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Preface

Immunization is one of the greatest advances in public health. Figure 0.1
shows a camel with a solar powered refrigerator on his back. Many vaccines
contain live viruses that need to be kept cold, or the viruses will die and the
vaccines will lose their ability to produce an immune response. The chain of
refrigeration is called the cold chain. This camel is carrying vaccines in the
solar powered refrigerator across a hot desert to the far reaches of civilization.
The inspiration of this image is that it represents the dedication of the world
to bring the vaccines to everyone.

The first major success, and the origin of the word vaccination (vacca for
cow), was Jenner’s introducing cowpox-based vaccine against smallpox in the
late 18th century. After nearly a century hiatus, at the end of the 19th century,
inoculations against cholera, typhoid, plague, (all three caused by bacteria)
and rabies caused by a virus, were developed. By the early 20th century, statis-
ticians of the stature of Karl Pearson, Major Greenwood and Udny Yule were
heartily involved in discussions of evaluating these vaccines in the field. In the
1920’s, new vaccines included Bacille Calmette-Guérin against tuberculosis
pertussis, diptheria, and tetanus, and the 1930’s yellow fever, influenza and
rickettsia. After World War II, the development of new vaccines burgeoned
with the development of cell cultures in which viruses could grow, enabling de-
velopment of oral polio vaccine and vaccines against measles, mumps, rubella,
adenovirus, varicella, and adenovirus, among others. Further new technolo-
gies have enabled development of new generations of vaccines to replace the
old ones and attempts to make new vaccines against malaria, HIV and many
others where the infectious agent still outwits the researchers (Plotkin, Oren-
stein, Offit 2008). Some vaccines are highly efficacious, and protective effects
are recognizable even without subtle statistics. Others are less efficacious, so
that study design and statistical analysis are more challenging. Other aspects
of the biology the infectious agents also pose statistical challenges.

Statistical inference made great advances in the 20th century and the 21st
has much more in store (Efron 1998). The development of statistics, clinical
trial design, and epidemiologic methods in the 20th century had their coun-
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Fig. 0.1. Camel with solar electricity powered refrigerator with vaccines being kept
in the cold chain. Image courtesy of Naps Systems Oy, Finland.

terparts in advances in vaccine studies as well. The early vaccine field studies
predate randomized trials and contain detailed discussion about confounders.
Some of the earliest randomized studies were in infectious diseases and vacci-
nation.

The focus has historically been on evaluating the direct protective effects
of immunization in the individuals who are immunized. However, vaccination
of certain individuals can affect whether other unvaccinated individuals be-
come infected. Due to the dependent happening nature of infectious diseases
(Ross 1916), widespread immunization can have many different kinds of ef-
fects in populations. Also, since the effects of vaccination generally need to be
evaluated in the field, studies take place in the wild, in a manner of speaking,
where the important and dynamic population of the infectious agent of inter-
est is circulating with the humans as hosts. Increasing interest is being given
to effects of vaccination in addition to the direct protective effects. This book
is about the myriad different effects of vaccination and their evaluation.

Different approaches to vaccine studies have been developed by researchers
working on particular infectious diseases. Similarly there are people who spe-
cialize in particular musical instruments and are pianists, clarinetists, or vio-
linists. But then there are musicians who can play just about any instrument.
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Our focus is on general principles that can be applied to many infectious dis-
eases and many vaccines. Our aim is to present a unified view of vaccine field
studies and infectious diseases in general.

This book is intended to serve three audiences: researchers specializing in
vaccine and infectious disease studies; scientists interested in understanding
vaccine and infectious disease studies; and students in statistics, biostatistics,
epidemiology or infectious diseases. The prerequisites for understanding much
of the material in the book are minimal. In many sections of the book, we
have emphasized the conceptual development. We have not assumed a knowl-
edge of concepts of infectious disease epidemiology or dynamic models, and
include considerable material on these subjects, since they are integral to our
approach. We also do not assume a knowledge of vaccines or the immune re-
sponse to infection and vaccination, and include a brief chapter covering these
topics. The models and analytic methods require some comfort with equations.
We do not explain statistical methods, such as likelihood and Bayesian based
inference. However, it is not necessary to understand how inference is con-
ducted to understand the general ideas of the book. We have marked a few
sections as being highly technical that can be skipped.

Many thanks to John Kimmel, whose patience and support saw us through.
Several colleagues have contributed to this book. (names) Several former grad-
uate students, now colleagues – (names) –have contributed in many ways to
the development of this book. Much of the research represented in this book
was supported by the National Institute of Allergy and Infectious Disease
grants R01-AI32042, R29-AI31057, and R01-40846, and the Brazilian Reseach
Council (CNPq).

Seattle, Rio de Janeiro, M. Elizabeth Halloran
Januray 2009 Ira M. Longini, Jr.

