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Binomial and Stochastic Transmission Models

4.1 Overview

How we think about the transmission dynamics of an infectious agent within a
host population influences how we design, analyze, and interpret vaccine stud-
ies. It can influence our choice of interventions. In this chapter and the next
we introduce transmission models necessary for estimating and understand-
ing the effects of vaccination. In this chapter, we present the binomial model
and the chain binomial model. These models are central in the formulation of
statistical models for estimating transmission parameters and vaccine efficacy
parameters. They form the basis of the models in Chapters 10 through 11. The
binomial model is also the basic building block of the small- and large-scale
stochastic simulation models of vaccination interventions in populations, that
can also be used to produce data for design of vaccine studies. In a stochastic
model, whether an event occurs is random, depending on a number produced
by a random number generator described later.

In Chapter 5 we present simple differential equation transmission models
that are generally deterministic. That is, every time the equations are solved,
the same answer is obtained. This approach is essential to understanding
large complex models of the population effects of vaccination programs, but
less relevant to our purposes in this book. Historically, much of theoretical
discussion of the effect of vaccination on the basic reproductive number R0

stems from the solution of differential equations models, so the chapter also
contains further discussion of R0 and the effects of vaccination.

Without getting too formal, all of the models in this and the following
chapters assume that people can be in discrete states, such as susceptible, in-
fected but latent, infected and infectious, or recovered. The binomial models
in this chapter are discrete event models, in that whole individuals become
infected or recover. They are particularly interesting for analyzing data be-
cause the likelihood functions for the discrete events can be easily formulated.
Binomial models can be formulated in discrete time or in continuous time as
we shall show.
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In contrast, in the differential equations models, the number of people
flowing from one state to another, such as from susceptible to infected, is
continuous. That is, there can be 450.75 people in the infected compartment.
We consider only differential equations models formulated in continuous time,
though discrete time versions are sometimes used.

For all transmission models, whether for estimating parameters of interest
or for simulating vaccine interventions, the underlying assumptions about how
people mix and contact each other is central. We begin this chapter with a
general introduction to mixing structures and population dynamics.

4.2 Contact processes and mixing structures

4.2.1 Contact processes

People make contacts in a population before an infectious agent enters the
population. How to think about the contact process in a population can de-
pend on the infectious agent of interest. The contacts of interest may be
through the air or casual touching. Some models assume that people behave
like gas molecules with the rate of contacts being determined by density. If
people are pressed more closely together, as in an urban environment, they
contact each other more often than if they were less densely distributed, as in
a rural environment. Hence, for disease spread by air, droplet, or casual touch-
ing, such as measles, influenza, or mumps, population density plays a role in
determining the value of R0. Alternatively, for diseases spread by contacts
made by choice, such as in sexual contacts or injection of intravenous drugs,
the contacts may be determined more by social behavior. In many cases, both
density and social choice will play a role in determining contact rates and
mixing patterns.

4.2.2 Random mixing

Under the assumption of random mixing, every person in the transmission unit
is assumed to make contact equally with every other person. Thus, an infective
person will equally expose every other person in the transmission unit. In a
model of the United States based on random mixing, every infective person
in the population will expose every susceptible. In a model with households
as the basic transmission unit, the assumption of random mixing implies that
each person in the household makes contact with the others equally. We denote
by c the constant contact rate that does not change over time in a randomly
mixing population.

Most populations do not mix randomly. We consider a few approaches to
nonrandom mixing.
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Community

Fig. 4.1. Transmission units

4.2.3 Transmission units within populations

We have considered random mixing in small transmission units such as house-
holds. The transmission units can be assumed to be completely separate and
independent of one another, as indicated in Figure ??a. Under this assump-
tion, an infected person in one transmission unit does not expose someone
in another transmission unit. This is the assumption that underlies the sim-
ple chain binomial model discussed later. Alternatively, the individuals in the
transmission units can be assumed to mix in the community at large as well
and either expose each other to infection or be exposed to infection from some
community source (Figure 4.1b). When we define this community structure,
it allows that a susceptible individual can become infected if exposed to an
infected person within the household as well as the possibility of being in-
fected in the community at large during the course of an epidemic or over
the duration of a study. The transmission units could be households, sexual
partnerships, schools, workplaces, or day care centers, for example. These two
differing assumptions underly the different approaches in Chapters 11 and 12.

More complex mixing models can be formulated where individuals mix
in several transmission units as well as in the community at large. Figure
4.2 represents the mixing structure of a complex influenza model with house-
holds, daycare centers, schools, workplaces, neighborhoods, and communities.
For example, schoolchildren mix at home, at school, the neighborhoods and
the community at large. People are assumed to mix randomly within each
structure. Network theory is used to study the contact patterns and social
networks of actual populations and simulated populations formally (Morris
and Kretzschmar, 1997; Koopman et al, 2000; Eubank et al 2004; Newman et
al 2006; Meyers et al 2006).

4.2.4 Mutually exclusive subpopulations

Rather than small transmission units, we may think of a population as di-
vided into large subgroups that mix with members of their own subgroups
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Fig. 4.2. Community structure of where individuals interact in more than one
mixing group, including households within household clusters, neighborhoods, and
the community, day care centers, play groups, and schools.

differently than with members of other subgroups. A common approach to
modeling infectious diseases such as measles (McLean et al 1991) and chick-
enpox (Halloran et al 1994) is to divide the population into nonoverlapping
age groups. In modeling sexually transmitted diseases, the population could
be divided into groups with different activity levels (Hethcote and York 1984).

