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Summary. We consider the statistical evaluation and estimation of vaccine efficacy when the
protective effect wanes with time. We reanalyse data from a 5-year trial of two oral cholera vaccines
in Matlab, Bangladesh. In this field trial, one vaccine appears to confer better initial protection
than the other, but neither appears to offer protection for a period longer than about 3 years. Time-
dependent vaccine effects are estimated by obtaining smooth estimates of a time-varying relative
risk RR(t) using survival analysis. We compare two approaches based on the Cox model in terms
of their strategies for detecting time-varying vaccine effects, and their estimation techniques for
obtaining a time-dependent RR(t) estimate. These methods allow an exploration of time-varying
vaccine effects while making minimal parametric assumptions about the functional form of RR(t) for
vaccinated compared with unvaccinated subjects.
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1. Introduction

When evaluating the protective effect of a vaccine against infection or disease, it is important
to consider whether the protection conferred on vaccinated individuals wanes with time. An
initial vaccination can be followed with subsequent booster doses to maintain a protective
level of immunity among susceptible individuals, but the nature of the protection over time
must be understood so that an effective vaccination and boosting schedule can be imple-
mented. One method that has been used to detect waning vaccine effects involves analysing
periodic measurements of the level of various serologic indicators for the individuals under
study (Gilks et al., 1993). However, for many infections, the correlation between waning
surrogate markers and waning protection against infection is not clearly understood. We
consider the case where epidemiological data on the time to infection for both vaccinated and
unvaccinated subjects are available, and we use survival analysis techniques to estimate the
relative risk (RR) for vaccinated compared with unvaccinated individuals.

The goal of our analysis is to use a smooth estimate of RR(#) to examine the trend in the
data while imposing a minimum of parametric restrictions on the functional form. Many
different methods have been proposed to estimate the hazard ratio RR(¢) = exp{5(¢)} as a
nonparametric function of time using survival data, where 3(¢) measures the time-dependent
effect on survival (e.g. Hastie and Tibshirani (1993), McKeague and Sasieni (1994),
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Kooperberg et al. (1995) and Abrahamowicz et al. (1996)). In this paper we compare two
nonparametric approaches that obtain cubic instantaneous estimates of time-varying treat-
ment effects in the Cox (1972) model framework. The first is based on the general class of
varying-coefficients models discussed by Hastie and Tibshirani (1993), in which covariate
effects are allowed to vary as functions of other variables. They developed a method for
fitting the partial likelihood function while allowing the covariate effects to vary as a function
of time, so that the coefficients 5(¢) are estimated by using a ridge regression style method
(see also Zucker and Karr (1990)). We take a computationally simpler approach, however,
because our interest is primarily in estimating time-dependent effects for covariates that can be
assigned the value 0 or 1 for vaccinated or control, or a series of indicator variables if the
experiment involves multiple vaccines. For varying-coefficients models in the exponential
family, if the covariates whose effects are modified by other variables are all factor variables,
the model can be fitted by using the generalized additive model (GAM) framework (Hastie
and Tibshirani, 1986, 1990, 1993). We extend the Poisson likelihood method of Whitehead
(1980) to include arbitrary time-varying covariate effects, and we estimate smooth time-
varying effects by using the GAM approach.

The second method is based on smoothed Schoenfeld partial residuals (Schoenfeld, 1982;
Grambsch and Therneau, 1994) obtained from maximizing the log-partial-likelihood in the
counting process formulation of the Cox model. By smoothing the Schoenfeld partial
residuals against time, we can obtain estimates of the time-varying RR.

In Section 2 we describe a field trial of two oral cholera vaccines, where an estimation of
the vaccine efficacy was the major objective. In Section 3 we describe how we obtained smooth
B(t) = In{RR()} estimates in the GAM framework by using a Poisson likelihood. In Section
4, we briefly describe the method for obtaining nonparametric 8(¢) = In{RR(r)} estimates
from the smoothed Schoenfeld partial residuals. In Section 5, we present a reanalysis of the
cholera vaccine trial. In Section 6, we compare these two methods with respect to their power
to detect a time-dependent vaccine effect.

2. Field trial of two oral cholera vaccines in Bangladesh

A field trial of two oral cholera vaccines was conducted in Matlab, Bangladesh, from May
1985 to November 1989 (see Clemens et al. (1990) for details). Of those initially enrolled in
the study, 62285 subjects received three complete doses of either a placebo, whole cell or B-
subunit whole cell vaccine, with 20837, 20743 and 20705 in each group respectively. 580 cases
of cholera occurred, with 284, 150 and 146 cases in each group respectively. The outcome
measured was the time until first cholera infection.

