attack rate), which
do not condition on exposure to infection.
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2.3.1 VES conditional on knowledge of exposure to infection

The top row of Table 2.2 contains measures of VE that rely on information
about exposure to infection and contacts between infectious individuals and
susceptible individuals. The first is a measure of VES based on the trans-
mission probability, VES,p. Let the transmission probability, denoted pij , be
the probability that, conditional upon a contact between an infective source
with covariate status i and a susceptible host with covariate status j, suc-
cessful transfer and establishment of the infectious agent will occur. A related
concept is the secondary attack rate, (SARij), defined as the proportion of
susceptibles with covariate status j making contact with an infectious person
of covariate status i who become infected.

Let 0 and 1 denote being unvaccinated and vaccinated. Then, for example,
p01 denotes the transmission probability per contact from an unvaccinated
infective person to a vaccinated uninfected person. Let p.0 and p.1 denote the
transmission probability to unvaccinated and vaccinated susceptibles, where
the dot in the subscript can denote any vaccine status or an average across
the population.

Then VES,p based on the transmission probability or secondary attack
rate (Table 2.2, top row) is estimated from

V ES,p = 1− p.1

p.0
= 1− SAR.1

SAR.0
= 1−

vaccinated infections
vaccinated contacts

unvaccinated infections
unvaccinated contacts

.

Estimating vaccine efficacy from the transmission probability ratios requires
information on who is infectious and when, and whom they contact and how.
The concept of a contact is very broad and must be defined in each particular
study. Often it is defined within a small transmission unit such as a household
or sexual partnership.

There are two main ways to design a study to estimate the relative trans-
mission probabilities. The first method, called the secondary attack rate (Fox
et al 1970; Fine et al 1988), or case-contact rate method, has been used since
the pertussis vaccine trials in 1930’s (Kendrick and Eldering 1939) to estimate
vaccine efficacy. Another method of estimating the transmission probability
is based on the Bernoulli model. In this case, we observe susceptible people,
count the number of contacts they make with infectives, and count the number
of these susceptible people who become infected, and use a transmission model
to estimate the transmission probability and related covariate effects. These
approaches are presented in more detail in Chapters 10 through Chapters 12.
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2.3.2 VES not conditional on knowledge of exposure to infection

Information on exposure to infection is often difficult or impossible to col-
lect. More commonly, studies are designed to estimate VES from events per
person-time of potential rather than actual exposure or simply from the pro-
portion of people who become infected in the vaccinated compared to the
unvaccinated groups. Standard parameters for estimating VES that do not
require exposure to infection information are incidence rates, hazard rates, or
cumulative incidence (attack rate).

Greenwood and Yule (1915) gave three conditions necessary for valid in-
ference:

1. The persons must be, in all material respects, alike.
2. The effective exposure to the disease must be identical in the case of

inoculated and uninoculated persons.
3. The criteria of the fact of inoculation and of the fact of the disease having

occurred must be independent.

If the vaccinated and unvaccinated groups are equally exposed to infection,
any differences in the risk in the two groups is likely due to the biological effects
of the vaccine. These days, these criteria would be considered conditions to
prevent confounding. Double-masked randomized trials are designed to ensure
that these criteria are met.

Primary vaccine efficacy studies often report VES,IR based on relative
events per person time, or level II information,

VES,IR = 1− vaccinated events/person-time
unvaccinated events/person-time

. (2.2)

The usual assumption is that the numbers of events follow a Poisson distribu-
tion. Similarly, investigators may estimate the hazard rates in the vaccinated
and unvaccinated, λ1(t) and λ0(t), using survival analysis methods. Then the
VES is based on the hazard rate ratio

VES,λ(t) = 1− λ1(t)
λ0(t)

. (2.3)

When covariates such as age and gender are added, the analyses are stratified
by the covariates or Poisson regression can be used. Under the assumption
that the effect of the vaccine is multiplicative, constant, and homogeneous,
the Cox proportional hazards model can be used to estimate VES,PH . In
this case, it is not necessary to estimate the hazard rate in the unvaccinated
group, but only the relative hazard rate. This requires only the ordering of the
infection times. Covariates, including time-dependent covariates, can easily be
incorporated using standard software.

An early example of estimating VES,IR, the study by Kendrick and Elder-
ing (1939) of pertussis vaccine reported the number of cases per person-time
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(Figure 1.2). The vaccinated and control groups had 1,815 and 2,397 children,
respectively, who contributed 2,268 and 2,307 person-years at risk. There were
52 cases in the vaccinated and 348 cases in the control group, so

V̂ES,IR = 1−
52 cases

2268 person-years
348 cases

2307 person-years
= 0.85 (2.4)

More recently, Urdaneta et al. (1998) present estimates of VES,IR as the
result of a randomized, placebo controlled field trial of Spf66 malaria vaccine
in Costa Marques, Rondonia, Brazil. A total of 572 participants completed
the 3 dose vaccine schedule and were followed up for 18 months. The 287
vaccinated individuals contributed a total of 12,178 person-weeks at risk, and
76 first P. falciparum malaria episodes were observed among them. In the
placebo group, 285 individuals contributed 11,698 person-weeks at risk and
85 cases leading to an estimate of V̂ES,IR = 0.14.

In some studies, it is possible to compute both a conditional and an un-
conditional estimate of vaccine efficacy from a single study. The Kendrick and
Eldering (1939) study on pertussis vaccine also had information on children
who had been exposed to pertussis within their own households (Figure 1.3).
In the vaccinated group, 29 of 83 exposed children developed pertussis, while
143 of 160 exposed children in the unvaccinated group developed pertussis.
Thus, the estimate of VES,p is

V̂ES,p = 1− 29 cases/83 vac exposed
143 cases/160 unvac exposed

= 0.61 . (2.5)

While everyone is included in the estimate of VES,IR, only the children with
(presumed) exposure to infection are included in the VES,p estimate. The
interpretations of the two estimates are also different, since one measures
the protection conferred as measured by infections per person time and the
other by the probability of an infection per potentially infectious contact. (See
Section 10.2.2.)

