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Vaccine Effects on Post-infection Outcomes

9.1 Measures of Vaccine Effects on Post-infection
Outcomes

9.1.1 Vaccine efficacy for post-infection outcomes

A post-infection outcome is an outcome that occurs after a person has been in-
fected. As an example, a post-infection outcome of interest could be symptoms
or serious disease in those who become infected. In this chapter, we present
methods for estimating the effect of vaccination on post-infection outcomes
conditional on infection having occurred, denoted VEP .

VEP can be measured as one minus the ratio of the mean of the post-
infection outcome in the infected vaccinated people and the post-infection
outcome in the infected unvaccinated people:

VEP = 1−
vaccinated post-infection outcome

infected vaccinated people
unvaccinated post-infection outcome

infected unvaccinated people
(9.1)

Similarly, if a post-clinical outcome in the clinical cases is of interest, then
VEP can be measured as one minue the ratio of the mean measure of the
post-clinical outcome in the vaccinated cases and the post-clinical outcome in
the unvaccinated cases:

VEP = 1−
vaccinated post-clinical outcome

vaccinated clinical cases
unvaccinated post-clinical outcome

unvaccinated clinical cases
(9.2)

Throughout the discussion in this chapter, the methods are applicable to post-
infection outcomes given infection as well as to post-clinical outcomes given
a clinical case. We do not repeat everywhere the result for both situations. In
this chapter, if the interest is on post-infection outcomes, then VES , VESP ,
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and VEP denote vaccine efficacy for susceptibility to infection, vaccine efficacy
for susceptibility to the post-infection outcome not conditional on infection,
and vaccine efficacy for the post-infection outcome conditional on being in-
fected. If the interest is in some outcome in clinical cases, the vaccine efficacies
are defined analogously.

In randomized studies, approaches that use the originally randomized pop-
ulations in the denominators, in this case VES and VESP , enjoy the statistical
validity associated with an intent-to-treat analysis. This validity holds whether
the ascertainment is on infection, clinical disease, or severe disease. The effi-
cacy estimate may be higher for more stringent case definitions (Chapter 6),
but the statisitical validity of the comparison is not compromised. However,
VEP conditions on infection (clinical disease) to estimate a net effect of the
vaccine on the post-infection or post-disease endpoint in just those people who
become infected. The infected vaccinated group and the infected control group
may not be comparable, so the comparison may not be statistically valid. In
the first sections in this chapter, we assume that the comparison is valid. In
Sections 9.3 and 9.4, we relax this assumption and show the implications.

9.1.2 Scientific questions of interest

A common question of interest is whether clinical cases in vaccinated people
are less severe than clinical cases in unvaccinated people. As early as 1939,
Kendrick and Eldering described less severe disease in children inoculated
with pertussis vaccine compared to children who had not been inoculated.
Children vaccinated against chickenpox develop less severe disease if they do
develop clinical symptoms (Vazquez et al. 2001).

In studying malaria vaccine candidates, the density of malaria parasites in
the blood or level of anemia are post-infection outcomes of interest. Sometimes
the post-infection outcome is a surrogate endpoint for a clinical endpoint of
interest. In assessing HIV vaccine effects on duration of progression to clinical
AIDS disease, the clinical endpoint of AIDS take years after infection. As a
consequence, the post-infection outcomes viral load and CD4 count are used
as surrogates for the clinical endpoint of interest.

Although asymptomatic infections have not traditionally been ascertained
in most vaccine studies, for understanding the overall public health effects
of vaccination programs and for dynamic models, ascertaining people with
asymptomatic infections is important. Asymptomatic people may still be in-
fectious for others. It is important to estimate what proportion of infected
people remain asymptomatic. Pathogenicity is a measure of the ability of an
infectious agent to cause disease in an infected person. Pathogenicity can be
measured by the probability of developing disease if infected. If the vaccine
reduces the probability of developing symptomatic infection, VEP measures
the vaccine efficacy for pathogenicity.

Transmissibility for others is also a post-infection outcome. Thus, vac-
cine efficacy for infectiousness, VEI , is a special case of a vaccine effect on a
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post-infection outcome. If measured by level of viral shedding or some other
laboratory measure, then VEI is similar to a VEP measure, or at least a surro-
gate measure. If VEI is measured epidemiologically based on the transmission
probability or secondary attack rate in others, it is more complex than simple
VEP measures (Chapters 10 through 12).

Just as with VES , different post-infection outcomes can be used to mea-
sure VEP . Depending on the scientific question of interest, the outcome could
be dichotomous (0,1), continuous, as with parasite density, or time-to-event,
such as the time between ascertaining infection and developing a clinical out-
come of interest. Thus, we could differentiate VEP measures based on different
outcomes by the notation, such as VEP,λ analogous to VES,λ if based on the
time-to-event, though we do not present that here. The outcome could be de-
fined conditional on having been infected or conditional on having developed
a clinical case, depending on the method of ascertainment. Conditional on de-
veloping infection, the outcome may be whether the infected person develops
disease or not. It may be whether the infected person develops disease within
some time period after infection. Both of these are dichotomous outcomes. If
the outcome is the time to an event after infection, an incidence rate or sur-
vival analysis that begins with the observation at the time of infection might
be appropriate. For continuous or time-to-event post-infection outcomes, the
mean, median or some other summary measure in the two groups could be
used. The exact form of the VEP estimator depends on the choice of outcome.
Some options for outcomes in VEP are summarized in Table 9.1.

As an example of VEP based on a dichotomous outcome, Préziosi and
Halloran (2003b) proposed a method of estimating the efficacy of vaccine in
reducing the probability of developing severe disease in clinical cases:

VEP = 1−
severe vaccinated cases

all vaccinated cases
severe unvaccinated cases
all unvaccinated cases

. (9.3)

If the post-infection outcome is dichotomous, we can define the post-infection
attack rate (PAR) as the number with the post-infection outcome of interest
divided by the number of infections:

PAR =
number with post-infection outcome

number infected
. (9.4)

Letting p denote the control group and v denote the vaccinated group, then
VEP using a dichotomous outcome can be defined as

V EP = 1− PAR(v)
PAR(p)

. (9.5)

9.1.3 Relation of VEP , VES, and VESP

For dichotomous infection outcomes and dichotomous postinfection outcomes,
there is a simple relation between VEP , VES , and VESP . Let ψ denote the
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Table 9.1. Different types of postinfection and postclinical outcomes, VEP . Ascer-
tainment can be on infection or on clinical disease, which determines the VES

Postinfection
VES VEP

outcome outcome Examples

Infection dichotomous clinical case (0,1)
0,1 clinical case within time interval (0,1)

transmission to other (0,1)

continuous malaria parasite density
HIV viral load

time-to-event time to developing symptoms

Clinical case dichotomous severe disease (0,1)
0,1 death

transmission to other (0,1)

continuous malaria parasite density
chickenpox: number of lesions

time-to-event time to clearing infection

relative risk of the post-infection outcome in the infected vaccinated peoples
compared with the infected unvaccinated people, and θ be the relative risk
of infection in the vaccinated compared with the unvaccinated people. Then
VEP is

VEP = 1−
vaccinated cases

vaccinated infections
unvaccinated cases

unvaccinated infections
= 1− ψ. (9.6)

Letting

V ES,CI = 1−
infected vaccinated people

vaccinated people
infected unvaccinated people

unvaccinated people
= 1− θ, (9.7)

then
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V ESP,CI = 1−
vaccinated cases
vaccinated people
unvaccinated cases
unvaccinated people

= 1−
infected vaccinated people

vaccinated people
infected unvaccinated people

unvaccinated people
×

vaccinated cases
vaccinated infections
unvaccinated cases

unvaccinated infections
= 1− (1− V ES)(1− V EP ) = 1− θψ. (9.8)

These relations hold under the assumption that the infected people in the
control arm are comparable to the infected people in the vaccine arm. To esti-
mate (9.8), asymptomatic infections need to be ascertained. A similar relation
as that in equation (9.8) holds for VESP,CI , when the postclinical outcome is
severe cases of the disease of interest, and VES is based on clinical cases.

