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Strategies for mitigating an influenza pandemic
Neil M. Ferguson1, Derek A. T. Cummings2, Christophe Fraser1, James C. Cajka3, Philip C. Cooley3

& Donald S. Burke2

Development of strategies for mitigating the severity of a new
influenza pandemic is now a top global public health priority.
Influenza prevention and containment strategies can be con-
sidered under the broad categories of antiviral, vaccine and non-
pharmaceutical (case isolation, household quarantine, school or
workplace closure, restrictions on travel) measures1. Mathematical
models are powerful tools for exploring this complex landscape of
intervention strategies and quantifying the potential costs and
benefits of different options2–5. Here we use a large-scale epidemic
simulation6 to examine intervention options should initial con-
tainment6,7 of a novel influenza outbreak fail, using Great Britain
and the United States as examples.We find that border restrictions
and/or internal travel restrictions are unlikely to delay spread by
more than 2–3weeks unless more than 99% effective. School
closure during the peak of a pandemic can reduce peak attack
rates by up to 40%, but has little impact on overall attack rates,
whereas case isolation or household quarantine could have a
significant impact, if feasible. Treatment of clinical cases can
reduce transmission, but only if antivirals are given within a day
of symptoms starting. Given enough drugs for 50% of the
population, household-based prophylaxis coupled with reactive
school closure could reduce clinical attack rates by 40–50%. More
widespread prophylaxis would be even more logistically challeng-
ing but might reduce attack rates by over 75%. Vaccine stockpiled
in advance of a pandemic could significantly reduce attack
rates even if of low efficacy. Estimates of policy effectiveness will
change if the characteristics of a future pandemic strain differ
substantially from those seen in past pandemics.
We parameterize an individual-based simulation model of pan-

demic influenza transmission6 for Great Britain and theUnited States
using high-resolution population density data8 and data on travel
patterns (see Supplementary Information). We extend the model by
incorporating realistic seeding of infection (via international travel)
in the modelled countries, and by explicitly modelling air travel
within the United States (air travel being relatively insignificant in
Great Britain due to its much smaller size).
The model represents transmission in households, schools and

workplaces, and the wider community. For the United States, best
estimates are that 30% of transmission occurs within the household,
and 70% outside the household (see Supplementary Information).
Of the latter 70%, we assume that 33% occurs in the general
community and 37% in schools and workplaces. To reproduce the
higher attack rates seen in children in past pandemics, per-capita
contact rates in schools were assumed to be double that in work-
places6. These assumptions affect estimates of the impacts of certain
targeted control policies; for example, if school/workplace trans-
mission were assumed to account for 50–60% of transmission,
then policies such as school closure and socially targeted prophy-
laxis would be more effective (see Supplementary Information).

Acquiring more quantitative data on transmission in different social
contexts should therefore be a priority.
We estimated the reproduction number9 for pandemic influenza,

R0, to have a value of 1.7–2.0 for the first wave of the 1918 pandemic,
as determined from city-level mortality data (see Supplementary
Information). In 1957, epidemic growth rates were less, with UK
national data giving R0 values of 1.5–1.7 (see Supplementary Infor-
mation). Inter-pandemic data give a value of R0 < 1.7 (see Sup-
plementary Information). We therefore examine values of R0 in the
range 1.4 to 2, particularly focusing on how conclusions differ for
‘moderate’ (R0 ¼ 1.7) and ‘high’ (R0 ¼ 2.0) transmission scenarios.
Because the natural history of infection for human cases of avian
H5N1 infection have to date been much more extended (and severe)
than normal human influenza10,11, we also examine sensitivity to
assumptions about the duration of infectiousness. We do not assume
any spontaneous change in the behaviour of uninfected individuals
as the pandemic progresses, but note that behavioural changes that
increased social distance together with some school and workplace
closure occurred in past pandemics12 (see Supplementary Infor-
mation) and might be likely to occur in a future pandemic even if
not part of official policy. Data on respiratory infection incidence in
Hong Kong during the severe acute respiratory syndrome (SARS)
epidemic supports this view13. Such spontaneous changes in popu-
lation behaviour might more easily reduce peak daily case incidence
than overall cumulative attack rates (see Supplementary Infor-
mation). The peak incidence of the high transmissibility scenario
examined here is therefore probably a worst case.
We assume that 50% (see Supplementary Information for sensi-