Claudio J. Struchiner
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1

Introduction and Examples

1.1 The Need of Vaccine Studies Framework

1.1.1 A few historical examples

Vaccine efficacy and vaccine effectiveness, VE, are generally estimated as one
minus some measure of relative risk, RR, in the vaccinated group compared
to the unvaccinated group:

V E = 1−RR . (1.1)

The groups being compared could be composed of individuals or of popula-
tions or communities.

Historically, interest has been on evaluating protective effects of vaccina-
tion. Study designs and statistical analysis have played a role since early on. In
the November 5, 1904, issue of the British Medical Journal, Karl Pearson pub-
lished a criticism of the Antityphoid Committee’s report on the antityphoid
inoculation statistics from the South African War and from India that had
recommended continued use of antityphoid inoculation. Armed with the cor-
relation coefficient, he re-analyzed the data and claimed that the correlations
between protection against disease and inoculation ranged from 0.021 and
0.445, mostly around 0.1, with the correlations against mortality in a similar
range. He compared these values with his analysis of the relation of recovery
from smallpox with smallpox vaccination, which were in the range 0.578 and
0.769. Although he demurred somewhat due to his lack of knowledge about
typhoid, he wrote “that the results are such as would justify suspension of
antityphoid inoculation as a routine method.” The immunologist A.E. Wright
countered the following week, saying that although he did not understand
the correlation coefficient, the mortality was reduced four- to six-fold, so that
Pearson’s conclusion must be wrong and that the Medical Advisory Board,
who had heeded the criticism ”could not hide behind Professor Pearson’s pet-
ticoats.” The argument continued in the British Medical Journal weekly for
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a full nine weeks until December 31, 1904, when Pearson finally gave up con-
tinuing the controversy after Wright refused to deal with what he had called
“statistical minutiae” and the “mathematical expression”.

In 1915, the statisticians Major Greenwood and Udny Yule published a
treatise on “The Statistics of Anti-typhoid and Anti-cholera Inoculations, and
the Interpretation of such Statistics in general” in the Proceedings of the Royal
Society of Medicine. The 85-page paper begins “Hardly any subjects within
the range of preventive medicine is of more immediate importance than the
methods of prophylaxis which ought to be adopted with respect to typhoid
fever and cholera” (page 113). As well as presenting much of the data avail-
able at that time, the paper develops a general approach to analyzing and
interpreting such data. They lay out the conditions for valid inference and use
the Pearson chi-square to calculate significance of inoculation’s effect against
disease and mortality. They discuss the heterogeneity in susceptibility and
protection, and the role of a possible threshold of protection. Person-time
analysis was not invented yet, so they discussed the problem of people be-
ing inoculated during the course of the epidemic, thus changing their status.
Figure 1.1 shows two tables with data on anti-typhoid inoculation from the
original Greenwood and Yule (1915) paper. The problem was whether to “class
as inoculated those who were so at the date of the last return made or only
those actually inoculated at the time of arrival on the foreign station.” In the
former case, shown in Table I of Figure 1.1, there may be an exaggeration
of the “number of men who were inoculated during the whole exposure to
infection”, and in the latter case, shown in Table II, one would underestimate
it “because many inoculations were done shortly after arrival.”

In 1939, Kendrick and Eldering reported on a large pertussis vaccine field
trial in Michigan. Figure 1.2 shows data from the Kendrick and Eldering
(1939) paper on number of cases and person-time at risk in the pertussis
trials. Figure 1.3 shows data from the Kendrick and Eldering (1939) paper on
number of cases and number of exposures to pertussis in the trial. It is not
unusual for vaccine studies to present two such analyses. We show the relation
of these analyses to one another. Both the Greenwood and Yule (1915) and
the Kendrick and Eldering (1939) papers pre-date formal randomized studies
and discuss in detail potential sources of bias.

In 1954, an enormous field study of the Salk killed poliomyelitis vaccine was
undertaken with great publicity in the United States. A total of 1,829,916 chil-
dren participated in the nationwide study. The Summary Report by Thomas
Francis, Jr. et al. of the trial was published early in 1955 in the American
Journal of Public Health. In December 1955, K.A. Brownlee wrote an invited,
highly critical review article for the Journal of the American Statistical As-
sociation on the statistics of the 1954 polio vaccine trials. The original design
plan, called the Observed Control Study, was “to administer vaccine to chil-
dren in the second grade of school; the corresponding first and third graders
would not be inoculated, but would be kept under observation for the oc-
currence of poliomyelitis in comparison with the inoculated second graders.”
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Fig. 1.1. Two tables from the original Greenwood and Yule (1915) paper containing
data on anti-typhoid inoculations and attack rates in the military. The two tables
represent two differing arrangements of the data.