9.2 Effect of vaccination on disease severity

9.2.1 Pertussis vaccine study in Niakhar

Préziosi and Halloran (2003b) analyzed a study of pertussis vaccination in
the Niakhar study area of Senegal to estimate the effect of the vaccination
on reducing the severity of clinical pertussis cases. The study population and
surveillance for pertussis in the Niakhar study area is described in Section
10.2.3. Briefly, the Niakhar study area is 150 km southeast of Dakar, Senegal,
and includes 30 villages. Extended families reside in compounds. In January
1993, there were 26,306 residents living in 1800 compounds. Surveillance began
in March 1983 with annual, after 1987 weekly visits to compounds. Pertussis
was endemic, with epidemics every 3–4 years, and 1993 was a pertussis epi-
demic year. Active surveillance was conducted in children <15 years of age
by weekly visits to the compounds by trained field workers. They reported
cases in children <15 years old who had potential pertussis (cough of >7 days
duration) A physician then visited to confirm clinically and collect laboratory
samples.

A case of pertussis was defined by confirmation of pertussis infection by
presence of at least one of three laboratory criteria: (1) isolation of B. pertusiss
from a nasopharyngeal aspirate (culture positive) (2) significant increase or
decrease in pertussis toxin or filamentous hemagglutinin antibodies (serology
positive), or (3) signs and symptoms of disease in an individual who lived
in the same compound as a child who had onset of culture-positive disease
within 28 days (epilink).

9.2.2 Global score of disease severity

Estimating VEP requires defining the disease outcomes of interest carefully. To
compare the severe to non-severe cases, definitions of a severe case and a non-
severe case, or other levels of severity, such as moderate severity, are needed.



184 9 Vaccine Effects on Post-infection Outcomes

Table 9.2. Scale used to assess the severity of illness
among children with symptoms of pertussis.

Variable No. of points

Severity of cough
Typical paroxysms with whoops 4
Typical paroxysms without whoops 3
Atypical paroxysms only 1

Apnea 6
Pulmonary signa 3
Mechanical complicationb 3
Facial swelling 3
Conjunctival injection 3
Post-tussive vomiting 2

Total score (severity)c

Mild disease ≤6
Severe disease >6

a Bronchitis or bronchopneumonia.
b Subjunctival hemorrhage or umbilical or inguinal hernia.
c The overall median total score was 6 in this study.

Préziosi and Halloran (2003b) proposed a scale to assess the global clinical
severity of pertussis cases, rather than analyzing each individual symptom.
Severity of illness was assessed according to the scale in Table 9.2. Death is
not included, because there was only one death due to pertussis in the study
period. Each relevant symptom was given a score based on the judged severity
of the symptom. The global symptom score for each child was obtained by
the simple sum of the individual’s clinical signs and symptoms scores. Severe
disease was defined by a score greater than a particular threshold value. The
main outcome measure was defined using the overall severity median score in
the confirmed clinical cases.

Sex, age, and type of case (primary or postinfection) were included in a
multivariate analysis using logistic regression and then backtransformed to
the relative risk scale (Halloran et al 2003) (Chapter 11). Confidence intervals
were obtained using the bootstrap (Efron and Tibshirani 1993).

In 1993, 2,123 individuals with potential cases of pertussis were identified
in 518 of 1800 residential compounds, 98% under 15 years of age. Nearly all
children under 6 months or 9 years and older were unvaccinated, so these age
groups could not be included in comparison. Cultures were done on 99% of
all suspected cases, and serologic testing in 69% of unvaccinated and 83% of
vaccinated suspected cases. In all, 834 children with 837 cases of laboratory-
confirmed pertussis were identified. Details of confirmation criteria and clinical
signs and symptoms are in Préziosi and Halloran (2003b).
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Table 9.3. Number of cases of severe pertussis, among 834 children who
had or had not received pertussis vaccine, and efficacy of the vaccine
in reducing severity, according to severity score (Préziosi and Halloran
2003b).

No. (%) of cases

In unvaccinated In vaccinated Vaccine efficacy, %
All children children VEP

Scorea (n = 837) (n = 243) (n = 594) (95% CI)

>0 738 (88) 233 (96) 505 (85) 11 (8–15)
>1 728 (87) 231 (95) 497 (84) 12 (8–16)
>2 677 (81) 227 (93) 450 (76) 19 (14–23)
>3 559 (67) 205 (84) 354 (60) 29 (23–35)
>4 529 (63) 194 (80) 335 (56) 29 (22–36)
>5 443 (53) 178 (73) 265 (45) 39 (32–46)
>6 339 (41) 149 (61) 190 (32) 48 (39–55)
>7 315 (38) 139 (57) 176 (30) 48 (39–56)
>8 268 (32) 119 (49) 149 (25) 49 (38–58)
>9 151 (18) 76 (31) 75 (13) 60 (47–70)
>10 147 (18) 75 (31) 72 (12) 61 (48–71)
>11 130 (16) 67 (28) 63 (11) 62 (48–72)
>12 31 (4) 20 (8) 11 (2) 78 (54–89)
>13 30 (4) 19 (8) 11 (2) 76 (51–89)
>14 24 (3) 17 (7) 7 (1) 83 (60–93)

a The scale used to assign the severity score is shown in Table 9.2. The overall
median score was 6. A score ≤6 indicates mild disease; a score >6 indicates
severe disease.

9.2.3 VEP for severity of pertussis disease

Based on the median threshold for mild versus severe disease of 6, 61% of un-
vaccinated children and 32% of vaccinated children had severe disease. Based
on this threshold,

VEP = 1−
severe vaccinated cases

all vaccinated cases
severe unvaccinated cases
all unvaccinated cases

.

= 1− 190/594
149/243

= 0.48 (95% CI 0.39, 0.55) (9.9)

Thus, unvaccinated children were twice as likely as vaccinated children to have
severe disease. Table 9.3 presents a sensitivity analysis of the estimate of VEP

to the choice of threshold for defining a severe case. The threshold varies from
1 to >14. The estimated VEP varies from 11% to 83%, becoming higher as
the threshold for defining a severe case gets higher. The lower limit of the 95%
CI was greater than 0 for all thresholds. The results indicate that pertussis



186 9 Vaccine Effects on Post-infection Outcomes

vaccination substantially decreases the severity of breakthrough disease in
children who receive 3 doses of vaccine, compared with that in unvaccinated
children. The majority of vaccinated children who developed pertussis had
mild disease.

