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Modes of Action and Time-varying VES

7.1 Mode of action and choice measures

7.1.1 Type I and Type II modes of action

In Chapter 6, vaccine efficacy results were reported simply based on relative
cumulative incidence or rates without any further interpretation of the mean-
ing of the efficacy estimate. Suppose you have just been vaccinated against
an infectious agent. Your physician or health practitioner tells you that the
protective efficacy of the vaccine is 90 percent. You might then wonder if that
means that the vaccine reduces your probability of contracting the infection
(or disease) by 0.90 at each exposure to infection. In other words, you still
might have a finite probability of contracting the infection or disease each time
you are exposed, but it is much less than it would have been if you had not
been vaccinated. Alternatively, you might think that it means that you have
a 0.90 probability of being completely protected against the disease, but still
a 0.10 probability that you received absolutely no protection against infection
or disease compared to what if would have been had you not been vaccinated.
That is, the vaccine fails to elicit a protective immune response in 10% of the
vaccinated people. Would you behave differently if you knew which of these
possibilities were actually true? Would it make a difference if the vaccine were
against a disease with a high fatality ratio? Would it make a difference if the
efficacy were 60 percent rather than 90 percent?

In 1984, Smith, Rodriguez, and Fine published a paper that grew out of a
student exercise that altered the discussion about interpreting and evaluating
protective efficacy of vaccines. They consider two models of vaccine mecha-
nism they called Type I and Type II. In the Type I mechanism, vaccination is
assumed to reduce the instantaneous disease rate in all the vaccinated people
by a constant proportion. That is, Type I assumes that protection is multi-
plicative on the baseline hazard of infection. The effect is homogeneous in the
vaccinated population. In the Type II mechanism, vaccination is assumed to
provide a constant proportion of individuals with complete immunity from
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the disease. That is, it completely protects a portion of the vaccinated peo-
ple, but completely fails to protect in the other portion. Under the Type II
mechanism, the distribution of protection is heterogeneous in the vaccinated
population.

Smith et al (1984) consider how these assumed models affect the choice
of analysis in cohort studies and sampling of controls in case-control studies.
Their discussion considered two of the measures of vaccine efficacy that do not
condition on exposure to infection, that is vaccine efficacy measures based on
Level II and III information and vaccine efficacy based on level IV information.
The first, which they considered as one, was based on the hazard rate or
cases per person-time at risk, VES,λ or VES,IR. The second was based on
the number of cases per person at risk, the cumulative incidence or attack
rate, VES,CI or VES,AR. Their motivation was originally in the design of
alternatives to randomized studies, but the results for the cohort studies apply
as well to randomized controlled trials.

7.1.2 Leaky and all-or-none modes of action

Before continuing the discussion of the implications of the two models of vac-
cine action for choice of measures in vaccine studies, we divert to explain why
we prefer the use of the term leaky for Type I and all-or-none for Type II
models. In the early 1980’s the possibility of developing effective malaria vac-
cines created a great deal of excitement. The malaria parasite has a complex
life cycle with separate antigenic stages. Malaria sporozoites are injected by
the mosquito into the human and are the stage infective for humans. Asex-
ual blood stages, or merozoites, subsequently develop and are responsible for
malaria disease. Sexual blood stage parasites, or gametocytes, develop from
the asexual blood stage and are the stage that are infective for mosquitos.
Malaria vaccines were being developed against each of the three main stages,
so vaccine candidates were directed at blocking infection, modifying disease
once infected, and blocking transmission to the mosquito, corresponding to
VES , VEP , and VEI . A sporozoite vaccine was expected to prevent infection
either by inhibiting invasion of liver cells or by impairing effective reproduc-
tion once the parasite was in the liver. If the inhibition were not complete,
then essentially the liver would let parasites through and be leaky. Struchiner,
Halloran, and Spielman (1989) and Halloran, Struchiner and Spielman (1989)
developed models of malaria vaccination that separately considered its effect
on infection, disease, and transmission to mosquitos. The mechanism of the
vaccine model’s effect on susceptibility to infection reduces the probability of
infection given a bite by an infected mosquito, corresponding to the expected
direct effects of a leaky sporozoite vaccine that does not provide sterile im-
munity. Thus the term “leaky” for a multiplicative effect on the transmission
probability comes from the image of the malaria parasites getting through a
leaky immunity in the liver. Halloran et al (1989) and Struchiner et al (1989)
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also considered waning of immunity and the role of natural boosting of infec-
tion in their dynamics models.

In a study of the use of case-control studies under complex disease trans-
mission patterns, Struchiner et al (1990) adopted the term “leaky” rather
than Model 1 as suggested by Smith et al (1984). The motivation was partly
because it is more descriptive than the term Model 1, partly because it also
was meant to take into account the effect on the transmission probability, and
partly because the approach grew out the malaria vaccine research. Smith et
al (1984) did not discuss exposure to infection or any biological mechanism
for the different models of vaccine action. There was considerable resistance
in the early 1990’s in parts of the vaccine community against the term leaky
because of its potentially negative connotations. However, as recognition in-
creased that vaccines often protect more against disease than infection, the
term leaky has gained wider acceptance.

We also prefer the term “all-or-none” (Halloran et al 1991) to Model 2 for
a vaccine that protects a portion of the vaccinated people completely and the
rest of the vaccinated not at all because it is more descriptive. As early as 1915,
Greenwood and Yule discussed possible heterogeneities in susceptibility in the
vaccinated and unvaccinated groups. Correlation of the antibody response
with the distribution of infection rates also suggests that there is heterogeneity
in protective response. For example, in the first 17 months of follow-up in a
hepatitis B vaccine trial, 10 of the 11 infections in vaccinees accrued in the
hypo- or nonresponders (Francis et al 1982). In a live virus varicella vaccine
trial, incidence in the 17 percent of vaccinees with low antibody titer was
between 5 and 13 percent per year, whereas in vaccinees with high antibody
titer, incidence averaged less than 2 percent per year (White et al 1992). We
use the terms leaky and all-or-none rather than Model 1 and Model 2 while
wanting to give credit to Smith et al (1984) for the important and interesting
discussion begun with their arguments presented in the next section.

7.1.3 Implications for choice of efficacy measures

Consider a randomized controlled trial with equal numbers of individuals in
the placebo and vaccinated groups with both groups followed for an equal
period of time. In this simple example, assume there is no loss to follow-up or
deaths, that all cases of disease are ascertained and the time of onset of each
case is known (Table 6.1). The measures of interest are based on the hazard
rate or cases per person-time at risk, VES,λ or VES,IR, and the cumulative
incidence or attack rate, VES,CI or VES,AR. If the incidence rates and the
attack rates are low, then the two measures will be approximately equal, and
it makes little difference which measure is used to compute vaccine efficacy,
whereby the approach using the hazard rate or person-time at risk does allow
for different follow-up times. However, in many cases the appropriate choice of
vaccine efficacy measure may depend on whether the mode of action is leaky
or all-or-none.
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Fig. 7.1. Proportion of individuals without disease by time since start of trial
under two models of vaccine action, (a) leaky, (b) all-or-none (adopted from Smith,
Rodriguez, and Fine 1984).