Estimation of VES,CI(T ) based on the cumulative incidence requires only
information about whether persons are infected or not by the end of the study
at time T , that is, final value data:

V ES,CI(T ) = 1− vaccinated infection events/persons–at–risk
unvaccinated infection events/persons–at–risk

= 1− CI1(T )
CI0(T )

. (2.6)

As an example, Greenwood and Yule (1915) used the cumulative incidence
in studying the efficacy of anti-typhoid inoculation in the troops in the early
part of the twentieth century (Figure 1.1). In one analysis, Greenwood and
Yule assumed that the denominators were based on the vaccinated and unvac-
cinated groups at the beginning of the study. They had 56 cases of typhoid in
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10,378 vaccinated soldiers, and 272 cases in 8,936 unvaccinated soldiers. The
estimated efficacy based on these numbers is

V̂ES,CI(T ) = 1− 56 cases/10, 378 at-risk
272 cases/8, 936 at-risk

= 0.82 . (2.7)

A more recent example is from a double-blinded randomized trial of live-
attenuated influenza vaccine compared with inactivated influenza vaccine in
children (Belshe et al 2007). In this trial, of the 3,936 children who received
inactivated vaccine, 338 developed culture-confirmed cases of influenza. Of
the 3,912 children who received live-attenuated vaccine, 153 cases developed.
Based on these numbers, V̂ES,CI(T ) = 1− 153/3,912

338/3,936 = 0.54 This is called the
relative efficacy of two vaccines, rather than the absolute efficacy.

Which parameter to use to estimate VES in a particular study depends on
the type and duration of the study, the infectious agent and its transmission
mode, the resources available, and the assumptions of the distribution of pro-
tection within the vaccinated group. Chapter 6 considers estimation of VES

from the unconditional parameters in detail.

2.4 Hierarchy of VES measures

Estimation of the different VES parameters requires differing levels of informa-
tion and makes different demands on study design and data collection (Rhodes
et al 1996). Incidence rates or hazard rates require the time to event and the
period of potential exposure of each person under study. The hazard rate in
infectious diseases is often called the force of infection. A Cox proportional
hazards model requires only the ordering of the event times. An estimate of
cumulative incidence requires only final value data, that is, whether an infec-
tion occurred by the end of the study or not. Correspondingly, in Table 2.2,
VES,IR based on incidence rates and VES,λ are level II parameters, VES,PH

based on Cox proportional hazards is level III, and VES,CI based on cumula-
tive incidence or final value data is level IV. The levels form a hierarchy, with
higher levels requiring less information about the transmission system, with
only level I requiring actual contact information. Since VES,p based on the
transmission probability is defined conditional on exposure to infection, it is
called a conditional parameter, while the other measures are called uncondi-
tional parameters.

Because of the dependent happening structure of events in infectious dis-
eases, there is an intrinsic relation among the different parameters on which
the VES estimators are based. Understanding this relation helps to see the
relation of the different estimators of VES to one another. Figure 2.1 (to
be redone) illustrates the dependent happening relation of the hierarchy of
parameters to one another. Section 2.9 develops the relation formally.

Let pij be the transmission probability as defined above. Let c denote the
contact rate in a population assuming that people are randomly mixing, and
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Fig. 2.1. Hierarchy of VES parameters showing the dependent happening relation
among them.

let P (t) denote the prevalence of infectives at time t. Then the hazard rate
λ(t) (or incidence rate or force of infection) at time t can be expressed as the
product of the contact rate, the transmission probability, and the probability
that a contact is infectious:

λ(t) = cpijP (t). (2.8)

So even if the different components of the hazard rate are not measured, we can
consider the underlying process that is producing the infections we observe.
Similarly, the cumulative incidence, CI(T ), at some time T is a function
of the hazard rate during the follow-up period, and thus also a function of
the transmission probability, contact rate, and prevalence of infection in the
contacts. Even though the cumulative incidence estimate is a sort of black-
box estimator, it is useful in vaccine studies to think about the underlying
transmission system that would produce the observed final values.

The following quote from Joseph Heller’s Catch-22 (page 8) gives a flavor
of how the information about the transmission system disappears as we move
from level I to level IV through the hierarchy.

All the officer patients in the ward were forced to censor letters written
by all the enlisted-men patients, who were kept in residence in wards of
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their own. It was a monotonous job, and Yossarian was disappointed to
learn that the lives of enlisted men were only slightly more interesting
than the lives of officers. After the first day he had no curiosity at all.
To break the monotony he invented games. Death to all modifiers, he
declared one day, and out of every letter that passed through his hands
went every adverb and every adjective. The next day he made war on
articles. He reached a much higher plane of creativity the following day
when he blacked out everything in the letters but a, an and the. That
erected more dynamic intralinear tensions, he felt, and in just about
every case left a message far more universal. Soon he was proscribing
parts of salutations and signatures and leaving the text untouched.
One time he blacked out all but the salutation ”Dear Mary” from a
letter, and at the bottom he wrote, ”I yearn for you tragically. A.
T. Tappman, Chaplain, U.S. Army.” A. T. Tappman was the group
chaplain’s name.