Because this is an observational study, there is a potential for selection
bias, particularly in (1) ascertainment and (2) laboratory confirmation. Both
are minimal in this case because (1) active surveillance, and (2) most children
with suspected cases had laboratory tests done. To assess potential bias in the
selection of the confirmed cases, they examined clinical illnesses among chil-
dren with potential case of pertussis whose biological tests were negative and
among children for whom no laboratory samples were available. A compari-
son of the vaccinated and unvaccinated children who either had no biological
test done and in whom the tests were all negative was also done. The vaccine
showed no appreciable effect in these groups.

In a secondary analysis, VESP was also computed, first using all cases,
and then using just severe cases. Child-years at risk were computed for 1993
among susceptible children 6 months up to 8 years old. Standard CIs were
computed assuming log-normality of relative risks. In the secondary analysis,
VESP for all cases was 29% (95% CI, 19% – 39%), and VESP for severe cases
was 64% (95% CI, 55% – 71%). It is typical that VESP is higher for more
severe or stringent case definitions.

9.2.4 Rotavirus vaccine in Finland

Vesikari et al. (1990) provide a a second example in their analysis of a random-
ized, double-blinded, placebo controlled trial of a Rhesus rotavirus candidate
vaccine. The trial was conducted in children two to five months of age from
1985-1987 in Finland with 100 children randomized to each arm. The effect
of the vaccine on the clinical course of infection was considered by comparing
severity (mild, moderate, or severe) between vaccinees and placebo-treated
individuals with confirmed Rotavirus diarrhea using Fisher’s exact test. Com-
bining the severe and moderately severe cases, five of 10 cases in the vac-
cinated group were severe or moderately severe, and 13 of 16 cases in the
placebo group were severe or moderately severe. Using equation (9.3) yields
V̂EP = 0.38, (95% CI -0.11,0.74).

9.3 Causal Effects in Post-Infection Outcomes

9.3.1 Postinfection selection bias

In Sections 9.1 and 9.2 the assumption was made that the infected vaccinated
group and the infected unvaccinated group were comparable. In most studies
up to recently the assumption was not seriously questioned. However, condi-
tioning on an event, such as infection, that occurs subsequent to receipt of
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vaccine or control could result in selection bias, even if the study were random-
ized (Halloran and Struchiner 1995). With the development of HIV vaccine
candidates, the assumption about the comparability of the infected vaccinated
and infected unvaccinated groups gained considerable attention (Hudgens et
al., 2003; Gilbert et al., 2003b). The initial HIV vaccine candidates were hoped
to protect against infection and also slow progression to AIDS postinfection.
The HIV vaccine trials were designed to draw blood from all the participants
to ascertain infection at about three month intervals. Since the incubation pe-
riod to the development of AIDS after HIV infection is usually several years,
post-infection measures in the blood such as viral load and CD4 cell count
are used as surrogates of potential future development of AIDS. Concern grew
that the infected people in the vaccinated group and infected people in the
unvaccinated group might not be comparable.

For example, assume that the potential immune response to HIV has a
distribution in the population before individuals are randomized to vaccine
or control. Randomization would assure that in large samples, the potential
distribution of the immune response to HIV would be the same in the vaccine
and the control groups. It could be that the vaccine enhances protection only
in people who have the stronger immune system, conferring some level of
protection against infection if exposed. Then the people in the vaccinated
group who become infected would be the ones with the weaker immune system,
whereas the infected people in the unvaccinated group would be those with a
weaker immune system as well as those with the stronger immune system. In
this situation, if we compare a postinfection outcome in the vaccinated group
with that in the unvaccinated group, it could appear that the vaccine makes
things worse, even if vaccination has absolutely no effect on anything after
infection.

For example, if people with a weaker immune system tend to have a higher
viral load after being infected than those with a stronger immune system, then
the mean viral load in the infected vaccinated group would be higher than the
mean viral load in the infected unvaccinated group (Figure 9.1). The resulting
VEP estimate would be negative. This observation could lead to the false
conclusion that the vaccine made the postinfection outcome worse, possibly
resulting in rejection of a potentially useful vaccine candidate (Hudgens et al.,
2003; Gilbert et al., 2003b). However, the vaccine in this case actually does
not make anything worse. The problem is that the infected vaccinated group
and infected control group are no longer comparable because of selection bias.

A similar problem exists in principal for other diseases and vaccines other
than HIV, but it received considerably less attention. When the benefits of
vaccination are clearly positive, selection bias might not lead to discarding
the vaccine, but to either an over- or an underestimate of the public health
benefits. Thus, it is important both scientifically and for public health pur-
poses to be able to differentiate the effects of vaccines on infection from their
effects on post-infection outcomes, and to account for potential selection bias.
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Figure 1. Viral load distributions for infected participants under a selection model. The normal distri-
bution represents the viral loads of the infected controls. The shaded area represents the potential viral
loads of the VE× 100 per cent that are protected by the vaccine. The unshaded area (after appropriate

rescaling) represents the viral load distribution of the infected vaccinees.

correspond to the following lower and upper numerical bounds for the cumulative distribution
function (CDF) of viral load among infected vaccinees (denoted FV):

FV;LB(y;FC; VE)6FV(y)6FV;UB(y;FC; VE)

where

FV;LB(y;FC; VE)= I{y¿qVEC } (FC(y)− VE)
(1− VE) (1)

and

FV;UB(y;FC; VE)= I{y6q1−VEC } FC(y)
(1− VE) + I{y¿q

1−VE
C }

with FC representing the distribution of viral load among infected control subjects and qVEC
representing the VEth percentile of FC. We assume that the viral load measurements are given
on the log10 scale and are positive for all infected volunteers, that is, the support of FV and
FC is (0;∞).
Figure 1 graphically depicts an example of the selection model where the distribution of

viral load measurements among the infected participants in the control group is approximately
Gaussian. Under the selection model, the potential viral load of vaccinees who are protected

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:2281–2298

Fig. 9.1. Viral load distribution for infected participants under a selection model.
The normal distribution represents the viral loads of the infected controls. The
shaded area represents the potential viral loads of the vaccine efficacy × 100 per
cent that are protected by the vaccine. The unshaded area (after appropriate scal-
ing) represents the viral load distribution of the infected vaccinees (from Hudgens,
Hoering, Self 2003).

.

9.3.2 Defining causal estimands for post-infection outcomes

How do we account for possible selection in estimating VEP if we do not
know if it is present? Different methods have been used to adjust analyses
for post-treatment variables such as infection (Robins and Greenland 1992,
1994; Rosenbaum 1984). The method presented here is based on the potential
outcomes approach to causal inference introduced in Chapter 1.4. In Table
1.1, four types of people are defined based on their joint potential outcome
under vaccine and control, namely immune, harmed, protected, and doomed. If
infection is the potential outcome of interest, then the four types of people are
defined by their joint potential infection outcome under vaccine and control.
Because the set of individuals who would become infected if vaccinated is likely
not identical to the set of those who would become infected if given control,
comparisons that condition on infection do not have a causal interpretation
(Rosenbaum 1984; Frangakis and Rubin 2002).