For the leaky model, Smith et al (1984) considered an essentially continu-
ous time model. Suppose that in a small interval of time (t, t + δt) the prob-
ability of an unvaccinated person contracting disease is λtδt. Also, suppose
that vaccination reduces the probability to Rλtδt, with R assumed constant
over time. Consider also that λt = λ for all t, although this assumption is
not necessary. Figure 7.1a shows the survival curves for the unvaccinated and
vaccinated groups. The proportion of individuals in each group who would be
expected to develop disease by time T would be 1 − e−λT and 1 − e−λRT .
Thus the calculated VES,CI(T ) given here as a function of T (Greenland and
Frerichs 1988) is

VES,CI(T ) = 1− 1− e−λRT

1− e−λT
. (7.1)

VES,CI(T ) in equation (7.1) decreases to zero as the follow-up time T in-
creases. That is, this model allows everyone to get disease if the follow-up
time is long enough. However, based on VES,IR(T ) = 1− (c1/Y1)/(c0/Y0), or
VES,λ, it is easy to show (see Problem 7.1) that VES,IR(T ) does not change
with time, thus

VES,IR(T ) = 1−R. (7.2)

Under the all-or-none model, the assumption is that vaccination provides
a proportion (1 − R) of the vaccinated group with complete immunity from
the disease. The probability of an unvaccinated person contracting disease in
the small time interval (t, t + δt) is still λtδt, and once again it is simple to
assume that λt = λ for all t. In the people who were vaccinated but in whom
the vaccine provides no protection, the probability of contracting disease in a
short interval is the same as in the unvaccinated people, λδt. Figure 7.1b shows
the survival curves for the vaccinated and unvaccinated groups under the all-
or-none model. From the initiation of the trial up to time T , the proportions
in each group expected to have developed disease would be 1 − e−λT and
1− (1−R)−Re−λT = R(1− e−λT ).
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VES,CI(T ) = 1−R. (7.3)
VES,IR(T ) = 1/[1 + R(1− eλT )/Tλ(1−R)]. (7.4)

So under the all-or-none model, the time invariant measure of vaccine efficacy
is VES,CI(T ). The value of VES,IR(T ) or VES,λ(T ) will tend to one as the
people in the vaccinated group who are still susceptible to disease are depleted,
leaving only those who are completely immune.

Smith et a (1984) showed that if in a randomized study VES,CI(T ) de-
creases with time, but VES,IR(T ) (VES,λ(T )) remains constant, the result
would be suggestive of a leaky, multiplicative mechanism. On the other hand,
if VES,CI(T ) is constant, but VES,IR(T ) increases with time, the result would
suggest an all-or-none mechanism. This result is the same for randomized
prospective studies or observational cohort studies. Other mechanisms could
explain time-varying efficacy estimates. In Section 7.3, we consider the situa-
tion that the efficacy within individuals actually does wane with time, which
provides a biological mechanism for a time-varying vaccine efficacy. Also, het-
erogeneities in exposure to infection could play a role. In Chapter 8, we con-
sider case-control studies, including the findings of Smith et al (1984). More
general distributions of protection were developed (Halloran et al 1992) and
Brunet et al (1993) developed a method of estimation based on state space
models.

7.1.4 Attack rates versus transmission probabilities

Suppose that the infection process occurs as discrete exposures to infection
(Halloran et al 1991) rather than in continuous time models as in Smith et
al (1984). The question then is to define a direct protective effect of vacci-
nation given a specific amount of exposure to infection, not just comparable
exposure to infection. To be biologically interpretable and to be robust to dif-
ferent transmission conditions, the parameters of interest might need to take
account of the type and amount of exposure. The following argument shows
how vaccine efficacy measured using the attack rate can depend on the num-
ber of exposures to infection, thus could vary from population to population
(Halloran et al 1991).

Let p0 be the probability of transmission to an unvaccinated person after
one exposure. Let p1 = θp0 be the probability of transmission to a vaccinated
person after one exposure, where θ is the multiplicative, leaky effect on the
transmission probability in the vaccinated person. Let AR1(n), AR0(n) and
VEAR(n) denote the attack rates and vaccine efficacy based on the attack
rates that would be observed after everyone had n exposures to infection.
Assume that everyone in the population receives actually one exposure to
infection, and that there are N0 and N1 individuals in the unvaccinated and
vaccinated groups. Then the attack rates in the vaccinated and unvaccinated
groups are
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AR1(1) =
p1N1

N1
= p1 = θp0, AR0(1) =

p0N0

N0
= p0 ,

so that the VEAR(1) and VEp are the same,

V EAR(1) = 1− AR1(1)
AR0(1)

= 1− p1

p0
= V Ep = 1− θ. (7.5)

Now assume that everyone in the population is exposed to infection a
second time. We assume a discrete model of infection and that each exposure
is independent of the previous exposures. The attack rates in the unvaccinated
would now be given by the probability of having been infected by the first
infective plus the probability of being infected by the second infective given
that a person was not infected by the first infective. Then

AR1(2) = p1 + (1− p1)p1 = p1(2− p1) = θp0(2− θp0) (7.6)
AR0(2) = p0 + (1− p0)p0 = p0(2− p0) (7.7)

Thus, after two exposures,

V EAR(2) = 1− p1(2− p1)
p0(2− p0)

= 1− θ(2− θp0)
(2− p0)

, (7.8)

so that VEAR(2) < VEp. In general, for n exposures to infection,

V EAR(n) = 1− 1− (1− p1)n

1− (1− p0)n
= 1− 1− (1− θp0)n

1− (1− p0)n
, (7.9)

It can be shown by induction that for n > 1, VEAR(n) < VEp.

Example

Suppose a vaccine has a multiplicative, leaky effect that is the same in everyone
and reduces the probability of transmission per potentially infective exposure
by 80 percent, VEp = 0.80. Then the transmission probability in vaccinated
people would be 20 percent of that in unvaccinated people, so that p1 = 0.20p0.
Suppose we want to evaluate the efficacy of the vaccine in a study population
of 2000, where 1000 individuals are vaccinated and 1000 are not. Assume for
this disease that p0 = 0.25, so that p1 = 0.20 · 0.25 = 0.05. At the end of one
month, assume that every person in the study has had exactly five exposures
to infection. What is the expected attack rate in each group and the VEAR(5)
after one month?