2.5 Vaccine efficacy for infectiousness, VEI

The efficacy of a vaccine in reducing infectiousness, VEI , can be estimated
epidemiologically by comparing the per-contact transmission probability from
vaccinated people who become infected with the transmission probability from
unvaccinated people who become infected. The relative risk comparison groups
are defined according to the vaccination status of the infectious person con-
tacting the susceptible person (Halloran and Struchiner 1995). In Table 2.2,
the VEI estimator is shown in the second column of the top row of conditional
parameters. The third column contains the estimate of combined effect of the
vaccine in reducing the transmission probability if both the infectious person
and the susceptible person in the contact are vaccinated, (VET ). In contrast
to VES , which can be estimated using either conditional or unconditional
parameters, the VEI and VET can generally be estimated using only condi-
tional measures such as the transmission probability or secondary attack rate
(Koopman and Little 1995; Longini et al 1996; Préziosi and Halloran 2003;
Halloran et al 2003).

Studies for estimating VEI can be incorporated into those for estimating
VES,p based on the transmission probability, if the vaccination status of the
infectious person in a contact is known. The analysis can then simply strat-
ify on the vaccination status of both the infectious and susceptible persons
in the contact to get estimates of VES , VEI , and VET . In the case of the
binomial model, the likelihood can simply be constructed from the different
contributions of each contact, where the parameters for relative susceptibility
and for relative infectiousness are built directly into the likelihood (Longini
et al 1996; Hudgens et al 2001).

In general, there are at least seven measures potentially of interest. Con-
sidering the estimates of VE based on the relative secondary attack rates,
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there are three main unstratified vaccine effects:

V ES.1/.0 = 1− SAR.1

SAR.0
, V EI1./0. = 1− SAR1.

SAR0.
,

V ET = 1− SAR11

SAR00
. (2.9)

If one stratifies on the vaccine status of the infective person or the susceptible
person, then there are four further stratified measures of VES and VEI :

V ES01/00 = 1− SAR01

SAR00
, V ES11/10 = 1− SAR11

SAR10
,

V EI10/00 = 1− SAR10

SAR00
, V EI11/01 = 1− SAR11

SAR01
. (2.10)

Chapters 10 through 12 consider estimation of the conditional parameters
based on transmission probabilities and SARs from studies in households and
other small transmission units in detail.

2.5.1 Estimating multiple levels of parameters

Statistical models have been developed to express both the within household
transmission probability and the unconditional probability of being infected
from the community at large (Longini et al 1982; Hudgens et al 2001; O’Neill
et al 2000; Becker et al 2003). In some vaccine studies, there may be infor-
mation on contacts within transmission units such as households or sexual
partnerships, but the individuals may also be exposed to infection outside of
the transmission unit. It may also be that some individuals in a study are not
members of clearly defined transmission units. These models are considered
in detail in Chapters 10 through 12.

2.6 Vaccine efficacy for progression or pathogenesis, VEP

ADD HERE THE relation of VESP , VES and VEP . Include the importance
for distinguishing for natural history and for use in simulations.

Evaluation of the effect of prophylactic vaccination on an outcome that
occurs after infection, VEP , requires comparison of morbidity or mortality
in infected vaccinated people with that in infected unvaccinated people. The
interest could be in the effect of vaccine on the probability of developing dis-
ease if infected, that is the pathogenesis. The interest could be on effect on
the time from infection to develop of disease, that is, the rate of progression.
The interest could be in the effect of vaccination on reducing the severity
of disease or probability of death in symptomatic cases. If VEP is based on
relative morbidity, then appropriate definitions of morbidity levels would be
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Fig. 2.2. VEP : Death versus Recovery in Smallpox: Greenwood and Yule 1915

necessary. Similar to the VES measures discussed above, VEP would be es-
timated by one minus the corresponding ratio in the vaccinated compared
to the unvaccinated, including in the calculation only those people who had
become infected.

Greenwood and Yule (1915) presented data from Pearson on the effect
of smallpox vaccination to prevent death by comparing the number of cases
recovering to those dying of smallpox (Figure 2.2).

V̂EP = 1−
no. severe vaccinated cases

all vaccinated cases
no. severe unvaccinated cases

all unvaccinated cases
(2.11)

= 1−
42

1,604
94
477

= 0.87

Considerable recent research has been devoted to estimating the effects of
vaccination on post-infection outcomes (Préziosi and Halloran 2003), partic-
ularly on understanding potential selection bias (Gilbert et al 2003; Hudgens
et al 2003; Hudgens and Halloran 2006, Jemiai et al 2007).

2.7 Contact Rates and Exposure Efficacy

Vaccinated people may alter their contact and exposure to infection patterns
if they believe the vaccine is protective. Exposure or behavior efficacy is the
relative increase or decrease in the relative risk of infection or disease due
to the change in exposure to the infectious agent (Halloran et al 1994). For
example, if we consider the components of the hazard rate as discussed above,
changes in exposure to the infectious agent can occur in the rate of contacts,
in the prevalence of infection in the contact groups, or in the transmission
probability through changing the type of contact. In nonrandomized or obser-
vational studies, the vaccinated and unvaccinated groups often differ in their
exposure to infection, resulting in biased estimates of VES . Although VES es-
timates based on the transmission probability require more information than
those based on the unconditional parameters, they are less sensitive to bias
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from unequal exposure to infection in the two groups. The overall effect of
biological protection and change in exposure to infection might be of interest
for understanding the public health consequences of vaccination. Study de-
signs need to be explicit about differentiating factors related to susceptibility,
such as vaccination status, and factors related to exposure to infection.