(Report, page 1). Someone noticed the problem that this was not a blinded
study, plus other factors such as differences in age that might lead to bias. So,
to “have data which could provide an accurate gauge of the effect, free of pos-
sible bias in diagnosis and reporting,” (Report, p.1), the plan was changed in
mid-stream. In the second plan, called the Placebo Control Study, “children of
the first, second, and third grades would be combined. One half would receive
vaccine; the other matching half, serving as strict controls, would receive a
solution of similar appearance....” (Report, p. 1) Fewer than half of the chil-
dren were in the second part of the study. Brownlee’s colorful judgment was
that “It is a pity that explicit credit is not given to whomever was responsible
for this change. However, only 41 percent of the trial was rescued and the
remaining 59 percent blundered along its stupid and futile path.” (Brownlee,
1955, page 1007). Despite possible design flaws, the vaccine was determined
to have a 72 percent efficacy (lower 5% confidence limit 61) against paralytic
polio in the Placebo Study Areas and 62 percent efficacy (lower 5% confidence
limit 51) in the Observed Study Areas. The Salk killed injected polio vaccine
and Sabin live oral polio vaccines transformed the epidemiology of the dis-
ease. Transmission of the three polio virus strains has been eliminatd in most
countries of the world.

In 1916, Sir Ronald Ross published his treatise on The Theory of Hap-
penings in the Proceedings of the Royal Society of London. Ross had already
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Fig. 1.2. Results of a pertussis vaccine trial in Michigan, USA, in the 1930’s (from
Kendrick and Eldering 1939).

been awarded the second Nobel prize in medicine for elucidating that malaria
was transmitted by mosquitoes. He was also an amateur mathematician who
developed the early mathematical models of malaria and interventions. In his
more general 1916 treatise, Ross wrote that “ Different kinds of happenings
may be separated into two classes, namely (a) those in which the frequency of
the happening is independent of the number of individuals already affected;
and (b) those in which the frequency of the happening depends on this quan-
tity...to class (b) belong infectious diseases, membership of societies and sects
with propagandas, trade-unions, political parties, etc., due to propagation
from within, that is, individual to individual” (page 211). Due to the de-
pendent happenings in infectious diseases, vaccination can produce several
different kinds of effects at both the individual and the population level. In an
individual, vaccination can induce a biologically protective response against
infection and/or disease, and/or reduce the degree or duration of infectious-
ness for other individuals. Widespread vaccination in a population can reduce
transmission and produce indirect effects, even in individuals who were not
vaccinated.

During the 20th century, two for the most part distinct mathematical ar-
eas developed. One are was in the arena of statistics and inference, including
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Fig. 1.3. Results of a pertussis vaccine trial in Michigan, USA, in the 1930’s (from
Kendrick and Eldering 1939)

the development of the randomized trial, and further developments of clinical
trials and epidemiological study design. The primary focus of vaccine studies
was on evaluating direct protection in vaccinated compared with unvaccinated
people. The underlying dynamics of transmission of the infectious agent did
not play an important role. Epidemic theory made great advances in the 20th
century as well. Both deterministic and stochastic models of infectious dis-
ease dynamics and interventions were developed. Especially with the advent
of computers, models could become more complex. Epidemic theory and com-
puter models could be used to study potential indirect effects of widespread
vaccination or other interventions. However, the relation to the field studies,
prospective data collection, and statistical analysis remained tenuous.

1.1.2 Growth of interest in population effects

In the latter decades of the 20th century, interest began to grow in evalu-
ating more than just the direct protective effects of vaccination. During the
1980’s there was great hope that effective malaria vaccines were imminent.
The malaria parasite has three main stages of its life cycle in humans, one for
infection, one for disease, and one for transmission to the mosquitoes. Nat-
urally, the problem of designing studies to evaluate a transmission-blocking
vaccine, which would not protect the immunized individual at all, led to the
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idea of using community randomized designs to evaluate the reduction in
overall incidence due to use of such a vaccine.

In the early 1990’s the Hemophilus influenzae (Hib) vaccine was intro-
duced. Young children were vaccinated with the result that incidence in young
infants nearly disappeared. This effect was apparently due to a large reduc-
tion in carriage of the infectious agent in the nasal passages. The indirect
effects of vaccinating was astonishing, and interest grew on how to measure
the effect accurately with good study designs and statistical analysis. More
recently, similar phenomena are being observed with meningococcal vaccina-
tion (Ramsay et al 2003)and pneumococcal vaccination (Hennessy et al 2005).
With these conjugate vaccines, evidence is mounting that a stronger immune
response is required to reduce carriage than to prevent invasive disease. Very
young children are not able to mount such a good immune response. So that
if reduction in carriage is the goal to reduce the overall transmission in a
population, then it might require a change in the world–wide immunization
schedule of infants and young children, which cannot be undertaken lightly.
Thus, interest is keen in accurate evaluation of the changes in transmission
and incidence of invasive disease by reducing carriage in contrast to direct
protection against invasive disease.