The methods used to analyse waning vaccine efficacy from this trial involve partitioning the
study duration into discrete units and comparing piecewise constant RR estimates for
successive time periods (Clemens et al., 1990; van Loon et al., 1996). For example, Table 1
gives the piecewise constant RR estimates for the whole cell and B-subunit whole cell
vaccines. The RR for each year is calculated by using a ratio of incidence rates, where the
incidence among those vaccinated (numerator) is compared with the incidence among those
unvaccinated (denominator). Note that the time period which we are calling ‘year 4’ includes
19 months of follow-up, after which there were no observed cholera cases. The yearly
estimates indicate that the efficacy for the whole cell vaccine may be fairly constant through
the first three years and then may fall sharply in year 4. The efficacy for the B-subunit whole
cell vaccine appears to fall at a more steady rate, with significant protection lost before some
point during year 3.
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Table 1. Piecewise constant RR estimates, with approximate 95% confidence intervals
(Cls), for the whole cell and B-subunit whole cell vaccines, Matlab, Bangladesh, May 1st,
1985-November 30th, 1989

Year Dates Whole cell vaccine B-subunit whole cell vaccine
RR 95% CI RR 95% CI

[ May 1985-April 1986 0.44 (0.32, 0.62) 0.33 (0.23, 0.48)

2 May 1986-April 1987 0.45 (0.32, 0.65) 0.47 (0.33, 0.67)

3 May 1987-April 1988 0.55 (0.34, 0.86) 0.86 (0.57, 1.29)

4 May 1988-December 1989 1.21 (0.70, 2.10) 0.83 (0.45, 1.52)

However, because the data have been grouped into years, it is difficult to be more precise
about when and how these changes in efficacy occur. Besides being sensitive to the choice of
intervals used for comparing piecewise constant rates, this method does not evaluate whether
the RR estimates from successive periods are significantly different. Our goal is to obtain
smooth estimates for the RR as a function of time for the data from this vaccine trial, and to
test whether the protection has waned with time.

3. Fitting the Poisson survival model in the generalized additive model
framework

In this section we propose a method for estimating time-dependent effects from survival data
by fitting a Poisson likelihood in the GAM framework. By showing that the partial likelihood
function is proportional to the likelihood based on a Poisson formulation, Whitehead (1980)
estimated the proportional hazards model parameters in the generalized linear models
framework (see also McCullagh and Nelder (1989), pages 429-430). He showed that this
model is strictly interpretable as a survival model for the case when the covariates are not
time dependent and the survival functions are assumed to be continuous. However, the
estimation technique still works if covariates are time varying. It is straightforward to extend
Whitehead’s derivation to include coefficients that are arbitrary functions of time suitable for
estimation in the GAM framework. In the Poisson formulation, for each failure time ¢,
h=1, ..., ¢, letrandom variables X,,, where » = 1, . . ., k;, represent the number of failures
in each failure time—covariate group. Then X),, is Poisson distributed with mean parameter

Mpy = Nh,r CXp {ah + z, /8(/1)}’ (1)

where N, is the number at risk in covariate group  just before #,, z,, are the covariates and
B(h) are the time-varying effect estimates. The terms ¢y, in the Poisson model have the
interpretation as the base-line hazard of failure in the short time interval (¢, — 61, ,].

In varying-coeflicients models, the model is assumed to be linear in the predictors but the
coefficients are allowed to change smoothly with time. We assume that the time-dependent
effect B(¢) can be modelled by 8(f) = 8 + f(¢), where § is the time invariant component and
f(¢) is an arbitrary smooth function of time. Using the extension of Whitehead’s (1980)
Poisson likelihood approach, we can estimate the following varying-coefficients version of the
proportional hazards model (Hastie and Tibshirani, 1990, 1993):

A(E) = Molt) exp gvlz,{,@ FEOVE Yz,

s=0+1
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where z;, j =1, . . ., v, are 0-1 indicators of vaccine status whose effects may vary with time
and z, s=v+1, ..., p, are other general covariates whose effects on survival are time
invariant. If the treatment effects do not vary with time, then the coefficients 3; will be
adequate to estimate the effects on survival.