2.8 Indirect, total, and overall effectiveness

Interest in evaluating the indirect and overall effects of vaccination strate-
gies as part of Phase III as well as post-licensure is increasing (Fine 1993;
Clemens et al 1996; Piedra et al 2007). Struchiner et al (1990) and Halloran
and Struchiner (1991) define study designs for dependent happenings that al-
low evaluation of the indirect and overall effects of vaccination (Figure 2.3).
Since the population-level effects of vaccination are defined within the context
of a particular intervention program, or allocation of vaccination, the unit of
inference is the population, and several populations or communities need to
be included in the study. Exactly what the intervention program of interest
is will depend on the vaccine and which subgroups suffer the greatest mor-
bidity. The comparisons may be made between different levels of vaccination
coverage, between allocation within different age groups or otherwise defined
subgroups (Monto et al 1969; Moulton et al 2001).

In Table 2.2 and Figure 2.3, the different type of population level effects
are considered on the simple example that no vaccination has taken place
in population B, and a proportion of people are vaccinated in population
A. The controls may be the same populations that receive the vaccination,
but before the vaccination program started. The indirect effects of the vac-
cine given a particular allocation of vaccination is then the comparison of the
incidence or other outcome of interest in the unvaccinated people in commu-
nity A compared to the unvaccinated people in the unvaccinated community
B. These comparisons are called designs type IIA. The indirect effectiveness
measures are denoted VEIIA. The total effects of the combination of being
vaccinated and the allocation is the outcome in the vaccinated people in the
communities A compared to that of the unvaccinated people in the unvacci-
nated communities B. These comparisons are called designs type IIB, and the
total effectiveness measures are denoted VEIIB . The overall effectiveness of
the vaccine and allocation compare the average outcomes in the vaccinated
communities with those of the unvaccinated communities. These comparisons
are called designs type III, and the overall effectiveness measures are denoted
VEIII . Table 2.2 contains examples of the VEIIA, VEIIB , and VEIII based
on the usual unconditional measures incidence rate, hazard rate, and cumula-
tive incidence. Many other measures could be used, including average age of
infection or the basic reproductive number, R0.

In choosing the communities or populations, it is important to ensure
that they are separated as much as possible in every way that is relevant for
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define four study designs based on different

pairs of comparison populations and the type

of effect they are intended to evaluate

(Struchiner et al., 1990; Halloran &

Struchiner, 1991). One assumes a population

A in which an intervention program takes

place, and a population B, identical but

separate from A in all aspects relevant to the

transmission dynamics, in which no

intervention takes place. Data on baseline

transmission collected prior to the

intervention could play the role of

population B. In study design I, one

intends to estimate direct effects. Vaccinated

and unvaccinated are assumed to be

subjected to the same exposure to infection

since they are exposed to the same population

of mosquitos, however, the actual level of

exposure to infection might be known or not.

In study design IIa, the nonvaccinated in

population A is compared to the

nonvaccinated in population B. This design

estimates the indirect effects caused by

changes in level of transmission due to

vaccination. Study design IIb estimates both

effects, direct and indirect, simultaneously.

Design III takes the perspective of the

population comparing overall rates in the

vaccinated population A to unvaccinated

population B. Each study design interprets in

a different way the answer to the principle of

exchangeability.

FIGURE 3. Study Designs for the Evaluation of the Different Effects of a Vaccine

POPULATION A POPULATION B
DESIGN III

DESIGN IIa

DESIGN IIb

DESIGN I

overall

indirect

direct + indirect

direct

Vac Nonvac Nonvac

Fig. 2.3. Study designs for dependent happenings. Types of effects of vaccination
programs and different study designs based on comparison populations for their
evaluation. (Halloran and Struchiner 1991)

transmission. Transmission patterns can differ greatly among communities.
It is necessary to give some thought to the likely transmission patterns and
sources of exposure to infection in a population. These transmission patterns
will greatly influence the magnitude of the indirect effects. Variability could
swamp out the estimates of the effects of vaccination. Matching by transmis-
sion characteristics might be desirable (Hayes et al 1995). Interpretability and
general applicability of quantitative results to other settings may be limited,
although qualitative trends might hold (Halloran and Struchiner 1995).

Comparisons across communities would also allow study of other biological
questions. For example, vaccines might contain only particular serotypes or
strains of an organism. Widespread vaccination could allow the expansion of
non-vaccine serotypes that had been less important before vaccination (Lip-
sitch 2000) or put evolutionary pressure on the existing strains.

Conducting a trial to evaluate effectiveness across several different popula-
tions or communities does not preclude evaluating VES or VEI of vaccination
within the populations. A Phase III vaccine trial can be designed to answer
several questions at the same time. Randomization within a population can
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be used to answer efficacy questions, while comparison across populations can
be used to evaluate the indirect and overall effects of vaccination. There is
a tradeoff in designing studies to measure both direct and indirect effects of
vaccination between vaccinating high numbers of people so that indirect ef-
fects are high, and vaccinating too many people so that the number of events
in the vaccinated populations is too low to estimate VES or VEI well.

Randomized community trials fall into the category of cluster or group
randomized trials where whole social units, rather than independent individ-
uals are randomly assigned to treatment groups (Hayes et al 1995; Koepsell et
al 1992; Donner et al 1998; Prentice 1995; Klar et al 1995; Murray 1998). The
analysis and sample size calculations need to take the clustering and possible
group randomization into account. Community trials for estimating indirect,
total, and or overall effects are discussed in more detail in Chapter 13.