In the unvaccinated group, the probability of becoming infected is 1 −
(1 − p)5 = 1 − 0.755 = 0.76, so the expected number of infections in the
unvaccinated group is 1000 people ×0.76 = 760. In the vaccinated group,
the probability of becoming infected after five exposures is 1− (1− 0.05)5 =
1 − 0.955 = 0.23, so the expected number of infections in that group is 1000
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people×0.23 = 230. Then VEAR(5) = 1−(230/1000)/(760/1000) = 1−0.30 =
0.70, which is lower than the vaccine effect on the transmission probability,
VEp = 0.80.

Suppose that after two months, each individual has had exactly ten ex-
posures. Now the expected number of infections in the unvaccinated group is
(1−0.7510)×1000 = 943, and in the vaccinated group, it is (1−0.9510)×1000 =
401. After ten exposures, the VEAR(10) = (401/1000)/(943/1000) = 0.57.
The vaccine seems less efficacious after two months even though the effect of
the vaccination on the transmission probability has not waned.

As the number of exposures in the two groups increases, the observed vac-
cine efficacy based on the attack rate will decrease to zero. Eventually every-
one in both groups will become infected under the multiplicative assumption
if they are exposed often enough, illustrating the meaning of a multiplicative
or leaky model at the transmission probability level. In principle, people can
still become infected if exposed often enough.

Suppose we use the model in continuous time (Chapter 4.3.3) and simi-
lar to Smith et al (1984), but take into account the number of exposures to
infection. Assume that c is the contact rate with infectives. Then λ0 = cp
and λ1 = 0.20cp. In continuous time, VES,λ = 1 − λ1

λ0
= 0.20, giving the

same answer as the multiplicative effect on the transmission probability. In
the unvaccinated group, the probability of being infected after five exposures
in the first month is 1 − exp(−5 · 0.25) = 0.713 and in the vaccinated group
is 1 − exp(−5 · 0.05) = 0.221, so the expected number of infections is 713
in the unvaccinated group and 221 in the vaccinated group. The number
of expected infections is different than calculated above from the discrete
model. The observed VES,AR(5) = 1 − 0.221/0.713 = 0.69, similar but not
identical to that calculated from the discrete model. After 10 exposures, the
VEAR(10) = 1− (0.393/0.918) = 0.57, the same as using the discrete model,
though the expected number infected in the vaccinated and unvaccinated
groups are different when calculated using the discrete model above.

7.2 Frailty mixture models for VES,λ

7.2.1 Mixing models

In this section we consider estimation and interpretation of vaccine efficacy
when the distribution of protection can include some people who are com-
pletely protected, some who have no protection, and the rest having a con-
tinuous distribution of protection (Longini and Halloran 1996; Halloran et al
1996). A frailty model is a survival analysis model that allows for unmea-
sured heterogeneity in the population. The frailty mixing model developed
here falls into the general category of frailty models (Vaupel 1979) used in
survival analysis, but like cure models (Farewell 1982), it allows for a point
mass at 0.
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In the following development it is important to distinguish between hetero-
geneity in the distributions of the hazard rates and heterogeneity in vaccine
effects. Assume that the heterogeneity in susceptibility in the unvaccinated
and vaccinated groups is described by the nonnegative mixing random vari-
ables Z0 and Z1. Assume that the distribution of susceptibility in each group
is such that α0 and α1 are the proportion of people in each group that are
highly protected, that is, not susceptible to infection such that Zν , ν = 0, 1
has point mass αν at 0. The susceptibility in the susceptible proportion follows
a continuous distribution fν() with probability 1− αν . Thus,

P (Zν = 0) = αν , (7.10)
Zν |Zν > 0 ≡ Xν ∼ fν(), with probability 1− αν .

The distribution fν allows flexibility to model the shape and spread of the
continuous part of the distribution of Zν . However, in the estimation problem
here the mean is not identifiable. Thus, let fν() be from a two-parameter
family, but with E(Xν) = 1. Furthermore, let var(Xν) = δν . Then E(Zν =
1− αν , and var(Zν = (1− αν)(δν + αν).

An example of the distribution of susceptibility in the vaccinated and un-
vaccinated groups if Xν follows a gamma distribution is shown in Figure 7.2.
In this example, α0 = 0.1 and α1 = 0.5. The expectation of the random
variable in the susceptible proportion of each group equals one. In the vacci-
nated group, the susceptibility is reduced by the factor θ = 0.5 in the people
still susceptible, The area under each curve of susceptibles is α0 and α1 in
the unvaccinated and vaccinated groups. For a vaccine that highly protects
some people while conferring partial protection on the rest, there are several
measures of vaccine efficacy. The difference between the proportion highly
protected in each group, VEα = α1−α0, measures the proportion of the pop-
ulation highly protected due to vaccination. The measure VEθ = 1− θ is the
efficacy of the vaccine in conferring partial protection conditional both on a
specified exposure to infection and on remaining to some degree susceptible.

The summary measure of protective vaccine efficacy is the expected rela-
tive reduction in susceptibility conferred by the vaccine at the beginning of
observation,

VE(0)S,SUM = 1− (1− α1)θ
1− α0

. (7.11)

If the α0 = 0, that is, no one in the unvaccinated group is completely pro-
tected, then the summary measure of vaccine efficacy under heterogeneity
is

VE(0)S,SUM = 1− (1− α)θ. (7.12)

7.2.2 Frailty model

Following the ideas of dependent happenings (Chapter 2.4), let P (t) be the
infection point prevalence at time t. Then the individual level hazard rate to



7.2 Frailty mixture models for VES,λ 139

1 2 3 4

α0

increasing susceptibility

0.2

0.4

0.6

0.8

1

1.2

1.4

density

density

point mass

unvaccinated

1-

α0

1 2 3 4

α1

increasing susceptibility

density
point mass

vaccinated

1-

α1

1.0

0.1

1.0

0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

density
pro

ba
bili

ty
pro

ba
bili

ty

a

b

Fig. 7.2. Schematic distribution of susceptibility in the (a) unvaccinated and (b)
vaccinated groups. The proportion highly protected is α0 = 0.1 in the unvaccinated
and α1 = 0.5 in the vaccinated. The expectation of the random variable in the
susceptible proportion of each group is equal to one. The area under each curve of
susceptibles is 1− α0 and 1− α1 in the unvaccinated and vaccinated groups. In the
vaccinated group the susceptibility is reduced by the factor θ = 0.5.

an unvaccinated and vaccinated person at time t, respectively, is

λ0(t) = Z0cpP (t), λ1(t) = Z1cpP (t). (7.13)