During a primary pneumococcal vaccine trial conducted in the 1990’s,
some concern developed about whether the number of events being observed in
the study would be sufficient to support licensure of the vaccine. A community-
randomized study was designed and implemented to evaluate the reduction in
incidence of widespread vaccination, especially the reduction in the vaccinated
children in the communities where vaccination was offered compared to the
unvaccinated in the control communities (Moulton et al 2001). The idea of
the study was that it would lend support to the primary study. However, the
vaccine was licensed before completion of the community-randomized study,
so that the latter trial was interrupted.

Ali et al (2005) reanalyzed a large-scale trial of killed cholera vaccine in
Bangladesh, relating the level of vaccine coverage in the different geographic
areas with the reduction in incidence. In general, interest in evaluating pos-
sible indirect effects of widespread vaccination either before or after licensure
is growing. The idea is gaining attention in the HIV vaccine world where cur-
rently few people believe that a vaccine will block infection, but could help
control the initial growth of virus in the blood, thus reducing infectiousness
for others. This could have potentially important public health benefits which
would be good to evaluate prospectively.

Influenza researchers have believed for decades that children are respon-
sible for most of the transmission of influenza in the community. They have
promoted vaccination of children as an important public health measure to
reduce transmission in adults and high-risk groups who might themselves not
respond well to immunization. A community-based study in Texas to evaluate
the effects of vaccinating schoolchildren against infuenza on adults has been
ongoing in Texas, USA, since 1998 (Piedra et al 2007). The Texas study as
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well as many other influenza vaccine studies do not use biologically confirmed
influenza illness as the outcome. Instead a case definition is used based on
symptoms only without biological confirmation, including many illnesses that
would not be affected by an influenza vaccine. Thus the estimates of the ef-
fect of the vaccine is much lower than if only biologically confirmed influenza
illnesses were used. We consider approaches to improving such estimates in
this book.

Pertussis vaccines have been in widespread use since the 1930’s. Vacci-
nation is very effective against overt pertussis disease. However, consider-
able controversy raged over whether pertussis vaccination had any effect on
the circulation of the bacteria on the population. Indirect evidence based on
population-dynamic arguments suggested that the circulation of the bacteria
was not reduced, just serious disease. However, the evidence was considered
inconclusive. A study in Niakhar, Senegal, was conducted in the early 1990’s
of pertussis vaccination, in which the primary interest was in the protective ef-
fects of vaccination. Because the study took place within a larger population-
based study, the data also allowed estimation of the effect of the vaccine
on reducing transmission from vaccinated breakthrough cases compared with
transmission from unvaccinated cases (Préziosi and Halloran 2003a). Further-
more, the study data were appropriate to estimate the effect of vaccination
on the severity of disease in those who did develop pertussis (Préziosi and
Halloran 2003b).

These are only a few recent examples of growing interest in evaluating
more complex effects of vaccination in populations. Our goal in this book is
to provide a systematic framework for understanding the different effects of
vaccination and how they relate to one another, principles of study design and
statistical analysis, and the underlying transmission dynamics.

1.2 Scope and Outline of the Book

Different types of studies are required for different phases of vaccine devel-
opment. The statistical problems in vaccine studies range from small sample
exact analysis for sample sizes of 2 to 8 animals or people, to randomized field
trials with hundreds to several thousands of people, to community trials with
hundreds of thousands of participants, and finally to surveillance in popula-
tions with hundreds of millions of inhabitants. The early phase of vaccine de-
velopment involves searching for candidate vaccine antigens. These include in
vitro studies as well as testing in animals. More recently, designer approaches
to vaccine discovery using computer models of various parts of the infectious
agent and the immune system have been developed. Once a candidate antigen
is found, then a vaccine is formulated. If appropriate animals are available for
that particular infectious agent, then the vaccine candidate will be tested for
safety, immunogenicity, and possibly efficacy against experimental challenge
with the infectious agent.
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Then the vaccine goes into humans for various phases of clinical testing.
Phase I is primarily safety and possibly immunogenicity. Phase II studies are
further safety and immunogenicity testing in humans. Phase III studies are
generally field evaluation of direct protective efficacy, with further accumula-
tion of safety data. Recently, there has been some discussion of integrating
evaluation of indirect effects for some vaccines into Phase III studies. The
Phase III studies are the field studies that are generally used to apply for
licensure of a vaccine. Once a vaccine is licensed, then the efficacy and safety
of the vaccine in regular usage is often monitored and evaluated using a va-
riety of studies. The post-licensure studies are somewhat generically referred
to as Phase IV studies. Phase II studies are generally not designed to be large
enough to evaluate the protective efficacy of the vaccine. Phase IIb studies
have been proposed that are something like proof-of-concept studies. They
are powered possibly to estimate an effect with moderate significance. The
idea is that the trial might be expanded to be larger if there is some evidence
of an effect.