Frangakis and Rubin (2002) propose a method to adjust for post-treatment
variables, called principal stratification, that stratifies on the joint potential
post-treatment variables under each of the treatments being considered. The
causal effects of one treatment compared to the other on a main outcome of in-
terest are defined within each of these principal strata and are called principal



9.3 Causal Effects in Post-Infection Outcomes 189

effects. If infection is considered as a post-treatment variable, then the post-
infection outcome is defined under vaccine and placebo only in the doomed
stratum, in which people would be infected under both vaccine and placebo.
The post-infection outcome is not defined for anyone in the immune stratum.
It is defined only under placebo in the protected stratum, and only under vac-
cine for the harmed stratum. The importance of estimating quantities defined
only in a subpopulation in which the outcomes are defined was presented in
the context of outcomes censored by death (Kalbfleisch and Prentice 1980).
Robins (1986, remark 12.2,) considered inference about causal effects in the
stratum that would survive under either treatment.

Several papers have been published using this approach to assess vaccine
effects on post-infection outcomes. In studying HIV vaccines, Hudgens et al.
(2003) and Gilbert et al. (2003b) adopted the principal stratification approach
to assess HIV vaccine effects on the continuous post-infection outcome viral
load. Hudgens et al. (2003) developed bounds. Gilbert et al.(2003b) adapted
methods for sensitivity similar to that of Scharfstein, Robins, and Rotnitzky
(1999) and Robins, Rotnitzky, and Scharfstein (2000). Shepherd et al (2006)
considered sensitivity analyses comparing outcomes only existing in a subset
selected post-randomization, conditional on covariates, with application to
HIV. Jemiai et al (2007) develop extensions of Gilbert et al (2003) that allow
the estimation of treatment effects conditional on covariates. Shepherd et al
(2007) developed the methods for a time-to-event postinfection outcome, also
with application to HIV vaccine. The time-to-event postinfection outcome
was the time from infection diagnosis to initiation of antiretroviral therapy.
Hudgens and Halloran (2006) developed methods for the causal vaccine effects
on binary postinfection outcomes with applications to pertussis and rotavirus
vaccines. Table 9.4 summarizes literature on bounds and sensitivity analyses
of causal vaccine effects for different types of postinfection outcomes.

Because the development for continuous and time-to-event postinfection
outcomes involves complex integral equations, we focus on the development of
the dichotomous post-infection outcome from Hudgens and Halloran (2006).
The approach for the continuous and time-to-event outcomes is similar. The
common steps of the argument regardless of the type of post-infection outcome
are as follows:

1. Assume SUTVA and an assignment mechanism independent of the poten-
tial outcomes, for example, randomization.

2. Define the causal VEP in the doomed (always-infected) principal stratum,
which is not identifiable from the observed data without further assump-
tions.

3. Assume that the harmed principal stratum is empty, called the mono-
tonicity assumption.

4. The monotonicity assumption implies that all infected vaccine recipients
are in the doomed stratum, so the numerator of the causal VEP is iden-
tifiable. However, the infected placebo recipients could be in either the
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Table 9.4. Bounds and sensitivity analyses of causal vaccine effects, VEP , for
different types of postinfection outcomes assuming SUTVA, randomization, and
monotonocity.

Infection Postinfection
outcome outcome

VES VEP Analysis Reference

0, 1 continuous bounds Hudgens, Hoering,
Self 2003

sensitivity analysis Gilbert, Bosch,
Hudgens 2003

covariates Shepherd, Gilbert,
Jemiai, Rotnitzky 2006

Jemiai, Rotnitzky,
Shepherd, Gilbert 2007

dichotomous bounds and Hudgens and Halloran
sensitivity analysis 2006

time-to-event bounds and Shepherd, Gilbert,
sensitivity analysis Lumley 2007

protected or the doomed stratum, so the denominator of the causal VEP

is not identifiable.
5. Bounds can be set on the estimates of the causal VEP by extreme as-

sumptions about the distribution of post-infection outcome in the infected
placebo recipients in the protected compared with the distribution in the
the doomed stratum.

6. Sensitivity analyses can be done by varying a selection bias parameter over
reasonable ranges of selection bias, with the assumption of no selection
bias being a special case.

To formalize these concepts, we use an extension of the causal model in-
troduced in Chapter 1.4 and Table 1.1. Let Zi = v if the ith individual is
assigned vaccine, and Zi = p if assigned control. Denote the potential infec-
tion outcome of the ith individual if assigned Zi as Si(Zi), where Si(Zi) = 0
if uninfected and Si(Zi) = 1 if infected. The focus is on evaluating the causal
effect of vaccine on the outcome Y that occurs after an individual becomes
infected. Y could be a continuous random variable, a time-to-event variable,
or a dichotomous outcome. Here we develop the notation for a dichotomous
outcome. If Si(Zi) = 1, then Yi(Zi) = 1 if the ith individual has the worse,
or more severe postinfection outcome, and Yi(Zi) = 0 otherwise. If an indi-
vidual’s potential infection outcome for an assignment is uninfected, that is,
Si(Zi) = 0, then Yi(Zi) is undefined and denoted by ∗. Let Sobs

i denote the ob-
served infection outcome Si(v) or Si(p), depending on treatment assignment,
and analogously Y obs

i for the observed post-infection outcome.
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Table 9.5. Basic principal stratification P0 based on the potential infection out-
comes (S(v), S(p)) with potential post-infection strata based on (Y (v), Y (p)) (Hud-
gens and Halloran 2006).

Potential infection strata Potential post-infection strata

Potential Potential
Basic infection post-infection

principal outcomes outcomes Post-infection interpretation
stratum, SP0 (S(v), S(p)) (Y (v),Y (p))

immune (0,0) (∗,∗) always undefined

harmed (1,0) (0,∗) not severe vaccine, undefined placebo
(1,∗) severe vaccine, undefined placebo

protected (0,1) (∗,0) undefined vaccine, not severe placebo
(∗,1) undefined vaccine, severe placebo

doomed (1,1) (0,0) never severe
(1,0) harmed by vaccine
(0,1) helped by vaccine
(1,1) always severe

In the following, we assume that the potential outcomes for each individual
are independent of the treatment assignment of other individuals, that is, there
is no interference between individuals (SUTVA). We further assume that the
assignment to vaccine or control is independent of the potential infection
outcomes and the potential postinfection outcomes. Randomization is one
assignment mechanism where the treatment assignment is independent of the
potential outcomes.

A basic principal stratification P0 is defined according to the joint poten-
tial infection outcomes SP0 = (S(v), S(p)) (Frangakis and Rubin 2002). Table
9.5 summarizes the four basic principal strata defined by the joint potential
infection outcomes, (S(v), S(p)), and the strata defined by the joint potential
post-infection outcomes, (Y (v), Y (p)), within each principal stratum. The four
basic principal strata are composed of immune (not infected under both vac-
cine and placebo), harmed (infected under vaccine but not placebo), protected
(infected under placebo but not vaccine), and doomed individuals (infected
under both vaccine and placebo). Since membership in a basic principal stra-
tum is not affected by whether an individual is actually assigned vaccine or
placebo, the strata can be used in the same way as pre-treatment covari-
ates, with causal post-infection vaccine effects defined within a basic principal
stratum SP0 .