To estimate the parameters, we fit a Poisson GAM (Hastie and Tibshirani, 1990) using
the S-PLUS function gam () (Statistical Sciences, 1995). To do this, the data set must be
arranged so that it contains one observation for each failure time-covariate group com-
bination, as indicated by equation (1). The number of events at each time in each covariate
group is the response variable, a factor variable for time is used to estimate base-line terms «,
and the number at risk in each time by covariate group, N,,, is an offset term. We estimate
smooth functions of time f(f) by using smoothing splines with 4 degrees of freedom (see
Chambers and Hastie (1992), p. 299). To test whether the nonparametric smooth terms f(7)
are needed to describe the treatment effects, the model is fitted both with and without these
terms. The change in the Pearson y’-statistic is used to evaluate whether the smooth term
contributes significantly to the model fit.

It is important to point out that the GAM model fitting algorithm centres the smooth at 0
at each step by subtracting the average of the smooth. This ensures that the constant in the
additive model is identifiable (Hastie and Tibshirani (1990), p. 115). Although this allows the
shape and size of the effect to be examined, it is not clear how to obtain a direct estimate of
In{RR(7)}. These aspects differ in the approach based on the Schoenfeld partial residuals that
we present next.

4. Estimating smooth RR(t) functions by using scaled Schoenfeld residuals

Another technique for obtaining nonparametric estimates of RR(#) is to smooth scaled
partial residuals from a proportional hazards model. This approach was introduced by
Schoenfeld (1982) and later extended to the multivariate setting by Grambsch and Therneau
(1994). Once again, the true time-varying coefficient 5(¢) can be written as

B(1) = B+ f(0),

where this now represents the sum of the coefficient from the standard proportional hazards
model fit, 8, plus a time-varying component f(¢). The idea behind this technique is that, if a
model is fitted which ignores a time-dependent effect, the functional form for f(¢) will be
captured in the Schoenfeld partial residuals from the misspecified model (for details, see
Schoenfeld (1982) and Grambsch and Therneau (1994)). Estimates of RR(¢) can be obtained
from the smoothed plots of the residuals if there are enough events, and Grambsch and
Therneau (1994) suggested testing for a linear association between the scaled Schoenfeld
residuals and time to check whether an effect has a significant time-dependent component.
The Schoenfeld residuals and the linear association test can be obtained by using S-PLUS
functions coxph () and cox.zph () (Statistical Sciences, 1995).

5. Estimation methods for RR(t) by using data from a cholera vaccine trial

We applied the methods described above to estimate a smooth, time-dependent RR for
vaccinated versus unvaccinated individuals using data from the cholera vaccine field trial
presented in Section 2. All models contain effects for age less than or equal to 5 years and
vaccine status. A more complex analysis by cholera biotype and age subgroups appears in
Durham et al. (1998).
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5.1.  Exploratory graphical RR(t) analyses

We obtained the Schoenfeld residuals from a proportional hazards model fit assuming that
the vaccine effect was constant over time. Fig. 1 displays the smooth estimates of In{RR(¢)}.
The p-values for the test of linear association between the scaled residuals and time were
0.008 (whole cell) and 0.002 (B-subunit whole cell), indicating that the efficacy for both
vaccines varies with time. Fig. 2 shows centred estimates of In{RR(#)} obtained by using the
Poisson survival GAM approach. The x’-tests on 4 degrees of freedom had p-values of 0.021
(whole cell) and 0.010 (B-subunit whole cell), again indicating time-dependent effects for both
vaccines. The plots obtained by using both techniques indicate that the protection associated
with the B-subunit whole cell vaccine wanes at a steady rate throughout the study period.
They also suggest that the effect of the whole cell vaccine may be roughly constant through
the first 2 years of the study (to about day 730), after which the effect wanes linearly. The
efficacy of both vaccines appears to wane such that, by the end of roughly 3 years, neither
vaccine has a protective effect.

5.2. Smooth and parametric estimates of RR(t)

Because the RR(7) estimates obtained by using the Schoenfeld residual approach are on the
original scale of the data, we can obtain a smoothed estimate of RR(z) for any day
throughout the study. Table 2 contains estimates for RR to vaccinated individuals as a
function of time at selected days during follow-up. Because the estimates from the GAM
approach are not on the original scale for In{RR(#)}, we cannot directly calculate smooth
RR(¥) estimates.