The Phases III and IV studies are the main focus of our book, in that we
focus on field studies. In defining the various effects of vaccination and their
relation to one another, we implicitly assume a randomized study, with ob-
servational studies being departures from the randomized study (Rosenbaum
1995). Departures from the randomized study can result in confounding and
types of biases. Our general paradigm is that of causal inference. Aspects of
our book are largely conceptual, showing the interface between study design,
statistical analysis, and epidemic theory. After giving an overview of the book,
the remaining part of this chapter introduces some key definitions in infectious
disease research and causal inference.

Chapter 2 presents a systematic framework for thinking about many of
the different types of vaccination effects and the parameters and study de-
signs used to estimate them. This chapter is based on a paper by Halloran,
Struchiner, and Longini (1997) that we call the Table Paper because it lays
out a 2-dimensional table (Table 2.2) showing several of the main vaccine ef-
ficacy and effectiveness parameters. Struchiner et al (1990) and Halloran and
Struchiner (1991) introduced four basic study designs for differentiating and
evaluating direct and population level effects of vaccination. Struchiner, Hal-
loran and colleagues were particularly motivated by the malaria vaccination
discussion of the 1980’s and proposed to differentiate vaccines against infec-
tion, disease, and transmission (Struchiner et al 1989; Halloran et al 1989).
Longini and colleagues were interested in estimating the effects of covariates
from household studies in which information on contacts between infectives
and susceptibles to allow the estimation of the effect of covariates on the trans-
mission probabilities and the secondary attack rates (Longini and Koopman
1982). In 1996, Rhodes, Halloran and Longini showed formally the relation
among the parameters of protective effects using counting process models.
The Table Paper is the unification of these various ideas. Further details were
published in Halloran et al (1999).
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Chapter 3 gives an overview of the immune response to infection, the
basis for the idea of prophylatic immunization. The chapter gives a brief his-
tory of the development of vaccines. Vaccine safety is of key importance in
vaccine studies. Preclinical animal studies and Phase I and II clinical trials
are designed to evaluate immunogenicity and safety, thus are also included
in Chapter 3. The idea of herd immunity, the level of immunity to an infec-
tious agent in a population, in contrast to the immune response within an
individual, is presented.

Chapters 4 and 5 introduce dynamic models. Chapter 4 focuses on the
Reed-Frost and Greenwood models, and stochastic, discrete-time methods.
Chapter 5 focuses on deterministic, differential equation models. In both chap-
ters, the material presented is motivated by its relation to statistical models
for estimation of important parameters, including vaccine effects, and for un-
derstanding transmission dynamics in field studies. These two chapters can
be read on their own by someone interested in an introduction to dynamic
infectious disease models.

Chapter 6 focuses on studies for evaluating the direct protective effects
of vaccination. This chapter presents the estimands and estimators for the
measures of protective efficacy that do not condition on exposure to infec-
tion. Specifically, these include the most common estimators of vaccine effi-
cacy based on the incidence rate, the hazard rate, or cumulative incidence,
called the attack rate in infectious diseases. Several examples of field stud-
ies are presented. The chapter covers general considerations of designing a
study, including choice of populations and comparison populations, choice of
outcomes, sample size determination, and randomized versus observational
studies. Chapter 7 discusses different distributions of protection in a popu-
lation and the implications for study design and population dynamics. The
problems of measuring vaccine efficacy in the presence of heterogeneity in pro-
tection or exposure to infection and of evaluating waning of vaccine efficacy
are considered. Chapter 8 considers case-control studies in vaccine evaluation.
The choice of outcome measures and the use of validation sets for nonspe-
cific outcomes is presented Chapter 9 presents the evalution of the effects of
vaccination on post-infection outcomes and related issues such as selection
bias.

Chapters 10 through 12 present household-based studies and related stud-
ies, such as the augmented study design, and studies in other transmission
units. Chapter 10 presents several examples of studies in households and other
small transmission units and discusses some considerations of study design.
Chapter 11 gives an overview of the difference in the statistical models of the
assumptions of independence among transmission units or that transmissions
units are considered within a community. Several approaches to analyzing data
assuming that people can become infected within the transmission unit as well
as from the community at large are presented. Chapter 12 presents methods
of analysis assuming that the transmission units are separate, including the
conventional secondary attack rate analysis.
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Chapter 13 goes into detail how to estimate indirect, total, and overall
effects of widespread vaccination. The first part of the chapter presents ap-
proaches comparing incidence before and after implementing a vaccination
strategy in a population. The second part of the chapter presents aspect of
group-randomized designs in which several communities are compared.

Chapter 14 discusses issues related to the use of exposure to infection to
help with the interpretation of vaccine studies and how to compare studies of
the same vaccine in different populations.

Chapter 15 focuses on determining immune correlates of protective im-
munty. Although we touch on the new developments made possible by ad-
vances in biological specimen collection, immunology, genome scans, and se-
quencing of agents, the next generation book on vaccine studies will be the
one to cover these in more detail.