In a population composed of two mixing groups, group 1 and group 2, the
contact pattern is described by a mixing matrix that has the same number of
rows and columns as the number of mixing groups. The entries in the matrix
represent the contact rates of individuals within and between the groups. The
contact rate of individuals of group j with individuals of group i is denoted
by cij . The mixing pattern of two groups is represented by the matrix

C =
[

c11 c12

c21 c22

]
. (4.1)

On the diagonal are the contact rates within groups, c11 and c22. The entries
c12 and c21 off the diagonal represent the contact rates between the groups
corresponding to that row and column.
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The average number of new infectives that one infective will be produce,
R0, (Chapter 1.3.3) will be higher in the group with the higher within-group
contact rate, assuming that the transmission probability and infectious period
are the same in both groups. If an epidemic occurs and there is contact be-
tween the two groups, the epidemic in the group with the higher contact rates
will help drive the epidemic in the group with the lower rates. The group
with the higher R0 would then serve as a core population for transmission
(Hethcote and York 1984) . The existence of a core group has consequences
for intervention programs. It may be easy to reduce the average R0 for the
whole population below 1, while R0 in the core population remains above 1,
so that transmission will persist. In infectious diseases, the chain is only as
weak as its strongest link.

Simple social contact data can be used to estimate age-specific transmis-
sion parameters for infectious respiratory spread agents (Wallinga et al 2006;
Halloran 2006).

4.2.5 Population dynamics

Transmission models can be formulated as open populations with vital dy-
namics or as closed populations. There are two ways to enter and two ways
to leave a population. Individuals can enter a population by being born into
it or immigrating. Individuals can leave a population by dying or emigrat-
ing. Open populations may include just birth and death with no immigration
or emigration. Open populations may also include just emigration, analogous
to loss to follow-up. Open populations are analogous to dynamic cohorts. In
a closed population, there are no births, immigration, deaths or emigration.
The closed population is analogous to a closed cohort. Whether a transmis-
sion model is formulated with an open or closed population will depend on
the circumstances and time frame of the study. Dynamic consequences of the
assumptions are considered in Chapter 5.

4.3 Probability of discrete infection events

We consider the simple binomial model of transmission for discrete contacts
and a simple model in continuous time.

4.3.1 Probability of infection in discrete time or contacts

The binomial model is often used to estimate the transmission probability
as well as effects of covariates such as vaccination status. The basic idea of
the binomial model is that exposure to infection occurs in discrete contacts,
which can also be discrete time units of exposure. Generally it is assumed that
each contact is independent of another. We have defined p as the transmission
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Fig. 4.3. a) The escape probability with five consecutive contacts. b) The escape
probability with five simultaneous independent contacts, as in the Reed-Frost model.
In both cases, the probability of infection is 1− (1− p)5.

probability during a contact between a susceptible person and an infectious
person or other source of infection, such as an infectious mosquito. The quan-
tity q = 1−p is the probability that the susceptible person will not be infected
during the contact, called the escape probability. For example, if the transmis-
sion probability for influenza is p = 0.30, then the escape probability for one
contact is q = 1−p = 0.70. If a susceptible person makes n contacts with infec-
tious people, then, assuming all contacts are equally infectious, the probability
of escaping infection from all of the n contacts is qn = (1−p)n. The probability
of being infected after n contacts with infectives is 1− qn = 1− (1− p)n.

Suppose a person has five successive contacts with someone who has in-
fluenza (Figure 4.3a). What is the probability that the person will have become
infected by the five contacts? In this example, n = 5. The calculation proceeds
by first calculating the probability that the susceptible person will escape in-
fection from all six contacts. Then this number is subtracted from one to get
the probability that the person is infected at least once. If the probability of
escaping infection from the first exposure is q = 0.7, then the probability of
escaping infection from the second exposure is the probability of escaping the
first one times the probability of escaping the second: q·q = 0.7·0.7 = 0.49. The
probability of escaping infection from the third contact is similarly the proba-
bility of escaping infection from the first two contacts times the probability of
escaping infection from the third, q2 · q = 0.49 · 0.7 = 0.34. The probability of
escaping infection from six successive contacts is 0.75 = 0.17. The probability
of becoming infected at least once is 1− (1− p)n = 1− (0.7)5 = 0.83.

We have made an important assumption here. We assumed that each suc-
cessive contact was not affected by any of the previous contacts. That is, the
person did not develop immunity or become more susceptible as time went
on. We also assumed that all of the contacts had the same risk of transmis-
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sion. These assumptions may not be fulfilled. If so, the assumptions can easily
be changed and a more complicated form of the binomial model developed.
Becker (1989) discusses chain binomial models with random effects.

In a different problem, suppose a susceptible child attends school one day
where five of the children simultaneously have influenza. What is the prob-
ability of becoming infected (Figure 4.3b)? Assume that the probability of
becoming infected from one contact with one child with influenza is p = 0.3.
Proceeding as before, the probability of escaping infection from one child is
q = 0.7. Now we can calculate the probability of escaping infection from all
six children, with 0.75 = 0.17, so the probability of being infected on that day
at school is 1− q5 = 0.83.

Although the answers for the two examples are numerically the same, the
biological assumptions in the two examples are different. In the example of
influenza at school, each of the five simultaneous exposures to infection are the
same, and that each additional child with influenza increases the probability of
being infected independent of how many other infective children are present.
The contacts and exposures to infection are assumed to operate the same as
if they were successive and independent. The assumption of independence is
commonly used in the binomial model, whether contacts are simultaneous or
successive. For instance, this assumption is at the heart of the Reed-Frost
model discussed below.