2.8.1 Example

Figure 2.4 shows a simple example of estimating the direct, indirect, total, and
overall effects using just two populations, each with a population N = 1000.
We will assume that the populations are identical. We are going to base our
estimates on the number of cases at the end of an epidemic, the attack rate
or cumulative incidence, say, at the end of an influenza season. In population
A, 700 people are randomly vaccinated and the other 300 are unvaccinated.
In population B, we consider separately the 700 people who would have been
vaccinated and the 300 who would not have been vaccinated, if population
B had received vaccine. In population B, we observe 850 cases, so the attack
rate is ARB = 0.85. Due to randomization, the attack rate is the same in
those who would have received vaccine as those who would not have received
vaccine, so 595 of the 850 cases are in the 700 people who would have received
vaccine, and 255 of the cases are in the 300 people who would not have received
vaccine. In population A, there are 70 cases in the 700 vaccinated people and
90 cases in the 300 unvaccinated people, for a total of 160 cases, and an attack
ARA = 0.16. The ARA1 = 0.10 in the vaccinated and ARA0 = 0.30 in the
unvaccinated. The VE estimates of interest are

VEdirect = 1− 0.10
0.30

= 0.66, VEIIa = 1− 0.30
0.85

= 0.65,

VEIIb = 1− 0.10
0.85

= 0.88, VEIII = 1− 0.16
0.85

= 0.81.

The direct vaccine efficacy is a measure similar to the prevented fraction in
the exposed, where the exposure is vaccination. If we used the usual prevented
fraction in the exposed to compute the number of prevented cases in the vac-
cinated, we would compute the number of cases that we would have expected
in the vaccinated people in population A by assuming that the attack rate in
the vaccinated would have been the same as that in the unvaccinated popu-
lation if no vaccination had occurred. Under this assumption, we would have
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    III

Overall

1000 People

160 Cases

700 Vaccinated

70 Cases

300 Unvaccinated

90 Cases

1000 People

850 Cases

700 Unvaccinated*

595 Cases

300 Unvaccinated

255 Cases

    I

direct

    IIa

indirect

 IIb

total

Population A

70% vaccinated

Population B

no vaccine

Fig. 2.4. An example of estimating direct, indirect, total, and overall effects of vac-
cination. The ∗ represents the people who would have been vaccinated if Population
B had had a vaccination strategy.

expected (90/300) × 700 = 210 cases. The number of prevented cases would
have been 210 − 70 = 140. However, this does not take into account that
the number of cases in the unvaccinated group is also decreased by indirect
effects. To compute the total number of cases prevented in the vaccinated by
vaccination and the vaccination program, we need to use the 595 cases in the
700 people in population B who would have been vaccinated. Then the total
number of prevented cases in the vaccinated people is 595 − 70 = 525. The
overall prevented cases by vaccination is 850− 160 = 690.

2.8.2 An influenza example

Monto, et al. (1969) estimated both the protective efficacy, VES , and the
overall effect, VEIII , of an influenza vaccination program. They vaccinated
85 percent of the school-age children in Tecumseh, Michigan, against Hong
Kong influenza just before the epidemic in 1968. The ten-week epidemic period
was from November 17, 1968, to January 26, 1969. The weekly mean influenza
illness rates in vaccinated and unvaccinated children were 0.072 and 0.090, re-
spectively. This yields an approximate estimate of VES,IR ≈ 1− 0.072

0.090 = 0.20,
which is rather low. The overall influenza illness cumulative incidence in
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Tecumseh for the epidemic period was 0.14, while the adjusted overall in-
fluenza cumulative incidence in unvaccinated, neighboring Adrian, Michigan,
was 0.42 for the same period. Using the methods of study design III, the
overall effectiveness of vaccinating 85 percent of Tecumseh’s school children
is estimated to be VEIII,CI ≈ 1− 0.14/0.42 = 0.67.

2.9 Counting Process Models for Hierarchy of
Parameters

In this section, we present a part of the formal development of the hierarchy of
parameters based on counting process models found in Rhodes, Halloran and
Longini (1996). Before that, there had been little effort to relate the different
measures of vaccine efficacy to one another formally, or their interpretation in
terms of the underlying contact and infection processes. (This section is very
technical and may be skipped.)

2.9.1 Contact, infection, susceptibility and infectiousness processes

Overview

Rhodes et al (1996) extended counting process models for infection rates
(Becker 1982, 1985, 1989) to incorporate contact rates between individuals,
infectiousness of the infectives and variables affecting susceptibility to infec-
tion, such as vaccination, given that such a contact had occurred. Using these
counting process models, they demonstrate that the commonly used relative
risk parameters form a hierarchy requiring different amounts of information
about the contact and infection processes. The emphasis is on the distinction
between exposure opportunity and actual exposure, and the amoung of in-
formation that we have about these. Separation of the contact process and
the infection process allows quantification of the different contributions of the
contact process, infectiousness and susceptibility in the estimated relative risk
of infection in the comparison groups. The hierarchy presented in Table 2.2
is a simplified version of the formal hierarcy, with the major difference in the
interpretation of Level II.

Table 2.3 contains an overview of the hierarchy levels of information that
could be known about a population of interacting hosts with an infectious
agent circulating in it. At a minimum, we need to know those covariates that
are relevant to susceptibility as well as who is actually susceptible. The hier-
archy goes from level I to IV, or from (a) to (f), as information is either lost or
ignored. In (a), we know all contacts between individuals, whereas in (b), we
only know when infective individuals contact susceptibles. Level (b) is anal-
ogous to a vaccine efficacy study using the household secondary attack rate,
studies in tuberculosis using contact tracing to estimate transmission proba-
bilities, or discordant partner studies to estimate the transmission probability
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of HIV. Levels IIA and IIB, or (c) and (d), have information only on contacts
that lead to infection, or the times at which individuals are infectious, respec-
tively. These levels have important differences, but share enough similarities
that they are developed in tandem. The analysis of the former has the form
of a Poisson regression. At level III, we know just the infection times, which
under certain conditions leads to a stratified Cox regression analysis. Finally,
at level IV, we only know that a person becomes infected sometime during
the study period. This provides information for an analysis based on the cu-
mulative incidence or distribution function, such as vaccine efficacy based on
the attack rates.