However, we can use either of these exploratory approaches to construct a parametric
estimate of the functional form of log-RR to vaccinated individuals. The plots in both Fig. 1
and Fig. 2 for the B-subunit whole cell vaccine indicate that including a linear function of
time should adequately model the time dependence. The plots of the functional form for the
whole cell vaccine indicate that we can capture this effect in a parametric model by modelling
the hazard ratio for the whole cell vaccine with no time dependence until day 730 (2 years),
and including a linear effect which begins at day 730.

We also used the Poisson likelihood approach to fit a parametric model for time-dependent
effects (Whitehead, 1980). We include two (0-1) indicator variables for either the whole cell
(z;) or B-subunit whole cell (z,) vaccine, and we have two continuous time variables: ¢
measures the survival time in days and #,3, measures the number of days survived after day
730. For simplicity of presentation we report only the vaccine coefficients that are needed to
calculate RR(¢) from the parametric model in Table 3.

Table 2 contains estimates for RR(¢) at some specific time points throughout the study,
along with approximate 95% confidence intervals based on the parametric model. As in the
RR(7) estimates obtained by using Schoenfeld residuals, the protective effect of both vaccines
appears to have disappeared by the end of year 3. The parametric approach is helpful in
providing a more stable estimate of RR(#) near the beginning of the study, but the confidence
limits for the RR(#) estimates for day 365 and beyond are similar to those from the smoothed
Schoenfeld residuals approach.

6. Simulation study: power to detect a waning vaccine effect

There are various mechanisms which can result in waning vaccine efficacy and therefore
many possible functional forms for RR(#). We were also interested in using simulations to
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Table 2. Estimates of RR(t) from smooth scaled Schoenfeld residuals and
from a parametric model

Day Whole cell vaccine B-subunit whole cell vaccine
RR(day) 95% CI RR(day) 95% CI
Smoothed scaled Schoenfeld residuals
0 0.570 (0.242, 1.342) 0.287 (0.121, 0.681)
365 0.422 (0.330, 0.534) 0.428 (0.338, 0.543)
730 0.462 (0.352, 0.606) 0.626 (0.476, 0.824)
1095 0.755 (0.555, 1.028) 0.798 (0.584, 1.089)
Parametric model
0 0.436 (0.347, 0.547) 0.298 (0.203, 0.439)
365 0.436 (0.347, 0.547) 0.415 (0.330, 0.533)
730 0.436 (0.347, 0.547) 0.576 (0.477, 0.729)
1095 0.810 (0.597, 1.121) 0.300 (0.594, 1.156)

Table 3. Coefficient estimates for a parametric model for RR(t)

Effect Variable Estimate Standard
error
Whole cell z) —0.8312 0.1159
Whole cell x days >730 Z) X tyy0 0.0017 0.0005
B-subunit whole cell Zy —1.2091 0.1973
B-subunit whole cell x days Zy X t 0.0009 0.0003

compare the relative power of these two techniques for detecting different types of waning
vaccine effects. An important difference between these two techniques is their strategy for
testing whether a treatment effect should be modelled as a function of time. Both tests consider
the null hypothesis that there is no time effect, i.e. that the proportional hazards assumption
is valid. A possible advantage of the test for linear association used with the Schoenfeld
technique is that, because it involves only the residuals, the degrees of freedom chosen to
estimate the RR(7) function do not affect the test, but, because it is designed to diagnose
linear departures, it may miss time-dependent treatment functions that do not exhibit a linear
trend. However, although the test based on the change in model deviance used with the GAM
approach may be affected by the degrees of freedom chosen to represent the time-varying
effect, it should have more flexibility than the linear association test to identify a variety of
RR(¢) functions. We point out that, although there are several good tests for evaluating the
proportional hazards assumption (e.g. Cox (1972) and Gill and Schumacher (1987)), we focus
on the two tests associated with the smooth estimates presented in Section 5.

To explore possible strengths and weaknesses of the various strategies with respect to
testing for time-varying effects, we generated two types of data set with known average
RR(?). For the first type of data, we assumed that the vaccine efficacy wanes exponentially
with time, so that

RR(#) =1— (1 —0) exp(—wt),

where 6 is the initial RR to vaccinated individuals and w is the rate at which protection is lost
with time. In the second type of data, we assumed a piecewise constant form for RR(#). For
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both types of data, we simulated a 3-year study where the number of days to infection was
recorded for 1000 vaccinated and 1000 unvaccinated individuals. We used a base-line hazard
function that was proportional to a prevalence

p(t) = 0.02 exp {sin(67¢/1095)},

to simulate the seasonal risk pattern associated with an infectious disease with environmental
components such as cholera. This resulted in an average number of infections in the control
group of about 750. The remaining uninfected individuals resulted from both a small
constant probability of drop-outs during the study, accounting for about 5% loss due to type
I censoring, and about 20% loss due to type II censoring. The number of events in the
treatment group depended on the assumed initial treatment effect and rate of waning.