Chapter 16 discusses some practical important issues related to vaccine
studies, such as the Data and Safety Monitoring Board (DSMB), not covered
elsewhere. We do not cover in detail how to conduct a vaccine study.

1.3 Concepts in Infectious Disease Research

1.3.1 Transmission

Transmission from one host to another is fundamental to the survival strategy
of most infectious agents. Each infectious agent has its own life cycle, modes
of transmission, population dynamics, evolutionary pressures, and molecular
and immunologic interaction with its host. The transmission cycle may involve
a particular insect or other vector, and consequently its ecology. Studies and
interventions need to take the particular transmission, dynamics, and biology
of each infectious agent into account.

However, some underlying principles of transmission and dynamics are
common to many infectious diseases. These principles are captured in a wide
variety of mathematical and statistical models. Since for the infectious agent,
the human host population is its ecological niche, some of the principles come
from general theories of populations, evolution, and ecology. (see Burnet and
White, 1972; McNeill,1976). Some of the principles have their origins in in-
fectious disease epidemiology. When the appropriate data are available, the
models can be used to estimate quantities of interest.

One measure of the success of an infectious agent is how effectively it is
transmitted. The transmission probability p is the probability that, given a
contact between an infective source and a susceptible host, successful transfer
of the infectious agent will occur so that the susceptible host becomes in-
fected. The transmission probability depends on the type and definition of a
contact, the infectious agent of interest, characteristics of the infectious host,
and characteristics of the susceptible host (Figure 1.4).
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Fig. 1.4. Transmission

1.3.2 Time line of infection

The natural history of infection within a host can be described with reference
to either infectiousness or disease (Figure 1.5). Both time lines begin with
the successful infection of the susceptible host by the infectious agent. The
natural history of infectiousness includes the latent period, the time interval
from infection to becoming infectious, and the infectious period, during which
time the host could infect another host or vector. Eventually the host becomes
noninfectious, either by clearing the infection, possibly developing immunity,
or by death. The host can also become noninfectious while still harboring the
infectious agent. The host may also become an infectious carrier if he recovers
from disease (i.e. asymptomatic), but continues to carry the infection, often
remaining infectious.

The natural history of disease in the infected host includes the incubation
period, the time from infection to symptomatic disease, and the symptomatic
period. The probability of developing symptomatic disease after becoming in-
fected is the pathogenicity of the interaction of the infectious agent with the
host. Eventually the host leaves the symptomatic state, either by recover-
ing from the symptoms or by death. If the infectious agent has provoked an
autoimmune response in the host, symptoms can continue even after the in-
fectious agent is cleared. An inapparent case or silent infection is a successful
infection that does not produce symptoms in the host. Inapparent cases can
be infectious.

While the disease process and its associated time line are important to
the infected person and to a physician, the dynamics of infectiousness are
important for propagation of the infectious agent and for public health. The
relation of the two time lines to one another is specific to each infectious agent
and can have important implications for study design, modeling, and public
health.
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Fig. 1.5. General Timeline of Infection and Disease

HIV poses a particular problem for public health because the virus has a
short latent period and a long incubation period. A person infected with HIV
could infect many people before symptoms develop. Plasmodium falciparum,
one of the parasites that causes human malaria, has an incubation period of
about 14 days, but the infective stages of the parasite do not appear until
about 10 days after the first symptoms. Thus, early treatment of symptoms
with a drug that also kills or prevents infective stages could have an important
effect on transmission.

The role of changes in behavior relative to the development of infectious-
ness and symptoms is also important. It is possible to add a third timeline
related to behavioral aspects, such as withdrawal to the home with symp-
toms, going to the hospital, or other aspects that influence how infectives
expose other susceptibles, or how susceptibles alter their exposure. Figure 1.6
shows the consensus timeline of infection, disease, and behavior of smallpox
infection and disease for an unmodified smallpox, that is, the course in an
infected individual who was not previously vaccinated (Longini et al 2007) .
Once again the relation between the onset of infectiousness and symptoms is
key because the symptoms then influence the behavior.

Figure 1.7 shows a timeline for influenza. There is considerable uncertainty
about how much of the infectiousness occurs before symptoms develop. This
is important for choosing among public health interventions and for dynamic
modeling.

Elveback et al (1976) developed an influenza model that distinguished
between illness and infection attack rates. The infected people become infec-
tious, but only a fraction of them develop overt disease. In many studies of
infectious agents, it is easier to use overt disease as the outcome, rather than
infection, since infection may be difficult to ascertain. If many infections are
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Fig. 1.6. Smallpox Timeline of Infection, Disease, and Behavior (Longini et al 2007)

inapparent, however, using overt disease would result in an underestimate of
the level of exposure to infection in the population. Estimation of the incuba-
tion and latent periods can be difficult because the time of infection as well
as the onset and end of infectiousness are often difficult to observe.