Table 2.3. Level and amount of information for each history (Rhodes, Halloran,
Longini (1996))

Level Type of information for each history

I (a) All contacts between individuals and outcomes of those contacts
(whether an infection is transmitted)

(b) Only those contacts between infective and susceptible individuals and
infection outcome of those contacts

IIA (c) Only contacts leading to infections (who infects whom)
IIB (d) Infectious periods, i.e., the times at which individuals become and

cease to be infectious
III (e) The times at which individuals become infected
IV (f) Whether or not an infection occurs to each individual in some time

period (0, T ]

Notation and Definitions

All processes defined below occur in continuous time and are orderly, i.e.,
multiple points do not occur at any time t. Also, there are no tied jumps for
pairs of processes of the same type involving different individuals, e.g., no two
infections can occur at the same time. Some pairs of processes of different
types may jump at the same time (e.g., see Cij and Nij below). Consider
a closed population of n individuals. Let Cij(t) be the counting process for
person j contacting person i (j → i), i, j = 1, . . . , n, i %= j. (Notation of the
subscripts for the infectives and susceptibles is reversed in this section from
the other sections in the book.) We set Cij(0) = 0 for all i, j, i.e. we disregard
all contacts that occur before the start of the study. For a study of length
T , let tijk represent times in (0, T ] at which j → i, k = 1, . . . , Cij(T ) = cij .
For an epidemic, T refers either to the end of the epidemic or to some preset
ending time. For an endemic situation, T is some selected time at which an
analysis is to be performed.
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Let Nij(t) be the counting process for the process j infects i, i.e., dNij(t) =
1 if person j infects person i at time t. Let δijk be an indicator variable for
whether the contact at tijk results in an infection (i.e. δijk = dNij(tijk)). Let
Ni.(t) =

∑
j Nij(t). Let δi = Ni.(T )−Ni.(0), i.e., δi = 1 if person i becomes

infected in (0, T ] and 0 if not. It is possible that Ni.(0) = 1 which indicates
that person i was infected before the start of the current study. However,
here we are interested only in counting infections that occur after time 0. We
assume that the infection can occur at most once, i.e., Ni.(t) ≤ 1.

Let Ij(t) = 1 if person j is infectious at time t and Ij(t) = 0 otherwise. A
person is infectious immediately after becoming infected (no latent period).
Let Si(t) = 1 if person i is susceptible at time t and Si(t) = 0 otherwise. We
define both sets of these processes to be left continuous. Thus, Ij and Si are
predictable processes (Bremaud, 1981).

Intensities for Contact Processes

Let the intensity of the contact process Cij be denoted by λij(t) (λii(t) = 0),
i.e.

λij(t) = lim
∆→0

Pr((Cij(t + ∆)− Cij(t)) = 1|Ht)
∆

, (2.12)

where Ht is some history (Bremaud, 1981). Informally, by a history we mean
some observed information arising from various processes on the time interval
(0, t]. Technically, Ht is a σ-algebra generated by these processes on (0, t].
Several such histories may be of interest. We shall assume that the λij are
constants that can be parametrized using covariates Gi and Gj and a set of
parameters θ = (θ1, . . . , θR), where R << n(n − 1), the number of pairs of
individuals.

More generally, the contact rates could vary over time, such as cyclically,
or be history dependent. For example, the occurrence of an infection could
cause a person j to reduce his or her activity and thus lower the intensities
λij for all i. We do not consider this aspect further, and drop the notation for
Gj .

Intensities for Infection Processes

Consider any Cij contact process discussed earlier. The contact process plus
the infection outcomes, δijk, constitute a marked counting process (Bre-
maud, 1981; Arjas, 1989). Consider the multivariate infection process N(t) =
{N1.(t), . . . , Nn.(t)}. The process N..(t) =

∑n
i=1 Ni.(t) plus the identity and

covariate values of the person infected at each jump is also a marked counting
process. Let the function ρ(t) denote the probability that an event occurring
at time t in the original process will be retained by a thinned process. If λ(t)
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is an intensity for the original process and ρ(t) is predictable, the intensity for
the thinned process is ρ(t)λ(t) (Bremaud, 1981).

Each infection process Nij is a thinned version of the corresponding con-
tact process Cij . Let p(t; zi, zj ,β) represent the probability that a contact
j → i at time t results in an infection if person j is infectious and person
i is susceptible. This is also called the transmission probability. The zi are
covariates associated with susceptible i, zj are covariates associated with in-
fective j, and β is a vector of unknown parameters. If either Ij(t) or Si(t)
is 0, a point from Cij has probability 0 of being accepted. If both Ij(t) and
Si(t) are 1, the point is accepted with probability p(t; zi, zj ,β)Si(t)Ij(t). The
time and history dependent probability ρij(t) that a point from Cij will be
accepted for Nij is p(t; zi, zj ,β). A dependence on zj implies that persons
are differentially infectious. For simplicity, here we assume that all infectives
are equally infectious, and drop the dependence on zj . An intensity for Nij(t)
may then be written as

αij(t) = λij(t)p(t;zi,β)Si(t)Ij(t) , (2.13)

where the infection process is a thinned version of the contact process.

2.9.2 Information Levels and Types of Statistical Analyses

In most of the development here, the covariates associated with the contact
parameters are assumed to be the same for all individuals. Zi and Gi denote
covariates associated with the susceptibility and contact parameters.