What if, however, biologically we think that once there is one infectious
child in a classroom, then the room is saturated with infectious particles? Then
adding more infectious children to the school will not increase the probability
of becoming infected. We need to change our expression for the probability
of becoming infected. If p is the probability of becoming infected from one
infected person at school, then q = 1− p is again the escape probability from
exposure to one infected. In contrast to the previous model, however, the
probability of becoming infected from exposure to two or more infecteds at
the same time is still p and the escape probability is still q = 1 − p. Under
these biologic assumptions, the probability of becoming infected from one
child with influenza on one day is p = 0.3, and the probability of becoming
infected from simultaneous exposure to six children with influenza on one
day is also p = 0.3. The Greenwood model (Greenwood, 1931) makes the
assumption that the probability of infection on a given day does not change
with increased number of infectives. The assumption is, however, seldom used
in practice.

4.3.2 Other transmission models

Another way to model the probability of becoming infected is simply to multi-
ply the number of contacts with infectives n times the transmission probability
p, np. In the above influenza example, however, np = 5 ·0.3 = 1.5. Since prob-
abilities have to lie between 0 and 1, this approach obviously has limits. In
particular, either n or p, or both need to be small. Another commonly used
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expression for the probability of not becoming infected is e−np, for the proba-
bility of becoming infected is 1− e−np. In the influenza example above, then,
the probability of not becoming infected is e−5·0.3 = e−1.5 = 0.22 and for
becoming infected is 1 − e−1.5 = 0.88. Comparing this with the probability
of being infected calculated from the binomial model, 0.83, we note that they
are similar but not identical.

In the influenza example above, the transmission probability is high, and
the product of np is large. If the transmission probability is much smaller or
the contact rate is much smaller, or both, then the three methods for cal-
culating the probability of becoming infected give similar answers. Suppose
again that there are five infectious contacts in one day, but that the trans-
mission probability of the infection in question is just p = 0.001. Then using
the binomial model, the probability of becoming infected is 1 − (1 − p)n =
1 − (.999)5 = 0.00499. Using the exponential expression, the probability of
becoming infected is 1− exp(−5 · 0.001) = 0.00499, and based on the simple
expression, np = 5 · 0.001 = 0.005. There is little difference in the answers. In
this example, the calculated np makes sense as the probability of becoming
infected. The two simpler approaches are sometimes used as approximations
for the binomial model. They are generally less time consuming to compute
than the binomial model, which can be an issue in complex models. However,
as we have just demonstrated, the approximation will not always be good. All
three models require the same data for estimation of the parameters, namely
the number of people who become infected, the number who do not, and
the number of contacts made by each person up to when he or she becomes
infected.

4.3.3 Probability of infection in continuous time

The above models assume discrete contacts or contacts within discrete units
of time. Another approach to modeling the probability of becoming infected
assumes that contacts occur in continuous time. The expression cp is the prob-
ability of being infected per unit time if all the contacts are with infectious
persons, or c is the rate of infectious exposures and p is the transmission
probability per exposure. Analogous to the discrete model, the expressions
exp(−cp) and 1 − exp(−cp) are the probabilities of escaping infection or be-
coming infected per unit time, respectively. If the exposure occurs over some
time period ∆t, then the probabilities of escape or of infection in the time
interval ∆t are exp(−cp∆t) and 1− exp(−cp∆t), respectively.

Another notation for the transmission rate per unit time of contact with an
infective person is β = cp. Then the probabilities of escape or of infection in the
time interval ∆t are exp(−β∆t) and 1−exp(−β∆t), respectively. Unless data
are available on the contact rate separate from the transmission probability,
in this model the transmission rate will be estimated from data on the time
interval of exposure and infection status of each person in the study.



4.4 Chain Binomial Models 69

4.3.4 Contacts with persons of unknown infection status

Sometimes contacts are made with persons or sources of unknown infection
status. We denote the probability that an individual with whom a contact is
made is infectious by P . Then the probability of being infected from a contact
of unknown infection status is ρ = pP . The quantity ρ is not a transmission
probability in the strict sense, but an infection probability. The probability
of escaping infection from contact with someone of unknown infection status
is 1 − ρ = 1 − pP . Under the binomial model, the probability of becoming
infected after n such contacts is 1− (1− pP )n = 1− (1− ρ)n.

Suppose as in the influenza example above that p = 0.3 but that the
contacts are with five individuals of unknown infection status. If the individ-
uals are randomly chosen from a population where prevalence of influenza
is P = 0.4, then the probability of being infected after five contacts is
1− (1− 0.3 · 0.4)5 = 0.47.

An analogous expression can be developed for the continuous time model,
as described in Chapter 2, since the hazard rate or incidence rate of infection as
a function of the contact rate, the transmission probability, and the prevalence
is λ(t) = cpP . The probability of escaping infection within some period of
time ∆t is exp(−cpP∆t), and of being infected is 1 − exp(−cpP∆t). These
examples demonstrate some of the options and subtleties inherent in different
approaches to modeling the transmission process.

4.4 Chain Binomial Models

Chain binomial models are dynamic models developed from the simple bino-
mial model by assuming that infection spreads from individual to individual
in populations in discrete units of time, producing chains of infection gov-
erned by the binomial probability distribution. To use the model, one needs
to know the number of susceptibles and number of infectives in each gener-
ation. The expected distribution of infections in a collection of populations
after several units of time can be calculated from the chained, that is, se-
quential, application of the binomial model. The Reed-Frost and Greenwood
models are examples of chain binomial models. As mentioned above, the Reed-
Frost model assumes that exposure to two or more infectious people at the
same time are independent exposures. The Greenwood model assumes that
exposure to two or more infectious people at the same time is equivalent to
exposure to one.