In general, causal effects are defined in terms of potential outcomes. From
Table 9.5, we see the doomed basic principal stratum, SP0 = (1, 1), is the only
stratum in which both potential post-infection endpoints, and thus their joint
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distribution, are defined. For this reason, defining individual post-infection
causal vaccine effects makes sense only in the doomed basic principal stratum,
SP0 = (1, 1). In other words, we can speak of a vaccine causing an improve-
ment or worsening of a post-infection outcome only for an individual who
would become infected whether vaccinated or not. Thus, two population-level
causal estimands can be validly defined: (1) the effect of vaccine on infection
(S) for all participants, and (2) the effect of vaccine on the post-infection out-
come (Y ) for those participants who would be infected under both treatment
assignments.

Regardless of the type of of post-infection outcome, the population casual
vaccine efficacy to prevent infection S = 1 can be defined as

VES = 1− Pr(S(1) = 1)
Pr(S(0) = 1)

, (9.10)

the relative average causal effect (RACE) of vaccination on infection (Hudgens
and Halloran 2006). Under randomization, it follows that

VES = 1− E {S(v)|Z = v}
E {S(p)|Z = p} = 1−

E
{
Sobs|Z = v

}

E {Sobs|Z = p} .

The causal vaccine efficacy for a binary post-infection for those participants
who would be infected under both treatment assignments, VEP , is defined
in equation (9.11). The form is different for continuous and time-to-event
outcomes. The problem with this approach is that it is not possible to tell to
which stratum any individual belongs, at least without further assumptions.
For example, a person who is vaccinated and becomes infected could belong
to either the doomed or the harmed stratum. A person who receives control
and is infected could belong to either the doomed or the protected stratum.
Thus it is not possible to estimate the causal VEP from the observed data
without further assumptions.

One assumption that is plausible for most vaccines is helpful in this situa-
tion. If we assume that the vaccine does not harm people with respect to infec-
tion, then we can claim that the harmed stratum is empty. This assumption
is called the monotonicity assumption. Under the monotonicity assumption, a
vaccinated person who becomes infected must be in the doomed stratum. The
monotonicity assumption does not help with the people who receive control
and become infected. Infected people in the control arm can still be in either
the protected or the doomed stratum.

Although it is not possible to identify who of the infected control group is in
the protected or doomed stratum, it is possible to set upper and lower bounds
on the vaccine effect on the postinfection outcome, V̂E

upper

P and V̂E
lower

P .
Estimating the causal vaccine effect under an extreme degree of selection
bias is useful in bounding the estimate of the post-infection effect above and
beyond any possible selective effects. However, the true degree of selection bias
is likely less than the extreme models, such that using V̂E

upper

P or V̂E
lower

P
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OR=0 OR= 0.001 OR= 0.01 OR= 0.02 OR= 0.05

OR= 0.1 OR= 0.2 OR= 0.333 OR= 0.5 OR= 0.667

OR= 0.8 OR= 0.909 OR= 1 OR= 1.1 OR= 1.25

OR= 1.5 OR= 2 OR= 3 OR= 5 OR= 10

OR= 20 OR= 50 OR= 100 OR= 1000 OR ! !

Fig. 9.2. Distribution of the potential post-infection outcome Y in the infected
control group in the protected stratum and the infected control group in the doomed
stratum for different values of the selection bias odds ratio exp(β). The shaded area
represents the distribution of the potential Y outcome in the infected control group
in the doomed stratum. The area under the clear distribution is that in the protected
stratum. (courtesy of B. Shepherd)

.

may be too conservative. Therefore, it is useful to do sensitivity analyses by
varying the amount of selection bias, in which the case of no selection and
extreme bounds are included as special cases.

Gilbert et al.(2003b), Shepherd et al (2006), and Shepherd et al (2007)
adapted methods for sensitivity similar to that of Scharfstein, et al (1999) and
Robins, et al (2000) for continuous outcomes. In this approach, the sensitivity
analysis is performed by varying a selection bias parameter β over a range.
In particular the odds ratio, OR = exp(β), is varied from 0 to +∞, with no
selection bias being at OR = 1. The odds ratio is interpreted as given infection
in the placebo arm, for a one unit increase in the Y outcome, the odds of
being infected if randomized to the vaccine arm multiplicatively increases by
OR = exp(β).

Figure 9.2 illustrates different degrees of selection bias associated with
varying the odds ratio, showing the distributions of the potential Y outcome
in the infected control group in the protected stratum and the infected control
group in the doomed stratum. The shaded area represents the distribution of



194 9 Vaccine Effects on Post-infection Outcomes

the potential Y outcome in the infected control group in the doomed stratum.
The area under the clear distribution is that in the protected stratum. When
the odds ratio equals 1, there is no selection bias, and the distributions in the
two strata are the same. As the odds ratio tends to 0, the distribution of the
Y outcome in the doomed stratum tends to be lower than the Y outcome in
the protected stratum. As the odds ratio tends to ∞, the distribution of the
Y outcome in the doomed stratum tends to be higher than the Y outcome
distribution in the protected stratum. The data do not provide information
about the degree of selection bias. Then outside knowledge or expert opinion
can be used to choose a plausible range for the selection bias (Shepherd et al
2006).

9.4 Causal Effects for Binary Post-infection Outcomes

9.4.1 Defining vaccine effects

Three estimands regarding the effect of vaccination on the binary post-
infection outcome Y can be formally defined (Hudgens and Halloran 2006)).
The approach to assessing vaccine effects on post-infection endpoints based
on the observed data in Section 9.1 is the net vaccine effect estimand which
conditions on infection, i.e.,

VEnet
P = 1−

E
{
Y obs|Sobs = 1, Z = v

}

E {Y obs|Sobs = 1, Z = p} = 1− E {Y (v)|S(v) = 1}
E {Y (p)|S(p) = 1} ,

with the second equality following from the independence, e.g. randomiza-
tion assumption. As discussed in Section 9.3.1, in general, VEnet

P does not
have a causal interpretation since the set of individuals with S(v) = 1 is not
necessarily identical to the set of individuals with S(p) = 1.

An estimand that defines the effect of vaccination on disease rather than
infection, or severe disease rather than disease, as in Chapter 6 might be
considered intent-to-treat (ITT) because it does not condition on the post-
treatment variable Sobs. It incorporates all individuals according to their
treatment assignment. VESP,CI in equation (9.8) is an example of an ITT
estimand. Formally,

VESP,CI = VEITT
P = 1− E {Y (v)× S(v)}

E {Y (p)× S(p)} ,

where the convention sets Y (z)×S(z) = 0 if S(z) = 0, z = v, p. This is a gen-
eral form for what Préziosi and Halloran (2003b) called “VESP for severity.”
The VEITT

P estimand has a causal interpretation, but it combines vaccine
effects on susceptibility and the post-infection outcome. Formally, equation
(9.8) can be written as

VEITT
P = 1− (1−VES)(1−VEnet

P ).
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Hudgens and Halloran (2006) propose a third estimand for the effect of vac-
cination on a binary post-infection outcome that has a causal interpretation
and is separate from vaccine effects on susceptibility. Using the basic principal
stratification shown in Table 9.5, they define the causal VEP . In particular,
the individual causal vaccine effect on the post-infection outcomes is defined
as

VEPi = 1− Yi(v)
Yi(p)

,

for individuals within the doomed principal stratum only. Following the de-
velopment of VES above, define the population post-infection causal vaccine
effect VEP within the doomed principal stratum as

VEP = 1− E{Y (v)|SP0 = (1, 1)}
E{Y (p)|SP0 = (1, 1)} . (9.11)

All of the papers listed in Table 9.4 define an analogous causal estimand for
post-infection outcomes based on the individuals within the doomed princi-
pal stratum only. Like VES , (9.11) could equivalently be given in terms of
probabilities since the post-infection random variables Y (v) and Y (p) are as-
sumed to be binary such that VEP can be interpreted as the causal estimand
measuring the relative reduction in the probability of the worse post-infection
outcome given vaccine compared to placebo in those individuals who would
be infected under either treatment assignment.