For the Poisson GAM model, we calculated the number of data sets out of 200 for which
the y*-statistic was significant at the 0.05 level. A value of 4 degrees of freedom was used to
fit all smooth functions. For the same data sets, we obtained the Schoenfeld residuals from
the Cox model fit and calculated the number of data sets out of 200 for which the linear
association between the smooth residuals and time was significant at the 0.05-level. We point
out that here we are only comparing the relative power of the linear association test and the
x” change of deviance test for different RR(7) functions. The absolute values of power that
are of interest will depend on the event rates for each particular study.

Fig. 3 shows the underlying shapes of RR(#) for some of the simulations presented in
Table 4. Notice that values of w = 0.02 represent a rapid waning of vaccine protection,
whereas values of w = 0.0005 represent a slow waning effect. When evaluating the efficacy
of a vaccine, the case of a rapidly waning vaccine effect may not be very important for
researchers, because the RR estimate should accurately reflect that the vaccine does not offer
much protection. However, vaccine protection that wanes slowly over time could cause
important problems. The duration of the study in such a case may not be adequate to detect
these slow changes in efficacy, and vaccinated individuals who were initially protected could
find themselves susceptible to infection at a much later time. Such issues need to be con-
sidered in the design phase of a vaccine study.

For the scaled Schoenfeld residuals and the Poisson survival GAM, Table 4 shows that
the simulated power values were quite similar for the two different strategies, with a few
exceptions. Both tests are most effective for intermediate values of w, or when vaccine
protection is lost at a moderate rate during the study. The x*-test on the change of deviance
for the GAM appears to have somewhat better power in the case of an initially protective
treatment effect that wanes quickly (w = 0.02), but the linear association test performed as
well or better in the case of an effect that wanes slowly (w = 0.0005). This is not surprising,
as the RR(¢) functions with w = 0.0005 display a linear shape, whereas the RR(7) functions
with w = 0.02 are more complex (see Fig. 3). However, simulated power values were identical
for both tests with w = 0.005, in which the RR(?) function still displays a large degree of
curvature. Thus for these simulations it appears that the increased flexibility of the GAM test
does not necessarily result in increased power to detect exponentially waning RR(7) effects.

Table 5 gives simulation results for piecewise constant waning, in which the RR(¢) function
is constant except for a shift in the RR at a designated ‘changepoint’ of the simulated 3-year
study. These shifts were simulated to occur after the first 6 months (day 183), the midpoint of
the study (day 548) and after the first two and a half years (day 913). In Table 5, 8, represents
the RR at the beginning of the study, and 6, represents the RR after the changepoint. The
simulations indicate that the two tests have very comparable power to detect both large and
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small jumps in the RR at (any) point throughout the study. As with an exponentially
decreasing effect, the change of deviance test performed using the GAM model does not
appear to yield increased power compared with the linear association test for detecting
piecewise constant RR(¢) functions. For both tests the power to detect a smaller deviation
from proportional hazards is still quite good for jumps at days 183 and 548 but falls sharply
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Table 4. Simulations for an exponentially decreasing effect}

Initial Rate of RR(0) RR(1095) Proportions for the following models:
effect 6 waning w
Schoenfeld residuals: Poisson GAM: test of
test of linear association change in deviance
0.1 0.02 0.1 1.0 0.550 0.855
0.1 0.005 0.1 0.996 1.0 1.0
0.1 0.0005 0.1 0.479 1.0 1.0
0.1 0 0.1 0.1 0.055 0.065
0.5 0.02 0.5 1.0 0.205 0.240
0.5 0.005 0.5 0.998 0.860 0.860
0.5 0.0005 0.5 0.7110 0.460 0.280
0.5 0 0.5 0.5 0.060 0.060
1.0 0 1.0 1.0 0.060 0.040

1200 simulations, proportion of samples rejected at o = 0.05. RR(0) is the RR at day 0; RR(1095)
is that at day 1095. Details are given in the text.