In the Reed-Frost model, the assumption is made that people pass through
three states (Figure 4.4). They start out susceptible, denoted by S, then be-
come infected and infectious, denoted by I, after which they recover with
immunity, denoted by R. Models of this type of infection process are called
SIR models for susceptible, infected, recovered. Sometimes the notation XYZ
is used for the three states. This simple model assumes that there is no latent
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Fig. 4.4. Three states in the Reed-Frost chain binomial model. S, susceptible; I,
infective; R, removed (immune).

period and that there are no asymptomatic infections. This model could be a
simplified representation of influenza, measles, or chickenpox that ignores the
latent period. Other examples include SIS models, in which people recover
without immunity to become susceptible again, and SIRS models, in which
people acquire immunity, but lose it again to become susceptible. An SEIR
model allows people to pass through a latent period denoted by E. In the
simple Reed-Frost model, one assumes that the population size is constant N .
If there are the only three possible states, then each person in a population
of N individuals is in one of these three states, where St is the number of
susceptible people, It is the number of infectives, and Rt is the number of
immune people at time t, where the subscript t denotes that the model is in
discrete time. In contrast, in the continuous time differential equation models
in the Chapter 5, the number of people in each state at the continuous time
t is denoted by S(t), I(t), and R(t).

As a simple example of the Reed-Frost chain binomial model, consider
spread of infection in a transmission unit, such as a household, with three
individuals, where one person is initially infected and the other two are ini-
tially susceptible (Table 4.1). The goal is to compute the probability of any of
the possible chains. The model assumes that the initial infective is no longer
infective after the first time unit. In the first time unit, one of three things
can happen. One possibility is that neither of the two susceptibles become
infected. A second possibility is that both of them become infected. A third
possibility is that just one of them becomes infected. The probability that
neither becomes infected is the probability that both escape infection, or q2.
In this case, the chain ends, so the probability of this chain is q2. If both
susceptibles become infected in the first time unit, the chain also ends. The
probability of both becoming infected from the first exposure is p2.

The probability that one person becomes infected from the first infected
while the other does not is pq. This can happen two ways, so that the prob-
ability of just one of the susceptibles being infected from the initial infective
person in the first time unit is 2pq. If one susceptible is infected in the first
time unit, then this person is the new infective who exposes the last remaining
susceptible. Exposure of the last remaining susceptible can result in two pos-
sible outcomes. Either he becomes infected or he does not, with probabilities
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Table 4.1. Chain binomial probabilities in the Reed-Frost model in households of
size 3 with 1 initial infective and 2 susceptibles, S0 = 2, I0 = 1

Chain Final number
Chain probability at p=0.4 at p=0.7 infected

1 −→ 0 q2 0.360 0.090 1
1 −→ 1 −→ 0 2pq2 0.288 0.126 2
1 −→ 1 −→ 1 2p2q 0.192 0.294 3
1 −→ 2 p2 0.160 0.490 3

Total 1 1.00 1.00

p and q respectively. The chained probabilities are then 2pq · p = 2p2q and
2pq · q = 2pq2, respectively.

In Table 4.1 the chain probabilities are calculated for two different values
of p, p = 0.4 and p = 0.7. In 1000 groups of size three with one initial infective,
at p = 0.4, 360 of the groups would be expected to have just one infected,
288 to have two infected, and 192 + 160 = 352 to have three infected at the
end. Similarly, at p = 0.7, 90 would be expected to have one infected, 126 to
have two infected, and 784 to have three infected. Since there are two different
chains by which all three people become infected, if we were not able to observe
the actual chains, we would not know which path the chain had taken. That
is, we may only have data on the number of people who get infected in each
transmission unit or household. So we would have only final value data and
observe the final size distribution.

The R0 in the Reed-Frost model, assuming that the duration of infectious-
ness is one time unit, or d = 1, is R0 = pN , or sometimes R = p(N − 1), if
there is one initial infective. More generally, R = p(N − I0), where I0 is the
number of initial infectives. In this example, if p = 0.4, then R0 = 0.4 ·2 = 0.8.
If p = 0.7, then R0 = 0.7 · 2 = 1.4. In deterministic models, if R0 > 1, the
epidemic will always take off, and if R0 < 1, the epidemic will never take
off. An index that makes more sense in the probabilistic world of stochastic
models is the probability that the epidemic will not take off.

Another index in stochastic models is the probability that an epidemic
will not spread from the initially infected people, called the probability of no
spread, denoted by Pns. It can be calculated from the transmission probabil-
ity p, or escape probability, q = 1− p, the number of initially infected people
in the population I0, and the number of initially susceptible people S0. The
probability that a susceptible person escapes infection from all I0 initial in-
fectives is qI0 . The probability that all S0 of the initial susceptible people
escape infection from all of the initial infectives is Pns = (qI0)S0 . In the above
example, with p = 0.4, the probability of no spread is Pns = (0.61)2 = 0.36.
With p = 0.7, Pns = (0.31)2 = 0.09. The probability of no spread is the same
as the probability that the infection chain ends with just the initial infectives.
The terms minor and major epidemics distinguish situations in which there is
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a little spread from the initial infectives from situations in which an epidemic
gains momentum and is self-sustaining.