9.4.2 Parameterization

Let the parameters θ govern the probabilities associated with the basic princi-
pal strata. By the monotonicity assumption, the harmed stratum SP0 = (1, 0)
is empty, so let θ = (θ00, θ01, θ11) where

Pr{SP0 = (i, j);θ} = θij for i, j = 0, 1; i ≤ j. (9.12)

Next let the parameters φ = (φ00, φ01, φ10, φ11) govern the probabilities as-
sociated with the joint potential post-infection outcomes in the doomed basic
principal stratum SP0 = (1, 1), where

Pr{(Y (v), Y (p)) = (k,m)|SP0 = (1, 1);φ} = φkm for k, m = 0, 1. (9.13)

Let the parameters γ = (γ0, γ1) govern the probabilities associated with the
two possible potential post-infection outcomes under placebo in the protected
basic principal stratum, SP0 = (0, 1), where

Pr{Y (p) = i|SP0 = (0, 1);γ} = γl for l = 0, 1. (9.14)

Finally, let the law of Z be given by Pr{Z = z;ϕ} = ϕz for z = v, p.
Under this parameterization, the causal estimand of vaccine efficacy for

susceptibility is
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VES = 1− θ11

θ01 + θ11
.

Based on the definition of the causal estimand VEP given in (9.11), we are
not interested in the joint probabilities φkm (k,m = 0, 1), but rather just two
of the marginal probabilities. In particular,

VEP = 1− φ1·
φ·1

, (9.15)

where
Pr{Y (v) = 1|SP0 = (1, 1)} = φ10 + φ11 = φ1· ,

and
Pr{Y (p) = 1|SP0 = (1, 1)} = φ01 + φ11 = φ·1 .

Under this parameterization,

VEnet
P = 1− φ1·

γ1VES + φ·1(1−VES)
,

and
VEITT

P = 1− φ1·(1−VES)
γ1VES + φ·1(1−VES)

.

9.4.3 Estimation

Suppose we observe n independent and identically distributed realizations of
(Z, Sobs, Y obs), where Y obs is undefined or does not exist if Sobs = 0. There
are six possible observed combinations of (Z, Sobs, Y obs). Let nsy(z) be the
number of each combination observed in the study population where s = 0, 1 is
the observed infection outcome Sobs; y = 0, 1, ∗ is the observed post-infection
outcome Y obs; and z = v, p. That is,

n0∗(p) =
∑

i I(Zi = p, Sobs
i = 0, Y obs

i does not exist)
n10(p) =

∑
i I(Zi = p, Sobs

i = 1, Y obs
i = 0)

n11(p) =
∑

i I(Zi = p, Sobs
i = 1, Y obs

i = 1)

n0∗(v) =
∑

i I(Zi = v, Sobs
i = 0, Y obs

i does not exist)
n10(v) =

∑
i I(Zi = v, Sobs

i = 1, Y obs
i = 0)

n11(v) =
∑

i I(Zi = v, Sobs
i = 1, Y obs

i = 1)

where the summations are over i = 1, . . . , n. The double subscripts for the n’s
do not have the same meaning as for the φ’s and θ’s. Assume that each of the
six combinations is observed at least once. Let n(p) = n0∗(p)+n10(p)+n11(p)
and n(v) = n0∗(v)+n10(v)+n11(v) denote the number of individuals assigned
to placebo and vaccine. Let n1·(p) = n10(p) + n11(p) and n1·(v) = n10(v) +
n11(v) denote the number of infected individuals assigned placebo and vaccine.
Let
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ARz =
n1·(z)
n(z)

for z = v, p,

i.e., ARz is the observed attack rate in the group assigned treatment z. Finally,
let

PARz =
n11(z)
n1·(z)

for z = v, p,

i.e., PARz is the observed postinfection attack rate in the group infected given
treatment z.

Maximum likelihood estimators (MLEs) of the identifiable vaccine efficacy
estimands can be found by maximizing the likelihood

L(θ,γ,φ) ∝
n∏

i=1

Pr[Y obs
i = yi, S

obs
i = si|Zi = zi;θ,γ,φ],

subject to constraints on θ,γ,φ that ensure (9.12-9.14) are probability func-
tions. Hudgens and Halloran (2006) show that the MLE of VES is given by

V̂ES =






1− ARv
ARp

if ARv ≤ ARp,

0 otherwise.
(9.16)

This is the usual estimator of VES based on the attack rates, or cumulative
incidence. Further, the MLE of VEnet

P is

V̂E
net

P = 1− PARv

PARp
, (9.17)

the same as in equations (9.2) and (9.6). The MLE of VEITT
I is

V̂E
ITT

P = 1− (1− V̂ES)
PARv

PARp
, (9.18)

or equivalently

V̂E
ITT

P =






V̂E
net

P if V̂ES = 0,

1− n11(v)/n(v)
n11(p)/n(p) if V̂ES > 0,

(9.19)

the same as in equation (9.8). In summary, the three MLEs V̂ES , V̂E
net

P , and
V̂E

ITT

P derived formally by the methods of causal inference correspond to the
usual estimators associated with these measures.

The causal estimand VEP is not identifiable because φ·1, the denominator
of the right side of (9.15), is not identifiable. On the other hand, φ1·, the
numerator of the right side of (9.15), can be identified by the observable
random variables. The corresponding MLE is given by
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φ̂1· = PARv, (9.20)

i.e., the observed postinfection attack rate in the vaccine arm.
Finally, while φ·1 is not identifiable, we can identify

Pr[Y (p) = 1|S(p) = 1; θ,γ,φ] = γ1VES + φ·1(1−VES). (9.21)

The MLE of (9.21) is PARp such that any feasible pair (γ̂1, φ̂·1) satisfying

PARp = γ̂1V̂ES + φ̂·1(1− V̂ES), (9.22)

is an MLE of (γ1, φ·1).