To derive the survival function, let Sν(t) be the fraction of the stratum ν that is
considered to be at risk of infection at time t, t ≥ 0. The assumption is made
here that the population is closed to immigration, but open to emigration
(that is, right censoring), so that Sν(t) is a survival function. In addition, the
assumption is made that vaccination takes place at or before time 0, and that
the effects of vaccination do not wane over time. Then the population survival
functions are

Sν(t) = E[exp {−ZνΛν(t)}] = LZν {Λν(t)} , (7.14)
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where

Λ0(t) = cp

∫ t

0
P (τ)dτ,

Λ1(t) = θΛ0(t), and LZ( ) is the Laplace transform (Aalen 1988, 1992). The
Laplace transform of Zν is

LZν (s) = αν + (1− αν)LXν (s). (7.15)

If Xν follows a gamma distribution with both scale and shape parameters
equal to 1/δν , then from equations (7.14) and (7.15),

Sν(t) = αν + (1− αν)
{

1
1 + Λν(t)δν

}1/δν

(7.16)

When δν = 0, then Xν is degenerate at 1, and

Sν(t) = αν + (1− αν) exp {−Λν(t)} . (7.17)

Statistical inference

This approach is for data in grouped survival form with observations made
at times t0(= 0), t1, . . . , tk. Define the time intervals as [ti−1, ti), i = 1, . . . , k.
Then let P (t) be piecewise constant on these intervals, where P (t) = Pi in
interval i. Then from equation (7.14),

Λ0(t) = cp

∫ t

0
P (τ)dτ = cpκ






i∑

j=1

(tj − tj−1)Pj + (t− ti)Pi




 , t ∈ [ti, ti+1),

where κ is a proportionality constant related to the proportion of a time
interval that infected individuals are infectious (Halloran et al 1996). Here the
Pi are treated as observed quantitities and not as parameters to be estimated.

The parameters to be estimated are c, p, κ, α0, α1, δ0, δ1, and θ. Set a =
cpκ, since c and p cannot be separately estimated from data with no contact
information (Rhodes et al 1996), and κ is simply a proportionality constant. To
formulate the likelihood function for observations from the population under
study, let riν be the number of people at risk in group ν at the beginning of
interval i, minus half those who are lost to follow-up during the interval i,
and let miν be the number infected during that interval. Then the likelihood
function is

L(data|a, α0, α1, δ0, δ1, θ) =
k∏

i=1

1∏

ν=0

{
Sν(ti)

Sν(ti−1)

}riν−miν
{

Sν(ti)
1− Sν(ti−1)

}riν

(7.18)

(see Aalen 1988). The likelihood function (7.18) can be maximized using stan-
dard methods.
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Fig. 7.3. a, diagnostic natural log minus log survival plots checking the propor-
tional hazards assumption for vaccine conferring homogeneous partial protection,
an all-or-none vaccine, and a mixed degenerate vaccine model compared with the
unvaccinated group. b, plots of 1− hazard ratios for homogeneous partial protec-
tion (θ = 0.5), the all-or-none vaccine (α1 = 0.5), and the mixed degenerate model
(θ = 0.75, α1 = 0.33). VESUM = 0.5 at time t0 = 0 in these three cases (Halloran
et al 1996).

Halloran, et al (1996) explored the potential use of the above described
frailty mixture model for the estimation of VES,λ over the parameter space
that covers the possibilities of most vaccine studies. They showed that the
parameters are identifiable under reasonable field conditions as long as there
is not too much right censoring. Most importantly they showed that the con-
ventional VES estimators based on proportional hazards and cumulative inci-
dence, can be considerably biased when unmeasured heterogeneity is present.
This bias is removed when the correct frailty mixture model is used. Vio-
lation of the proportional hazards assumption under frailty distributions is
illustrated in Figure 7.3. The model is also applicable if there is heterogeneity
in exposure to infection, though the interpretation of the estimates is different.

7.2.3 Measles outbreak in Burundi

A measles outbreak started in Muyinga, Burundi, in April 1988. The outbreak
peaked in October 1988 and was over by December of that year (Chen et al
1994; Longini et al 1993). Measles illness histories were compiled after the
outbreak for children aged 9 to 60 months. Only the month of onset of the
measles illness was accurately recorded for most of the children (Table 7.1).
Monthly measles incidence is given in the last column of Table 7.1. Initially
1,436 children had no previous history of measles illness and known measles
vaccination status, that is, they had childhood immunization cards. Of these
1,436 children, 857 (60%) were vaccinated against measles before the outbreak.
An additional 140 children were vaccinated during the outbreak. During the
outbreak, 129 of the unvaccinated and 93 of the vaccinated children developed
measles illness.

In the analysis of the data in Table 7.1, the vaccination times of the 140
children who were vaccinated during the outbreak were treated as right-
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Table 7.1. Numbers at risk, ill and monthly exposure for the measles epidemic
Muyinga, Burundi, April–November 1998 (from Longini and Halloran 1996).

Unvaccinated Vaccinated Exposure

i Month At risk Ill % At risk Ill % p× 100%

1 April 579 10 1.7 857 9 1.1 1.3
2 May 551 13 2.4 848 13 1.5 1.9
3 June 517 13 1.9 835 2 0.2 0.9
4 July 483 12 2.5 833 20 2.4 2.4
5 August 451 22 4.9 813 18 2.2 3.2
6 September 408 50 12.3 795 24 3.0 6.4
7 October 337 12 3.6 771 7 0.9 1.7
8 November 317 0 0.0 764 4 0.0 0.0

Total 129 93

censored times. The measles incidence in September was aberrantly high.
There were only seven months, (k = 7), of measles incidence data, so δ0 and
δ1 could not be estimated and were set to 0, so that the survival functions
(7.17) were used in the likelihood function (7.18). In this case the summary
vaccine efficacy is VESUM (0) = 1− (1− α1)θ. The values calculated for {Pi}
were taken from the study population and are shown in Table 7.1. The max-
imum likelihood estimates and their standard errors are â = 1.66 ± 0.14,
α̂1 = 0.805 ± 0.060, and θ̂ = 2.76 ± 1.24. The measles vaccine completely
protected an estimated α̂1 = 0.805,(95% CI, 0.687– 0.924) of the vaccinated
children. The estimate of θ is greater than 1, suggesting that, assuming equal
exposure, the relative per contact risk of contracting measles is higher in the
vaccinated children who do not receive complete protection than it is in the
unvaccinated children. The estimated summary measure of vaccine efficacy at
time 0 is V̂ESUM (0) = 0.462 (95% CI, 0.318–0671).

Table 7.2 gives the observed and expected (based on the fitted model)
number of measles illness. The χ2 goodness of fit statistic is 12.8 with 11
degrees of freedom. This yields a p-value of 0.3, so the model fits the data
by this criterion. However, the distribution is not strictly χ2 because of the
correlation of the data over time. In future analyses, one might want to fit
different models and use model selection tests such as likelihood ratio tests to
choose among models (Hudgens and Gilbert 2008).