4.4.1 The Reed-Frost model

Based on the definition of the Reed-Frost model above, we write the transition
probability of getting It+1 = it+1 new infectives at time t + 1, given St = st

and It = it susceptibles and infectives one time period before as

Pr(It+1 = it+1|St = st, It = it) =
(

st

it+1

) (
1− qit

)it+1 qit(st−it+1), st ≥ it+1 .(4.2)

Then, we can update the number of new susceptibles and recovered people,
respectively, by the equations

St+1 = St − It+1, (4.3)

Rt+1 = Rt + It =
t∑

r=0

Ir. (4.4)

Since the population is closed, we have St+It+Rt = N for all t. The epidemic
process starts with I0 > 0, and terminates at stopping time T , where

T = inf
t≥0

{t : StIt = 0} . (4.5)

Equations (4.2-4.4) form the classical Reed-Frost model. Formal math-
ematical treatment of the model involves formulation of the discrete, two-
dimensional Markov chain {St, It}t=0,1,.... It is the (binomial) random variable
of interest, and St is updated using (4.3). The probability of a particular chain,
{i0, i1, i2, ..., iT } , is given by the product of conditional binomial probabilities
from (4.2) as

Pr(I1 = i1 | S0 = s0, I0 = i0) Pr(I2 = i2|S1 = s1, I1 = i1) · · · (4.6)
Pr(IT = iT |ST−1 = sT−1, IT−1 = IT−1)

=
T−1∏

t=0

(
st

it+1

) (
1− qit

)it+1 qit(st−it+1).

Table 4.2 shows the possible chains for a population of size 4 with one initial
infective, i.e., S0 = 3, I0 = 1.

In some cases, the distribution of the total number of cases, RT , is the
random variable of interest. We let J be the random variable for the total
number of cases in addition to the initial cases, so that RT = J + I0. If we let
S0 = k and I0 = i, then the probability of interest is

Pr (J = j|S0 = k, I0 = i) = mijk, (4.7)
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Table 4.2. Chain binomial probabilities in the Reed-Frost model in households of
size 4 with 1 initial infective and three susceptibles, S0 = 3, I0 = 1

Chain Final number
Chain probability infected

i0 → i1 → i2 → ...→ iT RT

1 −→ 0 q3 1
1 −→ 1 −→ 0 3pq4 2
1 −→ 1 −→ 1 −→ 0 6p2q4 3
1 −→ 2 −→ 0 3p2q3 3
1 −→ 1 −→ 1 −→ 1 6p3q3 4
1 −→ 1 −→ 2 3p3q2 4
1 −→ 2 −→ 1 3p3q (1 + q) 4
1 −→ 3 p3 4

where
∑k

j=0 mijk = 1. Then, based on probability arguments (e.g., see Bailey
1975; Becker 1989), we have the recursive expression

mijk =
(

k

j

)
mijjq

(i+j)(k−j), j < k (4.8)

mikk = 1−
k−1∑

j=0

mijk. (4.9)

Data are usually in the form of observed chains, {i0, i1, ..., ir}, for one
or more populations, or final sizes, RT , for more than one population. With
respect to the former data form, suppose that we have N populations and
let {ik0, ik1, ..., ikr} be the observed chain for the kth population. Then, from
(4.6), the likelihood function for estimating p = 1− q is

L(p) =
N∏

k=1

r−1∏

t=0

(
skt

ikt+1

) (
1− qikt

)ikt+1 qikt(skt−ikt+1), (4.10)

Whether data are available on observed chains or just the final size dis-
tribution, the simple Reed-Frost model assumes that transmission units are
independent of one another as in Figure 4.1a. The initial infectives in the
transmission unit somehow get infected, then the chain of infection unfolds
within the transmission unit without any further introduction of infectives.
Alternatively, one could assume that people, whether the initial infectives or
the others in the transmission unit, are also exposed to infection outside the
transmission unit in the community at large, as in Figure 4.1b, or in other
mixing places. Longini and Koopman (1982) modified the Reed-Frost model
for the case where there is a constant source of infection from outside the
population that does not depend on the number of infected persons in the
population. Analysis of data assuming transmission units in a community are



74 4 Binomial and Stochastic Transmission Models

presented in Chapters 11 and 12. Becker (1989) gives details on different as-
pects of the Reed-Frost model and estimation of the parameters of interest
from data. Bailey (1975) (Sec. 14.3) gives an example where (??) is used to
estimate p̂ = 0.789 ± 0.015 (estimate ±1 standard error) for the household
spread of measles among children.

4.4.2 The Greenwood model

For the Greenwood model, the number of new infectives does not depend on
the number of old infectives, but just on the presence of one or more infectives.
Thus, the transition probability of getting It+1 = it+1 new infectives at time
t + 1, given St = st and It = it susceptibles and infectives one time period
before is

Pr(It+1 = it+1|St = st, It = it) =
{( st

it+1

)
pit+1q(st−it+1), st ≥ it+1 and it > 0

0 otherwise

}
.(4.11)

Analysis of this model is similar to that of the Reed-Frost model.

4.4.3 Stochastic realizations of the Reed-Frost model

Realizations of epidemics according to the Reed-Frost model in equations (4.2-
4.4) can be simulated using a random number generator. At each time t, for
each susceptible person exposed to It infectives, a random number between 0
and 1 is generated. If the random number is smaller than the infection prob-
ability 1 − qIt , then the person becomes infected. If the random number lies
between the infection probability and 1, then the person escapes infection in
that time interval. The actually realized chain then depends on the series of
random numbers that are generated, and varies from realization to realiza-
tion. The probabilities in Tables 4.1 and 4.2 are the expected probabilities of
particular chains if a large number of epidemics are simulated.