9.4.4 Applications

Rotavirus candidate vaccine

In the rotavirus candidate vaccine study (Vesikari et al., 1990), the observed
data were

n0∗(p) = 84 n0∗(v) = 90
n10(p) = 3 n10(v) = 5
n11(p) = 13 n11(v) = 5

From (9.16), V̂ES = 1 − (10/100)/(16/100) = 0.375. It then follows from
(9.19) that V̂E

ITT

P = 1 − (5/100)/(13/100) = 0.62. The postinfection attack
rates are PARv = φ̂1· = 5/10 = 0.50 and PARp = 13/16 = 0.81 such that
V̂E

net

P = 1− (5/10)/(13/16) = 0.385.
To consider estimation of the causal VEP , we examine the relation of the

observed data to the basic principal strata and the strata of joint potential
post-infection outcomes within each basic principal stratum. By the assump-
tions of SUTVA, independence, and monotonicity, we know the following:

• All n10(v) + n11(v) = 10 belong to the doomed stratum SP0 = (1, 1).
• All n0∗(p) = 84 belong to the immune stratum SP0 = (0, 0).
• The n0∗(v) = 90 could belong to the immune stratum SP0 = (0, 0) or the

protected stratum SP0 = (0, 1).
• The n10(p) + n11(p) = 16 could belong to the protected SP0 = (0, 1) or

the doomed SP0 = (1, 1).

Ignoring statistical variability, by the independence assumption, since there
are 10 vaccine recipients in the doomed stratum, there are 10 placebo re-
cipients in the doomed stratum. Since there are 84 placebo recipients in the
immune stratum, there are 84 vaccine recipients in the immune stratum. So
there must be 6 from each of the vaccinated and unvaccinated groups in the
protected stratum. Thus, we can estimate the size of the unobserved principal
stratum SP0 = (0, 1). However, we do not know which 6 of the 16 infected
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placebo recipients are in protected stratum SP0 = (0, 1) or which 10 of the 16
are in the doomed stratum SP0 = (1, 1). Why do we care? Because to estimate
the causal VEP , we need to know the post-infection outcomes of those in the
doomed stratum. This illustrates the need for further assumptions to identify
VEP .

Pertussis vaccine

The pertussis vaccine analysis presented in Section 9.2.1 included exactly one
year of follow-up, the calendar year 1993, so the person-years at risk are
a close approximation to the number of persons at risk. Thus, we use the
person-years at risk for n(v) and n(p). During that one calendar year, there
were 3845 and 1020 person-years at risk in the vaccinated and unvaccinated
children (Préziosi, pers. comm.). Using slightly different inclusion criteria for
cases than in Section 9.2.1, of 548 cases in the vaccinated group, 176 were
severe, and of 206 cases in the unvaccinated group, 129 were severe. Based on
equation (9.3), V̂EP = 0.49, (95% CI 0.40,0.56). Although vaccine status was
not randomized, there was no evidence of systematic differences between the
vaccinated and unvaccinated groups, so that the independence assumption
might be reasonable. The observed data are

n0∗(p) = 814 n0∗(v) = 3297
n10(p) = 77 n10(v) = 372
n11(p) = 129 n11(v) = 176

From (9.16), V̂ES = 1 − (548/3845)/(206/1020) = 0.29. The postinfection
attack rates are PARv = φ̂1· = 176/548 = 0.32 and PARp = 129/206 = 0.63
such that V̂E

net

P = 1−(176/548)/(129/206) = 0.49, which is the same as V̂EP

yielded by using (9.3). Finally V̂E
ITT

P = 1 − (176/3845)/(129/1020) = 0.64,
which in Préziosi and Halloran (2003b) was V̂ESP for severity.

9.4.5 Selection bias models

The inability to identify the causal VEP is due to φ·1 and γ1 not being sepa-
rated in the term

θ01γ1 + θ11φ·1 = Pr[Y obs = 1, Sobs = 1|Zobs = p]. (9.23)

For any fixed values of θ01, θ11, and Pr[Y obs = 1, Sobs = 1|Zobs = p] all pairs
of parameters

{(γ1, φ·1) : 0 ≤ γ1 ≤ 1, 0 ≤ φ·1 ≤ 1, and (9.23) holds}, (9.24)

will yield the same distribution of (Z, Sobs, Y obs). The selection models pre-
sented in this section place additional constraints on the parameter space such
that only one pair of parameters satisfy (9.24).
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No selection bias

The assumption of no selection implies that the probability of the post-
infection outcome conditional on infection under placebo is independent of
infection status under vaccine:

Pr
{
Y (p) = y|SP0 = (1, 1);φ

}
= Pr

{
Y (p) = y|SP0 = (0, 1);γ

}
for y = 0, 1,

(9.25)

which implies φ·1 = γ1. Under assumption (9.25), from (9.22), the resulting
MLE is

φ̂·1 = PARp.

From (9.20), (9.26), and the definition of VEP given by (9.15), it follows that
the MLE of the causal VEP equals V̂E

net

P as given in (9.17). In other words,
under the additional assumption of no selection bias as specified by (9.25), the
MLE of the causal vaccine effect is the usual postinfection attack rate ratio
estimator one obtains when conditioning on infection as in equation (9.2).

Upper and lower bounds

The upper bound selection model yields the parameter pair (γ1, φ·1) consistent
with the observed data that has the largest φ·1, thus largest VEP . Since (9.24)
is simply the intersection of the unit square and a line with negative slope,
it follows that the pair with maximal φ·1 must be on the edge of the square,
i.e., either when

Pr[Y (p) = 1|SP0 = (1, 1)] = φ·1 = 1, (9.26)

or

Pr[Y (p) = 1|SP0 = (0, 1)] = γ1 = 0. (9.27)

In words, the upper bound selection bias model assumes either (i) all placebo
recipients in the doomed principal stratum have the worse post-infection out-
come or (ii) all placebo recipients in the protected principal stratum have the
better post-infection outcome. From (9.22) it follows that the unique MLE of
VEP assuming either (9.26) or (9.27) is given by:

V̂E
upper

P =






1− PARv if V̂ES > 1− PARp,

V̂E
ITT

P if 0 < V̂ES ≤ 1− PARp,

V̂E
net

P if V̂ES = 0.

(9.28)
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All MLEs obtained under the three key assumptions must be less than or
equal to V̂E

upper

I .
Similarly, the lower bound selection bias model assumes that under assign-

ment to placebo, the worse post-infection outcome occurs either with proba-
bility zero in the doomed principal stratum,

Pr[Y (p) = 1|SP0 = (1, 1)] = φ·1 = 0, (9.29)

or with probability one in the protected principal stratum,

Pr[Y (p) = 1|SP0 = (0, 1)] = γ1 = 1. (9.30)

The resulting unique MLE of VEI is

V̂E
lower

P =






−∞ if V̂ES > PARp,

1− PARv/

{
PARp−dVES

1−dVES

}
if 0 < V̂ES ≤ PARp,

V̂E
net

P if V̂ES = 0.

(9.31)

Hudgens and Halloran (2006) derived the circumstances when the upper
bound will be negative (suggesting harm) and when the lower bound will be
positive (suggesting benefit). For example, V̂E

upper

P will be negative if and
only if V̂ES ≤ 1− PARp and V̂E

ITT

P < 0. Similarly, V̂E
lower

P will be positive
if and only if V̂ES ≤ PARp and PARv < (PARp − V̂ES)/(1− V̂ES). On
the other hand, for V̂ES > max{PARp, 1 − PARp}, V̂E

upper

P will be always

positive and V̂E
lower

P will be always negative. In other words, for large enough
V̂ES the sign of VEP cannot be determined unless further assumptions are
made beyond SUTVA, independence, and monotonicity.