7.2.4 Model selection in low dose challenge studies

In human field studies, we generally cannot observe the actual number of
potentially infectious contacts that each person makes. However, in a recent
challenge study in macaques with an HIV vaccine candidate, repeated chal-
lenges were made and the infection status monitored (Ellenberger et al 2006).
One of the 14 macaques in the control arm and four of the 16 in the vaccine
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Table 7.2. Observed and expected frequencies for the model fitted to the data from
the measles epidemic Muyinga, Burundi, April–November 1998 (from Longini and
Halloran 1996).

Unvaccinated Vaccinated

i Month Observed Expected Observed Expected

1 April 10 12.6 9 9.8
2 May 13 16.7 13 12.8
3 June 13 7.6 2 5.8
4 July 12 19.1 20 14.7
5 August 22 23.0 18 16.7
6 September 41.0 12.3 24 27.2
7 October 12 9.4 7 6.0

Total 129 93

arm were not infected when the study ended. Hudgens and Gilbert (2008)
developed a clever method to distinguish using statistical methods whether
the protective effect of the vaccine were leaky or all-or-none. The data are
in the online supporting material of their paper. They used a discrete time
survival model similar to equation (7.9), but also including a term for com-
plete protection, making it a discrete time analogue of the summary measure
of vaccine efficacy under heterogeneity in equation (7.12):

V ES(n) = 1− (1− α){1− (1− θp)n}
1− (1− p)n

. (7.19)

They developed maximum likelihood methods to estimate the transmission
probability in the unvaccinated group, the proportion with complete protec-
tion, and the multiplicative effect on the transmission probability. They used
a likelihood ratio test and the Akaike Information Criterion (AIC) to compare
the leaky model, the all-or-none model, the summary model under heterogene-
ity, and the null model. They found that the statistical evidence suggested that
the vaccine candidate had a significant leaky effect. These methods could be
used for other repeated low dose challenge studies or studies where the ex-
posures to infection are known. The power for detecting an all-or-none effect
was observed to be greater than the power to detect a leaky effect.

7.3 Estimating waning efficacy

7.3.1 Waning efficacy in the cholera vaccine trial

Unmeasured heterogeneities in susceptibility, protection, and exposure to in-
fection can produce time-varying estimates of VES,IR(t) or VES,λ(t) that are
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Table 7.3. Piecewise constant RR estimates, with approximate 95% confidence
intervals for the oral whole cell and oral B-subunit whole cell vaccines, Matlab,
Bangladesh, May 1, 1985 to November 30, 1989 (Durham et al 1999)

Year Dates Whole cell vaccine BS whole cell vaccine

RR 95% CI RR 95% CI

1 May 1985–April 1986 0.44 [0.32–0.62] 0.33 [0.23–0.48]
2 May 1986–April 1987 0.45 [0.32–0.65] 0.47 [0.33–0.67]
3 May 1987–April 1988 0.55 [0.34–0.86] 0.86 [0.57–1.29]
4 May 1988–December 1989 1.21 [0.70–2.10] 0.83 [0.45–1.52]

a result of the underlying heterogeneities, while true waning of protection or
boosting of protection can lead to real time-varying effects.

A traditional method to examine for waning vaccine efficacy over time has
been to partition the time axis into time intervals and to assume that the
efficacy is constant within each interval. Then a separate constant VES,IR(t)
is estimated for each time interval. If there is time dependence, then the
estimates will vary across the time intervals.

This method of partitioning the time axis was used to estimate VES,IR(t)
of oral killed whole-cell (WC) and oral B subunit killed whole-cell (BS-WC)
oral cholera vaccines of a randomized, double-blinded vaccine trial in Matlab,
Bangladesh (Clemens 1990) (Chapter 6.4.6). In a longer term follow-up from
May 1, 1985 to November 30, 1989, 580 cases of cholera occurred, with 284,
150, and 146 in the placebo, WC vaccine, and BS-WC vaccine groups. The
efficacy of both vaccines appeared to wane. The methods used to analyze
waning vaccine efficacy from this trial involved partitioning the study duration
into discrete time units and comparing piecewise constant incidence rate ratio
estimates for successive time periods (Clemens et al 1990, van Loon et al
1996). For example, Table 7.3 gives the piecewise constant incidence rate ratio
estimates for the whole cell and B-subunit whole cell vaccines. The incidence
rate ratio for each year is calculated by using a ratio of incidence rates, where
the incidence among those vaccinated is compared with the incidence among
the unvaccinated. The time period called year 4 includes 19 months of follow-
up, after which there were no observed cholera cases. The incidence rate ratio
(RR) estimates appear to increase, so the efficacy estimates decrease across
the time period.

Thus, we see a waning time trend in efficacy, with no significant protection
by the fourth year. However, because the data have been grouped into years,
it is difficult to be more precise about when and how these changes in efficacy
occur. Since the partitioning boundaries are selected at one year intervals, it
is not clear if the waning protection is continuous or precisely at what point in
time significant protection is lost. With use of a Poisson regression including
covariates, the problem still remains of how to partition the time axis into
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FIGURE 2. Log-minus-log plots of the Kaplan-Meier estimates of the survival curves for the placebo and two vaccines, Matlab, Bangladesh,
May 1, 1985, through November 31, 1989. WC, whole killed cell; BS-WC, B subuntt whole killed cell.

plot of the VE(f) estimates for WC and BS-WC vac-
cines for both biotypes, and table 1 gives the efficacy
estimates and approximate 95 percent confidence in-
tervals for selected time points throughout the study.
The p values for the hypothesis test for departures
from the proportional hazards assumption are 0.008
and 0.002 for the estimated model of the WC and
BS-WC vaccines, respectively. This indicates that
there is significant waning. The WC vaccine gives
fairly constant and significant protection, with a VE of
about 0.50, for the first 2'/> years of the trial, but then
protection appears to wane rapidly. After 3 years of
the trial (May 1988), the point estimate of the VE is
0.245 and the 95 percent confidence interval covers
zero. Protection from WC-BS vaccine starts out higher
than for the WC vaccine, i.e., 0.713 versus 0.430, but
then gradually wanes at a fairly constant rate, i.e.,
about 2-3 percent per month.

Figure 4 and tables 2 and 3 give the biotype-specific
estimated VE of the two vaccines. There were no
classic biotype cholera cases after the third year. On
average, both vaccines give better protection against
the classic than against the El Tor biotype. The WC
vaccine gives fairly constant and significant protection
against the classic biotype, with an estimated VE of
about 0.65, for the first 2>/2 years of the trial. For the
El Tor biotype, such protection is estimated to be
about VE = 0.40 for the first 2'/2 years of the trial. The
initial VE estimates (i.e., at time zero) for the BS-WC
vaccine were 0.848 and 0.715 against the classic and
El Tor biotypes, respectively. However, protection
waned with time.