tivity analysis) of those infected are ill enough to be classified as
clinical cases (that is, those requiring and seeking medical care),
consistent with known patterns for seasonal influenza. In reality, a
spectrum of disease severity will be seen in a pandemic. Given the
lack of data on the virulence of the next pandemic strain, the impact
of antivirals on mortality, and the effects of improvements in general
medical care, we examine the impact of interventions on clinical
attack rates rather than mortality.
Figure 1 shows the expected pattern of spread of an influenza

pandemic in Great Britain and the United States, for moderate and
high transmissibility scenarios (Fig. 1a, b). The epidemic peaks some
50–65 days after the first case in the country for Great Britain, and
some 60–80 days after the first case for the United States. Peak daily
case incidence is slightly higher in Great Britain than the United
States due to the smaller spatial scale of Great Britain and hence the
more synchronized regional outbreaks. But peak local incidence in
the United States is comparable with Great Britain, and cumulative
incidence over the epidemic is identical for both countries. For the
moderate and high transmissibility scenarios, 55% and 68% of the
population are infected, respectively, giving cumulative clinical
attack rates of 28% and 34% (namely, 84 million or 100 million
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sick individuals in the United States). Absenteeism from work is, in
reality, a complex function of case incidence, but can be approxi-
mated by case incidence multiplied by total numbers of work days
lost per case. Assuming 7 work days lost per clinically ill case,
nationwide absenteeism would peak at 10% in Great Britain and at
9% in the United States for the moderate transmissibility scenario.
Local absenteeism can be substantially higher (each national epidemic
is composed of slightly desynchronized local epidemics).
The dependence of the timing of the epidemic peak and the clinical

attack rate on R0 is shown in Fig. 1c. There is considerable stochastic
variation in the timing of the first few cases, associated with the
randomness of the disease importation process (Fig. 1d). But peak
timing is much less variable. The rate at which infected persons enter
a country from overseas will affect the likely rate of spread within a
country. In the absence of a global simulation of pandemic spread, we
modelled the global epidemic with a simple compartmental trans-
mission model, and used international travel data to estimate the
numbers of infected persons expected to arrive in either the United
States or Great Britain per day (see Supplementary Information).
The global model used was non-spatial, so it was not possible to
examine how the country of origin of a pandemic would affect how
quickly and inwhich order the United States and Great Britain would
be infected. But use of even a non-spatial transmission model is
preferable to simply assuming a fixed starting number of infected
persons or a constant importation rate through time, as the expected
exponential increase in imported infections over time significantly
speeds spatial spread within the United States and Great Britain
compared with assuming a single point seeding event.
Little spatial structure is seen in the pattern of pandemic establish-

ment and spread in Great Britain (see Supplementary Videos) due to
its relatively small size and frequent long-range travel. In the United
States, more structure is apparent: early spread is focal around seed
infections (typically in urban centres) imported from overseas, but
rapidly becomes almost homogenously distributed across the whole
population (Fig. 1e and Supplementary Videos).
After the identification of a new human-to-human transmissible

influenza A virus strain anywhere in the world, attempts to prevent
spread to unaffected countries are likely, and international travel may
be restricted14–16. Here we examine the impact of the border controls

imposed by the United States or Great Britain to reduce numbers of
inbound travellers (the results are very similar for both countries).
Figure 2a shows how a 90%, 99% or 99.9% reduction in imported
infections might delay the peak of the US pandemic by 1.5, 3, or 6
weeks, respectively (comparable delays would be expected for other
Western countries given the similar mobility of their populations).
To put these reductions into context, the 2003 SARS crisis resulted in
an 80% reduction in travel to and fromHong Kong17. Themagnitude
of the impact of border controls is governed by the rate at which
global infection prevalence increases. A tenfold reduction in numbers
of visitors delays arrival of infection for approximately as long as it
takes global prevalence to increase tenfold to compensate—12.5 days
using the global model assumed here.
We next examined the effectiveness of travel restrictions within the