1.3.3 Basic reproductive number, R0 and generation time, Tg

Another key quantity in infectious diseases is the basic reproductive number,
R0, pronounced “are-zero” or “are-naught”. R0 is defined as the expected
number of new infectious hosts that one infectious host will produce during
his or her infectious period in a large population that is completely susceptible.
This definition applies for small infectious agents, such as viruses and bacteria,
also called microparasites (Anderson and May 1991) Understanding R0 is
important for public health applications and for describing the population
biology of a parasite in a population of hosts. R0 does not include the new cases
produced by the secondary cases, or cases further down the chain. It also does
not include secondary cases who do not become infectious. R0 is a measure
of the transmissibility of the strain in the population and largely determines
the proportion of the population that will be infected in an epidemic.
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Fig. 1.7. Influenza Timeline of Infection and Disease

The serial interval, also called the generation time, Tg, is the average time
between infection of an index case and infection of the secondary cases they
produce. It can also be defined as the average time between the onset of
symptoms or ascertainment of an index case and the onset of symptoms or
ascertainment of the secondary cases they produce, but then additional vari-
ability must be taken into account (Svensson 2008). The rate of growth of an
epidemic is determined approximately by the ratio R0/Tg (Fraser et al 2004).
Because the generation time of influenza is on the order of 2 to 3 days, and
that of smallpox is on the order of 10 to 14 days, influenza epidemics are much
more explosive than a smallpox outbreak would be. The goal of intervention is
to reduce R0 so that R0 < 1, which for simple assumptions about population
mixing requires transmission rates to be reduced by a fraction 1− 1/R0.

The concept of R0 comes from general population theory and refers to the
expected number of reproducing offspring that one reproducing member of the
population will produce in the absence of overcrowding. With larger parasites
such as worms, called macroparasites, R0 is the expected number of mature
female offspring that one female will produce in her lifetime. In macroparasitic
diseases, the parasites are often distributed in a skewed fashion among their
hosts which influences the design of intervention programs. We do not consider
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macroparasitic diseases in this book. Chapters 4 and 5 have more discussion
of R0.

1.4 Causal Inference and Vaccine Effects

In many parts of this book our approach draws on the potential outcomes
approach to causal inference (Rubin 1980, Holland 1986, Robins 1986). Causal
inference is a framework for carefully defining causal estimands, that is the
quantities that one wants to estimate, and then articulating the conditions
and assumptions under which they can be estimated from the observed data.
A potential outcome is the outcome that a person would have if a person
received a particular treatment. Receiving the treatment does not necessarily
occur. Suppose that infection, yes or no, is the outcome of interest. One can
imagine that a person would have one potential outcome (not infected) if
vaccinated and a possibly, but not necessarily, different (infected) potential
outcome if that person were not vaccinated. Generally, in this framework, the
potential outcomes are assumed to be determined before a person receives
either treatment. That is, the potential outcomes are assumed fixed before
any assignment to either vaccine or control. One can define the causal effect
at the individual level. The individual causal effect of treatment A compared
to treatment B is defined as the difference (or ratio) in the potential outcome
under treatment A and the potential outcome under treatment B.

The Fundamental Problem of Causal Inference (Holland 1986) is that gen-
erally only one of the potential outcomes of an individual can be observed.
That is, generally, if we assign a person to receive either vaccine or control,
then we will observe the outcome under that assignment, but not observe
the outcome under the other assignment. So, to define an effect that we can
observe, we use a population of individuals. The population average causal
effect (ACE) is the difference of the expectation of the potential outcomes if
everyone received treatment A and the expectation of the potential outcomes
if everyone received treatment B. It is still not possible to observe this. How-
ever, under two assumptions, we can estimate the population average causal
effect from the observed data.

What is an individual causal effect? The individual causal effect is defined
as the difference in potential outcomes in individual i under one treatment
compared to another treatment. Formally, for i = 1, . . . , n,

Zi = 0, 1 treatment assignment/exposure

Yi(z) outcome under assignment z = 0, 1

Yi(0)− Yi(1) individual causal effect
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Generally in causal inference, the assumption is made that there is no
interference between units (Cox 1958). That is, the potential outcomes in
an individual are independent of the treatment assignment of others. This
is also called the Stable Unit Treatment Value Assumption (Rubin 1980),
or SUTVA, where the SUTVA assumption also includes that all treatments
and their potential outcomes are represented in the model. In Chapter 13, we
discuss how to define causal estimands when using potential outcomes when
SUTVA is violated (interference between units) to define direct, indirect, total
and overall effects. Here we make the assumption of no interference between
units. Then, if there are only two treatments, say, vaccine and control, then
the representation with just two potential outcomes is adequate.