Figure 5 and tables 4 and 5 give the age-specific
estimated VE of the two vaccines. Both vaccines give
little protection in the 2- to 5-year age range, but
significant protection to those older than age 5 years.
Figures 6 and 7, and tables 6-9, give the biotype-
specific and age group-specific estimated VE for both
vaccines. For the >5 years age range, both vaccines
provided significant protection against both biotypes
during the first 2 years of the trial. For the 2- to 5-year
age range, both vaccines provided some protection
against the classic biotype during the first 2 years, but
little protection against the El Tor biotype, although
the WC vaccine does appear to give some very short-
term protection against the El Tor biotype.

The results of our analyses of the cholera vaccine
trial data are similar to the results of the previous
analyses of the data (3, 10). In both those analyses, the
vaccine trial period was partitioned into discrete peri-
ods, usually years. Then, the cholera incidence rates,
R, in the placebo and vaccine groups were calculated
as the number of cases divided by the number of
person-days of risk for each period, i.e., R = (number
of cases during the period/person-days of risk dur-
ing the period). The vaccine efficacy for a period
was estimated as l—(/?(vaccinated)//?(placebo)). The
usual statistics were computed for period-specific hy-
pothesis tests and confidence intervals. For example,
Clemens et al. (3) estimated the VE for the BS-WC
vaccine to be 0.62 for the first year, with 0.50 as the
lower boundary of the one-tailed 95 percent confi-
dence interval. We produce a continuous estimate over
the first year (table 1) which is 0.713 (95 percent
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Fig. 7.4. Log-minus-log plots of the Kaplan-Meier estimates of the survival curves
for the placebo and two cholera vaccines, Matlab, Bangladesh, May 1, 1985, through
November 31, 1989. WC, killed whole cell; BS-WC, B subunit killed whole cell
(Durham et al 1998).

piece-wise constant components. The problem can be solved by the use of
survival analysis methods.

Figure 7.4 shows plots of the log minus log Kaplan-Meier estimates of
the survival curves for the placebo and two oral cholera vaccines. The good
separation between the vaccine and placebo curves indicates that the vaccines
give protection. The BS-WC vaccine provides better protection during the
first year. The curves slowly approach one another indicating the waning of
the protective effect, but this is difficult to see with plots based on cumulative
incidence.

7.3.2 Nonparametric estimation of time-varying vaccine effects

Durham, et al (1999) adapted and compared two basic approaches for the
nonparametric estimation of smoothed curves for VES,λ(t) = 1− RR(t) =
1 − λ1(t)

λ0(t)
. The first is a generalized additive models approach that involves

using a time varying coefficient (Hastie and Tibshirani 1993) version of the
proportional hazards model assuming a Poisson model (Whitehead 1980).
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This approach is useful for diagnostics to ascertain the shape of β(t), but it
cannot provide an estimator for VES,λ(t).

The other method uses Schoenfeld residuals (Schoenfeld 1982; Grambsch
and Therneau 1994). The general idea is to fit an ordinary proportional haz-
ards model to the data, then to compute the scaled differences between the
actual and expected covariate values at each event time, called Schoenfeld
residuals. The scaled residuals are added to the coefficient from the propor-
tional hazards model. The time-varying regression coefficient β(t) is recov-
ered by smoothing the re-scaled Schoenfeld residuals. Conceptually, we are
nonparametrically estimating the instantaneous hazard rate ratio eβ(t), thus
VES,λ(t). Both methods provide a hypothesis test for the null H0 : β(t) = β
for all t, that is, for no time-varying effects. The method using the Schoenfeld
residuals is easy to use, provides an estimate of eβ(t) on the natural scale, and
allows easy incorporation of time-dependent covariates, so we recommend this
approach in general.

Durham et al (1998) used the method involving Schoenfeld residuals to
estimate smooth plots of the VES,λ(t) for the two oral cholera vaccines from
the cholera vaccine trial described in Section 6.4.6. Figure 7.5 shows the plot
of the VES,λ(t) estimates and the 95% CI’s for the two vaccines. Table 7.4
gives the efficacy estimates and the approximate 95% confidence intervals for
selected time points throughout the study. Age group (ages 2-5 years, >5
years) was included in the model as a covariate. The bending downward of
the curves is indicative of waning. The p-values for the hypothesis test for
departures from the proportional hazards assumption are 0.008 and 0.002
for the estimated model of the WC and BS-WC vaccines, respectively. The
WC vaccine gives fairly constant and significant protection, with a VES,λ(t) of
about 0.50, for the first two and one half years of the trial, but then protection
appears to wane rapidly. After three years of the trial (May, 1988), the point
estimate of the VES,λ(t) is 0.245 and the 95% CI covers zero. Protection from
the WC-BS vaccine starts out higher than that from WC vaccine, i.e., 0.713
versus 0.430, but then gradually wanes at a fairly constant rate, i.e., about two
- three percent per month. This analysis provides a more complete description
of the VES than that based on yearly incidence ratios described above. Two
further analyses studied the waning by age group and by biotype of the cases.
Analysis and plots were done using modifications of the Splus functions coxph
and cox.zph. Details are in the appendix in Durham et al (1998).

The results of this method must be interpreted carefully. Smoothed val-
ues at the beginning and end of the observation period are uncertain, with
large CI’s. This is a typical effect of smoothing which is exacerbated when
the number of events decreases near the end of the observation period. For
example, in the cholera vaccine trial, overall cholera incidence began to drop
during the last year of the trial. Thus, the VES,λ(t) estimates during the last
year become unreliable. Nonetheless, a definite waning effect is apparent in
Figure 7.5. This approach for estimating VES,λ(t) provides a graphical inter-
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FIGURE 3. Nonparametric smoothed plots of VE(t) versus f, with
95% confidence intervals, for the whole killed cell (WC) and B
subunit whole killed cell (BS-WC) vaccines, MatJab, Bangladesh,
May 1, 1985, through November 31, 1989. VE, vaccine efficacy; t,
time.

confidence interval (CI) 0.320-0.879) at day zero,
0.650 (95 percent CI 0.523-0.743) at 6 months, and
0.572 (95 percent CI 0.457-0.662) at 1 year. Thus, our
estimate at the middle of the first year is very close to
that of Clemens et al. for the first year. However, our
continuous estimate shows the persistent waning over
the first year, an observation which is lost when the
data from the first year are aggregated as in Clemens
et al. Continuing the comparison, for the BS-WC
vaccine, Clemens et al. estimated the VE for the
BS-WC vaccine to be 0.17 for the third year, with a
—0.15 lower boundary of the one-tailed 95 percent
confidence interval. Our estimate for the middle of the
third year is 0.280 (95 percent CI 0.006-0.478), with
an estimate of 0.202 (95 percent CI -0.089 to 0.416)
at the end of the third year. Thus, the Clemens et al.

estimate is a bit too low. This discrepancy is largely
due to an aberrant large spike of cases in the BS-WC
vaccine arm in December 1987, which the nonpara-
metric method presented here smooths out.