United States at slowing national spread. If border controls are not in
place, then external seeding from infected international travellers
overwhelms the effect of within-country restrictions, only delaying
the peak of the epidemic by less than 1week. If combined with 99.9%
effective border controls, blanket reductions in non-local travel
achieve little in delaying the peak of the epidemic (Fig. 2b), but do
reduce the peak attack rate substantially and spread the epidemic
over a much longer time period (see Supplementary Information).
Eliminating travel in and out of affected regions can delay spread by
up to 2weeks beyond the 6weeks achieved by border restrictions
alone. The delay achievable in Great Britain is half this. In the United
States, closing airports for domestic travel also has little impact, due
to the substantial volume of long distance travel by road. Internal
restrictions must be highly effective to have much impact—although
90% effective internal restrictions can still have some effect, 75%
effectiveness has almost none.
Once a new pandemic virus starts to be transmitted in a country,

interventions must be targeted for maximum impact. Applying the
type of intensive control strategies envisaged for containing a pan-
demic at source6 is impractical as infection will constantly be
reseeded in a country by visitors (see Supplementary Information).
Clinical cases are clearly then the first priority for any more-targeted
approach, as prompt treatment with antivirals reduces clinical
severity and infectiousness18 (see Supplementary Information).
Our results indicate that only very rapid treatment can significantly

Figure 1 | Baseline pandemic dynamics. a, Clinical case incidence per day
for the US pandemic (single realization shown) for high (red) and moderate
(blue) transmissibility scenarios, assuming a generation time of 2.6 days,
and that 50% of infected people are ill enough to be classified as clinical
cases. Infection is seeded in the country as a function of the expected
importation of infection from overseas derived from a simple global
model of pandemic spread and available travel data (see Supplementary
Information). Assumed population size of theUnited States was 300million.
Timing is shown both as days from the first case globally, and as days from
the first case in the country. b, As a, but for Great Britain (modelled

population size 58.1million). c, Cumulative (red) and peak daily (blue)
clinical attack rates as a function of R0 for Great Britain, averaged over 40
model realizations. Error bars show standard deviations. d, Histogram
showing stochastic variability (across 40 model realizations) in timing of
initial case (red), peak of epidemic (blue) and peak attack rate (green) for
Great Britain (R0 ¼ 2.0). e, Snapshots of the extent of spread of the US
pandemic (moderate transmissibility) at four time points. Greyscale
indicates population density; red indicates areas with infective cases; and
green indicates areas where the pandemic is over. See Supplementary
Information for full parameter and model details.
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reduce transmission (Fig. 2c, d), because cases are at their most
infectious soon after symptoms develop (see Supplementary Infor-
mation). For the high transmissibility scenario, same-day treatment
of 90% of cases reduces cumulative attack rates from 34% to 29% and
peak daily attack rates from 1.9% to 1.6%, with an antiviral stockpile
sufficient to treat 25% of the population (the size many countries
have ordered19) being adequate to implement the policy. If treatment
is delayed by 1 day, the cumulative attack rate for the high transmis-
sibility scenario increases to 32% (meaning that a 29% stockpile is
needed), and the peak daily attack rate to 1.9%. The impact of
treatment on the peak daily attack rate at the height of the epidemic
is always greater than that on overall attack rates. Assuming that
more than 50% of infections result in clinical illness requiring
treatment would increase the required stockpile (see Supplementary
Information). A real threat to the effectiveness of antiviral-based
mitigation policies would be if resistant strains arose with transmis-
sibility close to the wild-type level20. Such strains have not yet been
detected, but resistance monitoring during a pandemic will be
essential.
Like treatment, rapid case isolation reduces the infectiousness of

the targeted individual and can have a similar or greater impact
(Fig. 2e)—reducing cumulative attack rates from 34% to 27% for
R0 ¼ 2.0 if 90% of cases are isolated. Conservatively, we assume that
clinical cases have a reduced contact rate in their school or workplace
and with the wider community (see Supplementary Information)
even in the absence of a policy of case isolation. Case isolation here is
assumed to reduce all contact rates by a further uniform fraction,

including in the household—the policy is less effective if household
contacts are not reduced.
Being amember of a household containing an influenza case is in fact

the largest single risk factor for being infected oneself21,22. Two policies
targeting households are available (Fig. 3a–c): prophylaxis using anti-
viral drugs, and quarantine (requesting persons in households with
infected cases to remain at home). Antiviral prophylaxis of household
members is effective in reducing cumulative attack rates by at least one-
third and peak attack rates by a half (Fig. 3a, b), but requires an antiviral
stockpile large enough to treat 46% or 57% of the population for the
moderate and high transmissibility scenarios, respectively. Household
quarantine is also effective at reducing attack rates in the community
(indeed, for low R0 values, pandemic spread can be dramatically
slowed), but only if compliance is high. However, given the expected
increases in contact rates within the household which would result, a
household quarantine policy might pose ethical dilemmas unless
excellent infection control was implemented. A combined policy of
household quarantine and household prophylaxis is arguably more
feasible and could be highly effective.
School closure (Fig. 3d–f) causes a small reduction in cumulative