Tables 4.3 through 4.5 show realizations of stochastic epidemics in a pop-
ulation with 20 people. Table 4.3 show ten epidemics in populations of size
20 and p = 0.05. Ten epidemics were run with one initial infective, I0 = 1,
S0 = 19, the other ten epidemics were run with three initial infectives, I0 = 3,
S0 = 17. The underlying Reed-Frost model is identical for both types of run,
just the initial conditions are different. The R0 = 1.0, without taking into ac-
count the initial infectives. Taking into account the number of initial suscep-
tibles, the initial reproductive numbers are 0.95 and 0.85, respectively. With
one initial infective, the probability of no spread is Pns = (0.051)19 = 0.377,
with three initial infectives, it is Pns = (0.053)17 = 0.073. The number of
initial infectives is important on how long the chain is, whether any further
infections occur, and the average number of final infectives. The chains in
the table demonstrate the randomness of the epidemics and how in nature,
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Table 4.3. Ten stochastic epidemics with the Reed-Frost model, 20 people, p = 0.05

1 initial infective, I0 = 1 3 initial infectives, I0 = 3

Final Final
Epidemic infected Chain infected Chain

1 1 1→ 0 8 3→ 2→ 2→ 1→ 0
2 1 1→ 0 8 3→ 2→ 1→ 2→ 0
3 8 1→ 3→ 3→ 1→ 0 14 3→ 4→ 3→ 3→ 1→ 0
4 1 1→ 0 4 3→ 1→ 0
5 1 1→ 0 11 3→ 2→ 1→ 4→ 1→ 0
6 2 1→ 1→ 0 4 3→ 1→ 0
7 1 1→ 0 4 3→ 1→ 0
8 1 1→ 0 14 3→ 3→ 3→ 2→ 2→ 1→ 0
9 4 1→ 1→ 1→ 1→ 0 6 3→ 2→ 1→ 0
10 1 1→ 0 10 3→ 1→ 3→ 2→ 1→ 0

Table 4.4. Ten stochastic epidemics with the Reed-Frost model, 20 people, p = 0.06

1 initial infective, I0 = 1

Final number
Epidemic infected Chain

1 1 1→ 0
2 1 1→ 0
3 2 1→ 1→ 0
4 8 1→ 2→ 4→ 1→ 0
5 10 1→ 2→ 4→ 2→ 1→ 0
6 2 1→ 1→ 0
7 12 1→ 1→ 3→ 3→ 1→ 2→ 1→ 0
8 8 1→ 2→ 3→ 2→ 0
9 9 1→ 3→ 2→ 1→ 1→ 1→ 0
10 14 1→ 3→ 3→ 2→ 2→ 2→ 1→ 0

given the same conditions, that many different outcomes can occur merely by
chance.

In Table 4.4, the transmission probability is increased to 0.06, so that R0 =
1.2. Taking into account the one initial infective, the reproductive number is
1.14, and the probability of no spread is Pns = (0.061)19 = 0.309.

In Table 4.5, the transmission probability is increased to 0.06, so that R0 =
2.0. Taking into account the one initial infective, the reproductive number is
1.9, and the probability of no spread is Pns = (0.11)19 = 0.135. A clear
bimodal distribution has emerged at this higher transmission probability. Two
of the epidemics produce only one more infective, but in the other eight, a
majority of the population becomes infected.
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Table 4.5. Ten stochastic epidemics with the Reed-Frost model, 20 people, p = 0.1

1 initial infective, I0 = 1

Final number
Epidemic infected Chain

1 2 1→ 1→ 0
2 16 1→ 3→ 2→ 2→ 3→ 3→ 2→ 0
3 17 1→ 1→ 3→ 5→ 6→ 1→ 0
4 17 1→ 1→ 1→ 2→ 3→ 3→ 4→ 1→ 1→ 0
5 17 1→ 2→ 4→ 6→ 4→ 0
6 16 1→ 1→ 2→ 2→ 4→ 5→ 1→ 0
7 14 1→ 1→ 2→ 4→ 6→ 0
8 19 1→ 3→ 3→ 6→ 3→ 3→ 0
9 17 1→ 1→ 3→ 4→ 4→ 3→ 1→ 0
10 2 1→ 1→ 0

4.5 Stochastic simulation models

The simple Reed-Frost model is the basic building block of small- and large-
scale stochastic simulation models of infectious disease spread and studies
of interventions. Such models need to include 1) the natural history of the
infection of interest, 2) the demographics of the relevant population, 3) the
contact structure and assumptions about where and how transmission occurs,
4) models of the interventions and assumptions about how they will affect
transmission, natural history, or the contact structure. Halloran et al (2002)
and Longini et al (2007) examined vaccination strategies for smallpox. Several
studies of interventions for pandemic influenza have made use of such simu-
lation models (Longini et al 2004; Longini et al 2005; Germann et al 2006;
Ferguson et al 2006; Halloran et al 2008). Here we present one example of
a stochastic simulation model used to examine potential indirect, total, and
overall effects of cholera vaccination.