The first assumption generally made is that the treatment assignment in
one person does not affect the potential outcome in another person. This was
called the assumption of no interference by Cox (1958). Rubin (1980) called
it the Stable Unit Treatment Assumption (SUTVA). Technically, SUTVA in-
cludes as well the assumption that all treatments and their potential outcomes
are represented in the model. In this book, we are only concerned with the
assumption whether or not there is interference. Clearly, when considering
Ross’ terms of dependent and independent happenings, the assumption of no
interference contradicts the situation in dependent happenings in infectious
diseases (Halloran and Struchiner 1995). If the potential outcomes depend on
the treatments that other people receive then people have more than just two
potential outcomes (Rubin 1978). We return to this in Chapter 13.

The second assumption required is the specification of the mechanism of
assignment of the treatments to the individuals. A very useful assignment
mechanism is randomization. Under the assumption of no interference between
the individuals in the study, and that treatments A and B were assigned
randomly, and also perfect compliance with the assignment, then the observed
difference in the average outcome in individuals assigned A and the individuals
assigned B is equal to the population average causal effect.

To formalize the above ideas, we need at least three elements in the model,
a population of units, at least two treatments (the causes), and the response
variables, or potential outcomes of interest. Suppose we have a population of
individual people, i = 1, . . . , n. For simplicity, assume here just two levels of
treatment Z, say, vaccine and control, denoted by Z = 1 for vaccine and Z = 0
for control. The two potential outcomes Y could be infected and not infected,
represented by Y = 1 if infected and Y = 0 if not infected. Let Yi(Z = 1)
and Yi(Z = 0) represent the potential outcomes for person i under vaccine
and control. Then the individual causal effect in person i of vaccine compared
with control is Yi(0) − Yi(1). For example, if person i would be infected if
he received control (Yi(0) = 1) and he would not be infected if he received
vaccine (Yi(1) = 0), then the individual causal effect in person i is

Yi(0)− Yi(1) = 1− 0 = 1. (1.2)
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Table 1.1. Four kinds of people and the individual causal effects based on potential
outcomes

Stratum Y (Z = 1) Y (Z = 0) Causal effect

immune 0 0 0
harmed 1 0 −1
protected 0 1 1
doomed 1 1 0

Since the individual causal effects are not observable, we proceed to the pop-
ulation average causal effect. Assume that we randomly assign n0 = n/2 of
the population to vaccine and to control. Under the assumptions of SUTVA
and randomization (and compliance), the population average causal effect is

E{Y (0)− Y (1)} = E{Y (0)} − E{Y (1)}

= E{Y (0)|Z = 0} − E{Y (1)|Z = 1}

=
∑n0

i=0 Yi(0)|Z = 0
n0

−
∑n0

i=0 Yi(1)|Z = 1
n0

, (1.3)

which is identifiable from the observed data.
Four types of individuals are possible in the population defined by their

pairs of potential outcomes under vaccine and control (Table 1.1). First, they
could be uninfected whether they receive vaccine or control. These people are
called immune (even outside the vaccine literature). They could be infected
if they receive vaccine, but remain uninfected if they receive control. These
people are considered harmed by the vaccine. They could remain uninfected
if they receive vaccine, but become infected if they receive control, called pro-
tected by the vaccine. They could become infected under both vaccine and
control. These people are called doomed. In some infectious disease papers, the
four types of people are sometimes called never infected, harmed, protected,
and always infected. The causal inference framework based on potential out-
comes induces an inherent heterogeneity in the population.

The latent groups cannot be identified without further assumptions. For
example, if a vaccinated person becomes infected, that person could be either
a person harmed by vaccination or a person doomed to become infected. If we
make the assumption that the vaccine does not harm people, that is, there are
no individuals in the harmed stratum, then we know that the infected vacci-
nated person must be in the doomed stratum. Also, under this assumption,
we know that an unvaccinated person who does not get infected must be in
the immune stratum. If a vaccinated person does not get infected, however,
they could be in the immune or the protected stratum.

The assumption of randomization to specify estimators of the estimands of
interest demonstrates how randomization can serve as the point of departure
for estimating effects of interest. Observational studies in which the vaccine
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assignment is not randomized are subject to biases, but can be viewed as de-
partures from the randomized experiment. By making the assumptions about
how an observational study departs from a randomized study explicit, we can
understand how our estimates of the estimand of interest differ from what we
might have observed in a randomized study.

The flavor of causal inference courses through various aspects of this
book. Causal inference methods help in understanding vaccine effects on post-
infection outcomes in Chapter 9. Causal inference underlies new approaches to
evaluating immunological surrogates of protection in Chapter 15, In Chapter
13 we consider relaxing the assumption of no interference to evaluate indirect,
total, and overall effects within the causal inference framework. The potential
outcome approach to causal inference is not everyone’s cup of tea. Our goal in
this book is to present many ideas related to evaluating vaccines. The simple
statement of comparing what the outcome would be with vaccine compared
to control, the basis of most vaccine studies, has an implicit reference to the
framework of causal inference.

Problems

1.1. Problems for Chapter 1 will be added here.
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