Although both vaccines provide protection that
wanes with time, figures 3-7 reveal that the waning
pattern varies as a function of type of vaccine, infect-
ing cholera subtype, and age group. Overall, the WC
vaccine provides fairly constant protection for the first
2 years, followed by a relatively fast decrease in
protection. In contrast, the BS-WC vaccine provides
better initial protection than the WC vaccine, followed
by steady waning over the entire 4lA years of obser-
vation. Although both vaccines protected people in the
>5 year age group better than those in the 2- to 5-year
age group, figures 6 and 7 reveal considerable inter-
action. For the 2- to 5-year age group, there appears to
be early waning (most pronounced for the El Tor
biotype) for the BS-WC vaccine, but not for the WC
vaccine. In addition, protection for the first 2 years is
nearly identical for the BS-WC and WC vaccine
against the classic biotype. In contrast, the WC vac-
cine gives no protection at all against the El Tor
biotype, while the BS-WC vaccine gives only some
possible very early protection against the El Tor bio-
type. For the >5 year age group, the WC vaccine
appears to give relatively sustained protection against
the classic biotype, and the BS-WC vaccine seems to
confer relatively sustained protection against the El
Tor biotype. The WC vaccine seems to provide only
2-year protection against the El Tor biotype, and the
same seems to be true of the BS-WC vaccine against
the classic biotype.

DISCUSSION
We apply a method for nonparametrically estimat-

ing VE(f) as a smoothed, continuous function of time
since vaccination. Although VE is only estimated at
event times, smooth plots of this function help the
investigator visualize how the protective effects of the
vaccine vary over time. When the VE varies with time
since vaccination, there is no simple test for whether
the vaccine gives statistically significant protection.
There may be significant protection at one time period,
but not for another. However, the point-wise 95 per-
cent confidence intervals on the VE(0 provide rough
estimates of when the vaccine is providing statistically
significant protection. Although we have applied the
technique to the problem of detecting and estimating
the waning effects of vaccine-induced protection, we
could assess any time-dependent vaccine effect (8).
For example, in some trials, where vaccination occurs
with multiple doses over a long period of time, pro-
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Fig. 7.5. Nonparametric smoothed plots of vaccine efficacy dV ES,λ(t) versus time t,
with 95% confidence intervals, for the killed whole cell (WC) and B subunit killed
whole cell (BS-WC) vaccines, Matlab, Banglaesh, May 1, 1985, through November
31, 1989 (Durham et al 1998).
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Table 7.4. Estimated vaccine efficacy over time, VES,λ(t), with 95% confidence
intervals for the the WC and BS-WC vaccines, Matlab, Bangladesh, May 1, 1985,
through November 31, 1989. (durham1998)

Date Day Whole cell vaccine BS whole cell vaccine

VE(day) 95% CI VE(day) 95% CI

May 1985 0 0.430 −0.342–0.758 0.713 0.320–0.879
November 1985 183 0.525 0.356–0.650 0.650 0.523 –0.743
May 1986 365 0.579 0.467–0.667 0.572 0.457–0.662
November 1986 548 0.583 0.478–0.667 0.476 0.344–0.582
May 1987 730 0.538 0.394–0.648 0.374 0.176–0.524
November 1987 913 0.433 0.220–0.588 0.280 0.006–0.478
May 1988 1,095 0.245 −0.028–0.445 0.202 −0.089–0.416
November 1988 1,278 −0.073 −0.664–0.308 0.141 −0.338–0.448
May 1989 1,460 −0.590 −2.400–0.257 0.092 −0.955–0.578

pretation of time-varying vaccine effects as well as a test for departure from
the proportional hazards assumption.

Plots of ln(− ln(S(t))) are frequently used to assess graphically whether
the proportional hazards assumption holds for time-to-event data. Since these
are cumulative hazard function plots, they can fail to give a clear picture of
time-varying effects that occur later in the study after a substantial number of
events have occurred. Figure 7.4 provides a good illustration of this problem.
The placebo and vaccine curves should be roughly parallel for all time if there
were no time-varying effects. The early waning of protection of the BS-WC
vaccine is readily apparent, especially with respect to the WC vaccine. The
placebo and BS-WC are further apart around November, 1985 than they are
after November, 1986. In addition, the protective effects of the two vaccine
appear to be converging after November, 1986. It is harder to see the later
waning of both vaccines after the first three years. Close inspection reveals
that the vaccine and placebo curves are closer together around May, 1989,
than they are around November, 1985. The estimated VES,λ(t), Figure 7.5,
gives a clearer picture of the time varying effects. If the proportional hazards
assumption were valid, then these curves should be roughly straight lines,
with zero slope rather than negative slope. In addition, the null hypothesis of
a constant effect over time was rejected for both vaccines. This test, however,
can be underpowered for small numbers of events.

7.3.3 Other approaches to estimate waning

Farrington (1992) reviewed some of the problems in estimating the occurrence
and extent of waning vaccine protection. Kanaan and Farrington (2002) devel-
oped an approach to estimate vaccine efficacy in the presence of waning. The
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model is an extension of the all-or-none and leaky model in equation (7.12)
to allow for waning. They also focus on observational data, allowing people to
be vaccinated over time and also allowing for underreporting. First, assuming
that the vaccine does not wane, they formulate a version of the summary VES

in equation (7.12)

VES = 1− (1− α)θ, (7.20)

where α is the proportion completely protected and θ is the leaky, or propor-
tional hazards effect. Let a proportion π of the population be vaccinated, all
at age τ . Then the model of waning for the all-or-none effect, assuming that
θ = 1, called a selection model, assumes that some people who were initially
protected lose their protection. If the proportion initially protected when vac-
cinated is α0, then one can model the proportion protected at time t after
vaccination as

α(t) = 1− α0 exp(−α1t), t ≥ 0, (7.21)

so that the age-specific vaccine efficacy at age x is

VES(x, τ) = (1− α0) exp(−α(x− τ)). (7.22)

If α1 = 0, then the vaccine efficacy does not wane. In the deterioration model,
the people who are initially completely protected are assumed to remain pro-
tected, but the leaky protection θ0 in the initially partially protected people
wanes with time. Under this model, age-specific vaccine efficacy is

VES(x, τ) = 1− (1− α0)θ0 exp(−θ1(x− τ)). (7.23)

When θ1 = 0, the partial protection does not wane. The parameters α0 and θ0

represent the efficacy close to the age of vaccination τ . Kanaan and Farrington
(2002) analyze two observational data sets of pertussis vaccination. The first
is a cohort study of cases of pertussis in children born 1970–1986 done by a
general practitioner from 1977–1987 in children 1 to 7 years old (Jenkinson
1988). The second was a case report study from the notifications of pertussis in
the United Kingdom in 1989-1990, divided into an epidemic and a nonepidemic
period. The vaccine coverage for each age group was known (Ramsay et al
1993). The data for both studies are given in Kanaan and Farrington (2002).