4.5.1 Endemic cholera and vaccination

In the mid 1980’s, a randomized vaccine trial with OCV in Matlab, Bangladesh,
yielded 70% direct vaccine efficacy for up to two years (Clemens et al 1990;
Durham et al 1998) . Information about Matlab, Bangladesh was used to
construct a model of the population as it was in 1985, consisting of 183,826
subjects (Longini et al 2007). These subjects were mapped into families and
families were distributed in baris, i.e., patrilineally related household clusters.
In the model, baris are further clustered into sub-regions of about 6 square km
in size considered to be the geographic cholera transmission areas. The model
represents the number of contacts that a typical person makes with sources
of potential cholera transmission in the course of a day. The age and bari size
distributions of the population are based on data from Ali et al (2005). (See
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Fig. 4.5. Modeled natural history of cholera. Newly infected people pass through
the incubating state (mean 3.6 days) and infectious state (mean 10.5 days) after
which they recover with immunity or die. The probability distributions of the incu-
bation and infectious periods are shown. It is assumed that 10% of infected people
develop overt cholera symptoms and 90% are asymptomatic. Symptomatic peo-
ple are assumed to be ten times as infectious as asymptomatics. Additionally, the
model allows for 75% of symptomatic working males to withdraw to their sub-region.
(Longini et al 2007)

Chapter 13.2.6). Women and children are assumed to come into contact with
sources of infection in the sub-region where they live, while working males
are assumed to make contact with infective sources in the sub-region where
they live as well as where they work. The modeled natural history of cholera
is described in Figure 4.5.

The model was calibrated to cholera illness incidence data from a large
cholera vaccine trial in the Matlab field area of the International Centre for
Diarrhoeal Disease Research, Bangladesh (ICDDR,B), that took place from
1985 - 1989, described in Chapter 13.2.6. Oral cholera vaccine or placebo
(killed E. coli) was offered to children 2 – 15 years old and women greater
than 15 years old. Matlab has cholera transmission year around, but it gener-
ally experiences a large cholera epidemic from September through December
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Fig. 4.6. Schematic of Effectiveness Comparisons for Two Sub-regions. Sub-region
1 has a fraction f1 > 0 people vaccinated, while the comparison sub-region 2 has
nobody vaccinated, i.e., f2 = 0. (from Longini et al 2007)

and then a somewhat smaller epidemic from March through May every year
(Longini, et al 2002).

Cholera risk was assessed in individuals residing in different sub-regions in
the field trial area. Sub-regions are useful for cluster analysis because they are
geographically discrete with local sources of water. An infection function was
defined that gives each susceptible person’s daily probability of infection from
all possible sources of infection created by infected people excreting cholera
vibrios into the environment or through more direct contact similar to that in
the Reed-Frost model with environmental exposure outside the transmission
units. The probability of infection is proportional to the number of vaccinated
and unvaccinated people in the sub-region where contact is specified to occur.
The model of vaccine effect assumed that immunity resulted in a proportional
reduction in the probability of infection per contact with an infectious source,
i.e., a leaky vaccine. Results were averaged over all the sub-regions within
vaccination coverage strata.

As described in Chapter 2, the indirect, overall, and total vaccine effec-
tiveness were based on the reduction in infection rates when comparing the
appropriate groups within a sub-region with no vaccination to a compara-



4.5 Stochastic simulation models 79

Table 4.6. Vaccination coverage, average incidence rates, and direct effectiveness
(calibration runs) (Longini et al 2007)

Vaccination Mean Direct
Coverage (%) Mean Cases/1,000 (95% CI) Effectiveness (%)(95% CI)
Population Vaccinated Placebo Observed Simulated
Target Overall Observed Simulated Observed Simulated

14 9 2.7 (1.9 to 3.5) 2.8 (0.5 to 6.1) 7.0 (6.5 to 7.5) 7.8 (1.9 to 14.8) 62 65 (52 to 77)
31 20 2.5 (2.0 to 3.0) 1.7 (0.3 to 3.8) 5.9 ( 5.4 to 6.4) 4.7 (0.9 to 10.2) 58 65 (55 to 76)
38 25 4.7 (1.2 to 2.0) 1.3 ( 0.2 to 3.4) 4.7 (4.2 to 5.2) 3.8 (0.8 to 8.6) 67 65 (54 to 77)
46 30 2.3 (1.9 to 2.7) 1.0 (0.1 to 2.5) 4.7 (4.2 to 5.2) 2.8 (0.5 to 6.8) 52 66 (54 to 79)
58 38 1.3 (1.0 to 1.6) 0.6 (0.1 to 1.8 1.5 (1.2 to 1.8) 1.8 (0.3 to 4.8) 14 66 (51 to 50)

ble sub-region with a fraction f > 0 of the population vaccinated (Fig-
ure 4.6). Let rij denote the cholera infection rate for people in sub-region
j with vaccination status i, where i = 0 for unvaccinated and i = 1 for
vaccinated. The indirect effect of vaccination is measured by comparing the
infection rates between the unvaccinated in the two sub-regions. Thus, the
indirect vaccine effectiveness, i.e., IVEF, when comparing sub-region 1 to 2
is IVEF12 = 1 − (r01/r02). The overall effect of vaccination is measured by
comparing the average (over the vaccinated and unvaccinated groups) infec-
tion rates between the two sub-regions. Thus, the overall vaccine effectiveness,
i.e., OVEF, is OVEF1212 = 1− (r.1/r.2), where the · indicates averaging over
the vaccinated and unvaccinated. The total effect of vaccination is measured
by comparing the infection rate in the vaccinated in sub-region 1 to the un-
vaccinated in sub-region 2. Thus, the total vaccine effectiveness, i.e., TVEF,
is TVEF12 = 1 − (r11/r02). In general, these effectiveness measures could be
computed across any gradient of coverage, |f1 − f2|, other than those with
f2 = 0.