Sensitivity analysis for selection bias

Hudgens and Halloran (2006) present three approaches to sensitivity anal-
ysis that allow selection models to range from no selection to the extreme
maximum possible levels.

Log odds ratio of infection

The first approach is similar to that of Scharfstein, et al (1999) and Robins,
et al (2000). The sensitivity model is defined in terms of the log odds ratio of
having the severe post-infection endpoint under placebo in the doomed versus
protected principal strata:
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exp(β) =
Pr[Y (p) = 1|SP0 = (1, 1)]/ Pr[Y (p) = 0|SP0 = (1, 1)]
Pr[Y (p) = 1|SP0 = (0, 1)]/ Pr[Y (p) = 0|SP0 = (0, 1)]

. (9.32)

For example, if exp(β) = 2, then doomed individuals have twice the odds of
having the worse post-infection outcome under placebo compared to protected
individuals. In terms of this parameterization, this implies

φ·1 =
γ1 exp(β)

γ0 + γ1 exp(β)
. (9.33)

For fixed β, one can solve equations (9.22) and (9.33) for φ·1 and, in turn,
VEP . The sensitivity analysis is done by repeating this process over a range
of different βs. The bounds are given above.

Conditioning on γ1 as the sensitivity analysis parameter

The second approach to a sensitivity analysis conditions on the nuisance pa-
rameter γ1 which governs the post-infection endpoint distribution in the pro-
tected stratum. If γ1 is assumed known, from (9.22), the resulting MLE of
VEI is

V̂EP = 1− PARv/

{
PARp − γ1V̂ES

1− V̂ES

}
, (9.34)

where γ1 varies between

max

{
0,

PARp − (1− V̂ES)
V̂ES

}
≤ γ1 ≤ min

{
1,

PARp

V̂ES

}
, (9.35)

with the left side of (9.35) giving rise to V̂E
upper

P and the right side of (9.35)
giving rise to V̂E

lower

P .

Complete data model

The third approach to sensitivity analysis regards the unknown basic principal
stratum membership of the infected placebo recipients as missing data and
formulates the sensitivity analysis in terms of the complete data likelihood.
The observed data are n10(p) and n11(p). If we could know the basic principal
stratum membership, the complete data would be nd

10(p) and nd
11(p), the num-

ber of infected placebo recipients in the doomed stratum with Y (p) = 0 and
Y (p) = 1, and np

10(p) and np
11(p), the corresponding number in the protected

stratum. Given the complete data, φ·1 becomes identifiable. Maximizing the
complete data log likelihood for (θ,φ,γ) yields the MLE

φ̂·1 =
nd

11(p)
nd

10(p) + nd
11(p)

, (9.36)
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the postinfection attack rate under placebo in the doomed stratum. The sen-
sitivity analysis involves estimating VEP using (9.36) for all possible complete
data configurations consistent with the assumptions and the constraints im-
plied by the observed data. Molenberghs et al. (2001) call this set of point
estimates the region of ignorance. They call the collection of confidence inter-
vals (CIs) or other measures of precision together with the region of ignorance
the region of uncertainty.

Statistical variability

Once a particular selection model has been assumed, it becomes a finite-
dimensional parametric inference problem with a unique MLE. Conditional
on a selection model, standard methods can be used to obtain CI estimates
for VEP . For example, CIs can be computed assuming the usual χ2 limiting
distribution of the profile likelihood ratio (Barndorff-Nielsen and Cox, 1994).
Alternatively, using the observed information and the delta method, Wald-
type CIs for VEP can be determined. The resulting CIs can then be used to
determine a region of uncertainty for any of the sensitivity analyses described
above. A region of uncertainty which excludes zero implies a statistically sig-
nificant post-infection causal effect of the vaccine.

Applications, continued

Rotavirus candidate vaccine

For these data, V̂ES > 1−PARp, so from (9.28), V̂E
upper

P = 1−PARv = 0.50.
On the other hand, 0 < V̂ES ≤ PARp, so from (9.31),

V̂E
lower

P = 1− 5/10
{13/16−(1−(10/100)(16/100))}

(10/100)/(16/100)

= 0.29.

Figure 9.3a shows the sensitivity analysis of V̂EP as a function of the odds
ratio eβ . For this figures, profile likelihood based CIs are presented; Wald-
type CIs give qualitatively similar results. The vertical dotted line in Figure
9.3 corresponds to the assumption of no selection bias. The lack of statistical
significance in this example may be due simply to small sample size. If the
study had had 1000 participants in each arm with the same observed marginal
distributions, then the 95% CI for VEP under the lower bound model would
have been [0.09, 0.46], indicating a significant causal vaccine effect on rotavirus
disease severity in individuals who would have been infected under assignment
to either vaccine or control.
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b. Pertussis

Fig. 9.3. Sensitivity analysis using the odds ratio of having the severe post-infection
endpoint under placebo in the doomed versus protected principal strata. (a) ro-
tavirus; (b) pertussis. The vertical dotted line corresponds to the assumption of no
selection bias (from Hudgens and Halloran 2006).

Pertussis vaccine

For the pertussis vaccine data, 0 ≤ V̂ES ≤ 1 − PARp, so from (9.28),

V̂E
upper

P = V̂E
ITT

P = 0.64. On the other hand, 0 ≤ V̂ES ≤ PARp, so from

(9.31), V̂E
lower

P = 0.32. Figure 9.3b shows the sensitivity analysis of V̂EP

as a function of the odds ratio eβ . The lower limit of the 95% CIs are well
above zero over the range of the selection model, suggesting pertussis vaccina-
tion causes significant protection against severe disease in children who would
develop pertussis regardless of vaccination status.

Problems

9.1. Complete-data likelihood for sensitivity analysis
(a) Write out the complete data log likehood discussed in Section 9.4.5.
(b) How many complete-data configurations are there for the rotavirus exam-
ple?
(c) What are the different values of V̂EP corresponding to those configura-
tions?
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(d) The sensitivity analysis using the complete data likelihood would proceed
similarly as for the rotavirus vaccine candidate, with many more possible data
configurations and taking the unequal sizes of the vaccinated and unvaccinated
arms into account. Sketch out the sensitivity analysis for the pertussis vaccine
example.

9.2. Varying γ1 for sensitivity analysis
(a) What is the range for γ1 in the rotavirus vaccine example? in the pertussis
vaccine example?
(b) Produce a graph of VEP over the range of γ1 for the rotavirus vaccine ex-
ample. For the pertussis vaccine example. Mark VEupper, VElower, and VEnet,
and the γ1 corresponding to the assumption of no selection bias.

9.3. Antiviral efficacy against progression, AVEP

In two studies of the influenza antiviral agent oseltamivir (Hayden et al 2004;
Welliver et al 2001), because asymptomatic infections, as well as symptomatic
disease (Sec. 10.3.5), had been ascertained in all household contacts of index
cases, it was possible to estimate the influenza pathogenicity and the antiviral
efficacy in reducing pathogenicity, AVEP . In the contacts receiving prophy-
laxis, 10 symptomatic cases occurred in 46 infected people. In the contacts
not receiving prophylaxis, 33 symptomatic cases occurred in 75 infected people
(Halloran et al 2007). Compute the pathogenicity of the influenza virus in the
two groups and the efficacy of postexposure prophylaxis against progression,
AVEP .