Level I

In the first level of information, either all contacts between individuals and
outcomes of those contacts are known, or contacts between infectives and the
susceptibles whom they contact during their infectious period:

HI
t = σ{Cij(s), Nij(t), Ij(s), Si(s), Zi(s), Gi(s), 0 ≤ s ≤ t}

The analysis remains the same for evaluating covariates related to susceptibil-
ity since only contacts between infectives and susceptibles enter into the analy-
sis. Estimation of the contact process will differ, however. The log-likelihood of
observing contacts at the set of points {tijk : i, j = 1, . . . , n, k = 1, . . . , Cij(T )}
(Fleming & Harrington, 1991) is given below in terms of stochastic integrals:

log L(C) =
n∑

i=1

n∑

j=1

∫ T

0
log(λij(t))dCij(t)−

n∑

i=1

n∑

j=1

∫ T

0
λij(t)dt. (2.14)

The conditional likelihood for the infection outcome marks (the Nij processes)
given the Cij , Zi, Si, and Ij processes is
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n∏

i=1

n∏

j=1

cij∏

k=1

{Ij(tijk)Si(tijk)p(tijk; zi,β)}δijk × {1− Ij(tijk)Si(tijk)p(tijk; zi,β)}(1−δijk).

We assume that the λij are parametrized by θ = (θ1, . . . , θR) and that
p(tijk; zi,β) = exp(βzi), where β has length H. 00 is defined as 1. Since p lies
in the interval [0,1], in general we would want β̂ ≤ 0. Let γijk = Ij(tijk)Si(tijk)

ICi. =
n∑

j=1

cij∑

k=1

γijk,

i.e., the total contacts made on person i by infectives while person i was
susceptible. Assuming sufficient regularity such that the interchange of the
various integrals and derivatives is justified, and making a for can be written
as, the R + H score equations for Level I can be written as

∂ log L(C, N)
∂θr

=
n∑

i=1

n∑

j=1

∫ T

0

1
λij(t)

∂λij(t)
∂θr

dCij(t)−
n∑

i=1

n∑

j=1

∫ T

0

∂λij(t)
∂θr

dt

∂ log L(C, N)
∂βh

=
n∑

i=1

δizpi −
n∑

i=1

(ICi. − δi)
zpi exp(βzi)
1− exp(βzi)

. (2.15)

These equations are formally equivalent to a log-linear binomial regression
where each person i with covariate zi contributes ICi. trials with outcome δi.
The score equations for β and θ can be solved separately. The information
equations for this level and the score and information equations for all other
levels are given in Rhodes et al (1994a).

Level II

In level IIA the source of each infection is known, that is, who infects whom, as
well as how long each person is infectious. Level IIA is the last level with any
direct contact information at all. On level IIB, it is known who is infectious
and how long, but not who infects whom. The time that a person remains
infectious plus contact rates with other individuals gives a measure of the
exposure opportunity that this person provides to other individuals, after
taking into account when each was susceptible: level IIA

HIIA
t = σ{Nij(s), Ij(s), Si(s),Zi(s),Gi(s), 0 ≤ s ≤ t};

level IIB,

HIIB
t = σ{Ni.(s), Ij(s), Si(s),Zi(s),Gi(s), 0 ≤ s ≤ t}.

In most cases, information for pattern IIA will be difficult to obtain because
of the necessity of observing who infects whom. When the Cij processes are
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not directly observed, we treat the Nij processes as thinned versions of the
Cij . Using expression 2.13 for the intensity of Nij , Rhodes et al (1996) give
the log–likelihood for level IIA.

Without knowledge of the contact process, we cannot estimate both the set
of parameters λij (or the θ) and the parameter β0 corresponding to a constant
term in zi. We must incorporate the value exp(β0) into the λij functions and
deal with a new set of parameters λ∗ij = λij exp(β0). We shall also refer to the
new set of parameters θ∗1 (note: θ∗1 %= θ1 exp(β0) except in special cases). In
this instance, the β and θ∗ equations cannot be solved separately. However,
the score equations for β have the form of a Poisson regression if the terms
involving one portion of the log–likelihood, i.e.

n∑

j=1

λ∗ij

∫ T

0
Ij(t)Si(t)dt (2.16)

are known. Thus, estimation proceeds by alternating between solving the θ∗

equations and the β equations. Certain choices of the parametrization for the
λ∗ij lead to both sets of equations conforming to a Poisson regression model.

The intensities for the Ni. processes are obtained by summing the inten-
sities of the corresponding Nij processes (Bremaud, 1981). Level IIB has the
same limitation in terms of not being able to estimate β0 and λij separately.
The log–likelihood is given in Rhodes et al (1996).

Level III

We know the times at which infections occur and which individuals were
susceptible as well as the values of all covariate processes. We do not observe
how long each person remains infectious. Thus, for level III,

HIII
t = σ{Ni.(s), Si(s), Zi(s), Gi(s), 0 ≤ s ≤ t}.

We proceed by writing a complete likelihood for the marked counting process
N..(t) =

∑n
i=1 Ni.(t) and then decomposing it into components. The mark

corresponds to the identity of the person infected when the combined process
jumps. The contribution to the likelihood for the interval (td−1, td) where td
is the time of the dth event in the process N.. is broken into two parts:

a) L (no event for N.. in (td−1, td), event for N.. at td|HIII
t , td−1 ≤ t ≤ td),

b) L (identity of person infected at td — event at td, set of individuals
susceptible at time td, HIII

t , 0 ≤ t < td).

The first term is obtained by treating N.. as the sum of thinned point processes
and the second by considering the conditional probability of the identity of
the infected individual given the set of individuals susceptible at time td. Level
III has the same limitation in terms of not being able to estimate β0 and λij

separately. The expressions for the log-likelihoods are in Rhodes et al (1996).
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The conditional probabilities may depend on the contact parameters and
on the Ij processes. In some instances, depending on the form of the Gi

covariates, strata can be formed in which the conditional probability does not
involve either the contact parameters or the Ij processes. For example, if the
λij(t) are all equal to a constant value λ, the conditional probability is free
of both the above quantities. Also, consider the case where each individual
belongs to one of K mixing groups. In that circumstance we can work with
Nk.., k = 1, ..K, the total infection processes in each of the K groups. Part b is
then the conditional distribution of the mark given the actual set of individuals
who were susceptible at time td in the group in which the infection occurred.