The direct effectiveness compares the vaccinated to the unvaccinated
within a sub-region. The direct effect of vaccination is measured by comparing
the infection rates in the vaccinated and unvaccinated in the same sub-region.
The direct vaccine effectiveness, i.e., DVEF, is DVEF1 = 1− (r11/r01)).

The simulation model was calibrated using cholera incidence data observed
in the first year of the vaccine trial (Table 4.6) over a 180 day period to cap-
ture all the cholera transmission during the large annual cholera outbreak.
This was done by varying the transmission probability, p such that the dif-
ferences between the observed incidence rates and the simulated incidence
rates in Table 4.6 were minimized. The estimated reproductive number was
5.0 with a standard deviation of 3.3. The vaccine coverage levels in the target
population and the effective coverage in the entire population from the trial
are summarized in Table 4.6 (See also Table 13.5). Vaccinated people receive
an effective regimen of two doses. The observed cholera incidence rates among
the unvaccinated ranged from a high of 7.0 cases/1,000 over 180 days for the
sub-regions with the lowest coverage in the target population, centered at
14%, to 1.5 cases/1,000 for the highest coverage, centered at 58%. The ob-
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Fig. 4.7. Simulated number of cholera cases/1,000 over a 180 day period in the
Matlab study population for a single stochastic realization A. No vaccination; B.
14% vaccination coverage of women and children; C. 38% vaccination coverage; D.
58% vaccination coverage. (from Longini et al 2007)

served cholera incidence rates among the vaccinated ranged from a high of 2.7
cases/1,000 for the sub-regions with the lowest coverage to 1.3 cases/1,000
for the highest coverage. Vaccine efficacy for susceptibility was set to VES=
0.7 (Clemens et al 1990; Durham et al 1998) and for infectiousness to VEI=
0.5. The simulated incidence rates provided a good fit to the data based on
a χ2 goodness-of-fit test for frequency data (p = 0.84, 9 degrees of freedom).
Figure 4.7 shows the number of cases over time comparing the unvaccinated
to the vaccinated populations for different levels of coverage.

For effectiveness measures, a comparison was made between the interven-
tion sub-regions to hypothetical sub-regions that receive no vaccine, i.e., f = 0.
Table 4.7 shows the indirect, total and overall effectiveness estimated by the
model for possible coverage levels when comparing coverages in the entire
population, two years of age and older, ranging from 10% to 90% compared
to no vaccination. For example, the average indirect effectiveness, compar-
ing a population with a coverage of 30% to one with no vaccination is 70%.
This indicates that on average, the cholera incidence among unvaccinated peo-
ple in a population with 30% coverage would be reduced by 70% compared
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Table 4.7. Average indirect, total,and overall effectiveness of vaccination, and cases
prevented per 1,000 two-dose regimens (Longini et al 2007)

Vaccination Mean effectiveness (%) (95% CI) Mean cases prevented per

coverage (%) Indirect Total Overall 1,000 dose regimens (95%)

10 30 (−39 to 83) 76 (47 to 95) 34 (−30 to 84) 40 (−34 to 97)
30 70 (31 to 93) 90 (76 to 98) 76 (44 to 95) 30 (17 to 36)
50 89 (72 to 98) 97 (91 to 99) 93 (82 to 99) 21 (19 to 23)
70 97 (91 to 99) 99 (97 to 100) 98 (95 to 100) 16 (15 to 17)
90 99 (98 to 100) 100 (99 to 100) 100 (99 to 100) 13 (12 to 14)

with a completely unvaccinated population. At this level of coverage, the to-
tal effectiveness of 90% indicates high protection for a vaccinated person in
a population with 30% vaccination coverage, while the overall effectiveness
of 76% indicates a good overall reduction in risk to the overall population.
According to the model, around 40 cases of cholera are prevented per 1000
two-dose regimens of vaccine at low coverage to 13 cases at high coverage. At
coverage levels of 50% and higher, all levels of effectiveness exceed 85%.

From Table 4.6, we see that the simulated direct effectiveness at all cov-
erage levels is estimated from the simulations to be about 66%, while the
vaccine efficacy for susceptibility, VES , is preset at 70%. This small underes-
timation is due to the fact that the model assumes the vaccine effect to be
a 70% reduction in the risk of infection per contact with an infective source,
i.e., a leaky effect, but the risk ratio estimator of vaccine effectiveness over
the entire cholera epidemic is used. The risk ratio estimator allows comparison
with the primary estimator used in the cholera vaccine trial in Matlab. The
analysis implies that mass immunization with oral killed whole-cell based vac-
cines could possibly achieve a substantial reduction in cholera in an endemic
setting, even with modest levels of vaccine coverage, due to the combination
of direct and indirect vaccine protective effects.

4.5.2 Use in Study Design

In general, stochastic simulation models are useful for generating simulated
data with variability so that methods of analysis can be used and compared.
Stochastic computer simulations are especially useful in helping to design
studies and to develop new methods of analysis (see for example, Halloran et
al (2002), or Golm, et al, 1999 or Longini, et al, 1999). Deterministic models
do not generate variability, but can be used to understand properties of the
transmission system.

Problems

4.1. Reed-Frost Model
Compute the average number of people infected in the four examples of 10
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epidemics in Tables 4.3 through4.5. Make histograms of the number of people
infected in each set of 10 epidemics and compare the shapes of the histograms.

4.2. Final size distribution of the Reed-Frost model
(a) Compute the final size distribution from Equations 4.8 and 4.9 for house-
holds of size 4 with one initial infective when p = 0.4.
(b) Compare it to the final size distribution obtained using the chain proba-
bilities in Table 4.2.