Table 5. Simulations for a piecewise constant effect}

Day of Initial Later Proportions for the following models:
changepoint effect 6, effect 6,
Schoenfeld residuals: test  Poisson GAM: test of
of linear association change in deviance

183 0.1 0.9 1.0 1.0

183 0.4 0.6 0.780 0.780

548 0.1 0.9 1.0 1.0

548 0.4 0.6 0.785 0.680

913 0.1 0.9 1.0 1.0

913 0.4 0.6 0.115 0.125

1200 simulations, proportion of samples rejected at o = 0.05. Details are given in the text.

for day 913. It is possible that the initial sample size and failure rate used resulted in a risk set
size this late in the study that was insufficient to detect such a small change in RR(?).

7. Discussion

We have presented two methods for estimating vaccine efficacy using time-to-infection data
in the case where the protective effect wanes with time. We have compared the Poisson GAM
approach, which estimates a time-varying RR function directly from the likelihood, with the
use of smooth scaled Schoenfeld (1982) residuals to obtain nonparametric estimates of RR(?).
We applied these methods to the analysis of a 5-year trial of two oral cholera vaccines in
Bangladesh and compared this approach with current methods for evaluating vaccine effects
when the efficacy appears to wane with time. For this data set, the smooth RR(¢) estimates
are consistent with earlier results using relative Poisson rates (Clemens et a/., 1990; van Loon
et al., 1996), while also providing additional insights into the nature of the waning vaccine
protection. In general, the B-subunit whole cell vaccine appears to confer better initial
protection than does the whole cell vaccine, and neither vaccine appears to offer protection
for a period longer than about 3 years.

We have focused on what may be the most likely scenario for a time-dependent vaccine
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effect, the case where the efficacy decreases or wanes with time. It is also possible that
exposure to natural infection may increase or boost protection, leading to a population RR(?)
function that increases with time (Halloran and Struchiner, 1991). The methods presented in
this paper can also be used to estimate RR(7) in this case. However, it is important to con-
sider that unmeasured heterogeneity of protective effects of the vaccine can also result in an
estimate of RR(#) that appears to increase with time. The most susceptible individuals will
probably be infected early in the study, leaving individuals who have a higher level of
protection in the risk sets for later time points. Thus the population average RR(7) estimate
will increase with time, although protection at the individual level is constant. In this case,
frailty models can be used to estimate vaccine efficacy (Halloran et al., 1996; Longini and
Halloran, 1996). Understanding the biological processes that result in time-varying efficacy,
such as natural boosting of protection or the evolution over time of vaccine-resistant strains,
18 an important area of future work.

In this paper, for our underlying model, we have assumed that all subjects have the same
time origin for follow-up, which can be synchronized with a common base-line hazard for all
individuals. In the cholera vaccine trial that we analysed here, the three-dose regime was
given over a short period of time in the winter of 1985, before the start of the cholera season.
Follow-up for all individuals who received the complete doses began on May Ist, 1985.
However, in some field trials, a more complex analysis may be warranted that allows the time
origin of the base-line hazard to be different from the time origin of vaccination. This would
be especially important for a disease with a highly seasonal risk component, where vaccina-
tion occurred over a long period of time through part of the duration of the trial.

Both techniques presented in this paper for evaluating vaccine efficacy in the presence of
waning have advantages over current methods that are used by researchers in vaccine field
trials and other methods proposed to evaluate waning vaccine protection. They do not
require the use of surrogate markers, such as antibody levels, as often the relationship
between the levels of serological data and the amount of protection conferred by the vaccine
is unknown. The methods presented here also do not involve arbitrarily grouping data to
calculate estimates under an imposed piecewise constant model, but they provide a smooth
continuous estimate of the RR over time.

However, the estimation of time-varying covariate effects by using smoothed scaled
Schoenfeld residuals has several advantages over the approach in the GAM framework for
detecting waning vaccine effects. The smoothed estimates from the Schoenfeld technique are
obtained on the natural scale of interest and thus can be interpreted more easily. The model
also allows for time-dependent covariate values as well as time-varying covariate effects. Thus
the approach is very flexible. Also, the Schoenfeld residual approach may be slightly more
powerful for detecting vaccine effects that wane slowly over time, which can be a critical effect
to diagnose when evaluating vaccine trial data. Finally, the method is easy to implement
using standard statistical software (S-PLUS). Because of its flexibility for use as either a
diagnostic or an estimation technique, along with its adequate power compared with the
GAM procedure for detecting time-dependent effects for many different RR functions, we
recommend the smoothed scaled Schoenfeld residuals method as an important tool for
evaluating protection against infection and disease in vaccine field trials.
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