The Cox regression model has an advantage over analyses IIA and IIB
in that no modification needs to be made for the situation where the study
population constitutes only a portion of the entire population. For example,
if one conducts a vaccine trial in a limited age group of the population and
collects infection data only for that age group, the Poisson based methods
could not be formulated correctly since one would not know the total exposure
potential of the children in the trial.

Level IV

For level IV we know whether or not each individual has been infected in
(0, T ] but not when the infection occurred:

HIV
t = σ{Ni.(T ),Zi(0),Gi(0)}

The analysis has the form of a binary regression, although the link is the
complimentary log-log link (i.e. log(− log(p))). Censoring or late entry is not
permitted, nor is it possible to incorporate time-dependent covariates. Thus,
we restrict attention to the values of covariates at the start of study.

Consider the probability that an individual i with covariates z would es-
cape uninfected over the time period (0, T ] if we were given the full history of
the infectiousness processes for all other individuals.

Pr(Ni.(T ) = 0|Ij ,Zi) = 1− pi(T ) = exp



− exp(βzi)
∫ T

0

n∑

j=1

λij(t)Ij(t)dt



 ,

or

log(− log(1− pi(T ))) = βzi + log
∫ T

0

n∑

j=1

λij(t)Ij(t)dt = βzi + γi .(2.17)

If the terms γi are unique to each individual, estimation of the parameters
of interest, β, is not possible, since each individual adds a new parameter to
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Table 2.4. Estimates of β1 and estimated variances for β1 assuming homogeneous
mixing†(Rhodes, Halloran, Longini, 1996)

Level Estimator Variance estimator

I log
“

n1IC0
n0IC1

”
1−p̂0

n0
+ 1−p̂1

n1

II log
“

n1L0
n0L1

”
1

n0
+ 1

n1

III No closed form No closed form

IV log
h

log{− log(1−p̂1)}
log{− log(1−p̂0)}

i P1
i=0

p̂1
mi(1−p̂i){(1−p̂i)}2

†ICi is the number of contacts made on individuals in group i by infectives while
those individuals in group i were susceptible. ni is the number of infections
in each group during the study. Li is the total time that susceptibles in group
i were exposed to infectives. mj is the initial number of susceptibles in group i,
p̂i = ni/mi.

the analysis. However, if among the n individuals there are a limited num-
ber of γ parameters, estimation is possible. Thus, while the Ij processes are
not observable, under certain conditions, functions of these processes are es-
timable. However, these functions are not themselves of great interest. When
there is a set of parameters γ = (γ1, . . . γK), where K << n, we then fit the
complimentary log-log binomial regression model incorporating covariates for
these parameters.

2.9.3 Homogeneous Mixing

We consider the case of homogeneous mixing, i.e. λij(t) = λ for i %= j, with
p(t; zi,β) = pi = exp(β0 + β1zi) for the case where zi is a single dichotomous
covariate. When the contact processes are not observable, the parameters λ
and β0 cannot both be estimated. The composite parameter λ∗ = λ exp(β0)
is estimable and is interpretable as the average rate per unit of time at which
one infective would tend to infect a susceptible with covariate equal to 0. The
estimates for eβ1 for the different information levels and the corresponding
estimated variances are given in Table 2.4. The estimator for level I has the
form of a log relative risk. Analyses IIA and IIB are the same since there
are no contact covariates. The estimator for β1 for level II is similar to that
for level I except that a measure of exposure opportunity is substituted for a
measure of actual exposure. The Cox regression estimator (Level III) does not
have a closed form. The level IV estimator uses functions of the proportions
infected in each group. If the probability of infection per contact is large, such
as in measles or chickenpox, analysis I might be a better choice than analysis
II (Figure 2.5). In this situation, knowledge of actual exposure, say a sec-
ondary attack rate study, provides a large improvement in the standard error
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over the use of expected exposure or exposure opportunity, say a study using
Poisson regression. Knowledge of the actual amount of exposure, measured by
contacts with infectives, leads to a large gain in efficiency when the absolute
probability of transmission per contact of an infective with a susceptible is
high. Infectious diseases such as measles and chickenpox have transmission
probabilities greater than 0.85, while the transmission probability for HIV is
generally less than 0.01, except perhaps during certain periods of infectious-
ness.

Fig. 2.5. Ratio of standard errors in the analysis at level II compared to level
I by baseline transmission probability (eβ0 = p0) and the covariate effect on the
transmission probability, or transmission probability ratio (TPR = eβ1) in group
1 compared to group 0. TPR = eβ1 = 1 (solid line), 0.5 (dotted line), 0.25 (short
dashes), and 0.1 (long dashes). The ratios are based on the variances for β1 at levels
I and II given in Table 2. The number of infections is assumed to be the same in
each group, and therefore, cancel out.

All of the models with the exception of level IV can be extended to ac-
commodate individuals who are lost to follow-up or who enter the population
after the study starts. A more complicated situation is introduced by the
process letting Yj(t) = 1 if person j is present in the population at time t,
and 0 otherwise. This differs from standard usage in survival analysis where
Yj(t) = 1 indicates that the person is under observation at time t (Anderson
& Gill, 1982). A person who is not under observation but remains present
in the population may influence the infection outcomes of other population
members. This type of dependence is not seen in noninfectious disease studies.
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Problems

2.1. Problem Heading
Problems for Chapter 2 will be added here.

2.2. Problem Heading
(a) The first part of the problem is described here.
(b) The second part of the problem is described here.