Parametric survival analysis methods are used to estimate the parameters
of interest. Calendar time effects were taken into account by allowing for
epidemic and nonepidemic periods, Ek and using a parametric approach to the
baseline hazard. For the cohort data, the infection hazard is modeled both as
an age-independent, time-dependent piecewise constant hazard λ(a, t) = ρk,
t ∈ Ek, and as an age- and time-dependent gamma λ(a, t) = ρka exp(−βa), t ∈
Ek. For the case report data, the age and time effects are confounded, so the
assumption is that ρk = ρ. Parameters are introduced that allow for complete
ascertainment, equal and possibly incomplete ascertainment in the vaccinated
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and unvaccinated cases, incomplete ascertainment in the vaccinated cases only,
and arbitrary differential ascertainment. The likelihood for the cohort model is
an extension of equation (7.18) from Longini and Halloran (1996). The model
for the case report data is an extension of the screening model of Farrington
(1993).

Not too surprisingly, with this number of parameters, estimating all of the
parameters and choosing the model that fits best is somewhat difficult. It was
not possible to differentiate between waning of the all-or-none protection or
waning of partial protection, but there was strong evidence of waning in the
cohort data. In the case report data, there was near-complete lack of iden-
tifiability of the vaccine efficacy because of the negative correlation between
the proportion completely protected and the ascertainment proportions. The
approach to modeling the waning is still valid, and could be used in future
observational data sets where estimation of waning of vaccine efficacy was of
interest.

7.4 Summary strategy for estimating protective effects

7.4.1 Strategy

We present a general strategy for estimating VES,λ(t) from time-to-event or
incidence data (Halloran et al 1999). The first step is to conduct diagnostics.
Then, with the help of the diagnostics, we find the best estimator of the VES .
We begin by constructing log-minus-log plots of the Kaplan-Meier or actuarial
estimates of the survival curves for the unvaccinated and vaccinated groups.
These plots provide information about whether the vaccine effect is leaky,
all-or-none or a mixture. In addition, they provide some information about
whether vaccine induced protection is waning. If the curves are parallel, then
the effect is mostly leaky (multiplicative), and we should model the vaccine
effect with a proportional hazards model. Any divergence from parallelism
indicates time-varying effects and the presence of some form of heterogeneity
and/or waning protection. In this case, a model other than the proportional
hazards model is needed. If the curves tend to diverge, then there is all-or-
none effect and if they tend to converge, then the model still may be leaky,
but with an unmeasured random effect (heterogeneity). Convergence could
also indicate waning protection. Although construction of log-minus-log plots
is an important first diagnostic step, they are sometimes difficult to interpret.
If there are a sufficient number of events, a more informative plot is a smoothed
hazard ratio plot of VES,λ(t) = 1− λ1(t)/λ0(t) as described in Section 7.3.2.
The possible patterns associated with different vaccine effects are shown in
Figure 7.3. A line with zero slope indicates a purely leaky or multiplicative
effect. The researcher can construct a formal hypothesis test for zero slope
(Grambsch and Therneau 1994; Durham et al 1998).

If there is no evidence of time varying effects from the diagnostics, then the
VES,PH = 1 − eβ can be estimated by fitting a proportional hazards model.
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If there is evidence of time varying effects, then the investigator should fit
the full family of frailty mixture models. If these models provide an adequate
fit to the data, then the estimated parameters may be, but are not necessar-
ily, the appropriate measures of the VES . If there is evidence of waning or
other time-varying effects not attributable to unmeasured heterogeneity, then
the nonparametric estimate of VES(t) itself will provide the best estimate.
In this case, it may be possible to construct a time-dependent parametric
model of the VES(t) that would provide tighter confidence intervals than the
nonparametric approach.

7.4.2 Interpretation of measures

Which parameter to use to estimate VES in a particular study depends on
the type and duration of the study, the infectious agent and its transmis-
sion mode, the resources available, and the assumptions of the distribution
of protection within the vaccinated group. Even if time-dependent effects are
detected, knowledge of the underlying biology will need to be used to in-
terpret the effects and to help choose between actual waning, boosting, or
heterogeneities. In many contemporary vaccine trials, immune response data
are collected that can be used to help estimate and interpret vaccine effects.
Also measuring actual or potential exposure to infection in individuals will
help identify heterogeneities in exposure to infection. Some trials of vaccines
for vector borne diseases have entomologic data. These help in quantifying po-
tential exposure to infection. Trials of vaccines for vector borne diseases that
collect entomologic data can use the information to help quantify potential
exposure to infection.

Struchiner and Halloran (2007) show that randomization does not control
for confounding in randomized vaccine trials, particularly when exposure to
infection is an unmeasured confounder (Chapter 14). Differences in transmis-
sion intensity, previous exposure to infection, and pre-existing partial immu-
nity and heterogeneities across communities result in different VES estimates,
even when the actual biologic action of the vaccine is the same conditional
on these factors. Reviews of pertussis vaccine trials in different populations
using different estimators consider some of these issues (Fine and Clarkson
1987; Fine et al 1988). Given the above discussion, there are clear limits on
the interpretability and generalizability of estimates of VES .

Problems

7.1. Models of vaccine action
(a) Show that under the leaky model in Smith, Rodriguez and Fine (1984)
E(c) = N(1− e−λRT ), E(Y ) = N(

∫ T
0 e−λRT )dt = N(1− e−λRT )/λR.

(b) Show that under the all-or-none model, E(c) = N(1 − e−λRT ), E(Y ) =
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N(
∫ T
0 [(1−R) + Re−λT ]dt = N(T (1−R) + R(1− e−λT )/λ.

(c) Derive the results in equations 7.1 to 7.4 from (a) and (b).

7.2. Vaccine efficacy in cohort study
(a) Smith et al (1984) gave an example (Table A1 and A2)
(b) The second part of the problem is described here.

7.3. Vaccine efficacy in case-control study
(a) Smith et al (1984) gave an example (Table A3)
(b) The second part of the problem is described here.

7.4. The problem1 is described here. The problem is described here. The prob-
lem is described here.

7.5. Problem Heading
(a) The first part of the problem is described here.
(b) The second part of the problem is described here.

1 Footnote