attack rates, but a more substantial reduction in peak attack rates (of
up to 40%). Such a reduction in peak incidence could mitigate
stresses on healthcare systems and absenteeism in the critical work-
force. Closure of 50% of workplaces can enhance the impact of school
closure, but at higher economic cost (Fig. 3d–f). For a socially targeted
prophylaxis policy, best use is made of drugs by targeting classmates
or close work colleagues rather than the entire population of a school

Figure 2 | Impact of travel restrictions and case-targeted policies. a, Delay
caused by 90%, 99% and 99.9% reduction of imports of infection from day
30 of the global pandemic onwards on peak timing for GB andUS pandemics
for high (HT) andmoderate (MT) transmissibility scenarios.Mean ^ s.d. of
5–20 realizations is shown in both a and b. b, Delay in the peak of the US
pandemic caused by internal travel restrictions for high (red) and moderate
(blue) transmissibility. All policies are assumed to start after 50 cases have
been diagnosed in the country. AC, all airports in the United States are
closed to internal traffic; BC, border controls (external imports are reduced
by 99.9%); BMR, blanket movement restrictions (journeys over 20 or 50 km
from the home are eliminated); RMR, reactive movement restrictions
(a 20-km exclusion zone is established around every diagnosed case, with
overlapping zones being merged, and movement in and out of the exclusion
zone is eliminated). c, Cumulative clinical attack rates for same day antiviral
treatment policy, shown as a function of R0. From highest to lowest, the
different curves represent 0%, 30%, 50%, 70% and 90% of cases treated.
Results for Great Britain are shown (US results are identical). d, As c, but
showing dependence on delay (in days) between symptom onset and
treatment when 90% of cases are treated (curves, from highest to lowest, are
for no treatment, 2 day, 1 day and 0 day delay). e, As c, but showing effect of
same day case isolation causing a 90% reduction in contacts (from highest to
lowest, curves are for 0%, 50%, 70% and 90% of cases isolated).

Figure 3 | Impact of household/socially targeted policies. Results shown
for high (HT) and moderate (MT) transmissibility scenarios in the United
States. a–c, Cumulative clinical attack rate (a), peak attack rate (b) and delay
in peak achieved by policy (c) (as a percentage of total population size).
Values in the absence of interventions are shown in grey. Three household
policies are shown: red, treating 90% of clinical cases and applying
prophylaxis to their households the day after symptoms start; blue,
voluntary quarantine of households identified with a clinical case in the
home for 14 days—50% of households are assumed to comply with the
policy, and in these, external contact rates are reduced by 75% and within-
household contact rates assumed to increase by 100%; green, combination
of the previous two (red and blue) policies. d–f, As a–c, but for three school/
workplace-targeted policies: red, reactive school closure (that is, closing
100% of schools (and 10% of workplaces) from the day after the first case in
pupils or staff is detected until up to 3weeks after the last case in the
school)—contact rates in affected households are assumed to increase by
50% and community contact rates in absent staff/pupils by 25%; blue, as
above (red) but assuming 50% of workplaces close; green, as household
prophylaxis policy shown in a–c but adding prophylaxis of 90% of members
of the same school class or work group as treated cases. Error bars show
standard deviation of between 5 and 20 realizations.
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or workplace (see Supplementary Information). School/workplace
prophylaxis could have a dramatic impact on attack rates (Fig. 3d–f),
but this requires antiviral stockpiles of 72%or 102%of population size
for the moderate and high transmissibility scenarios, respectively.
We now explore how rapidly vaccine needs to be deployed to have

a significant impact. We assume a single dose vaccine giving protec-
tion in 2weeks that reduces susceptibility by 70%, and infectiousness
and probability of becoming a clinical case of those still getting
infected by 30% and 50%, respectively. Vaccination at the rate of 1%
of the population per day would need to begin within 2months
(Fig. 4a) of the initial global outbreak (or equivalently, at approxi-
mately the same time as the first cases are seen in the United States or
Great Britain)—substantially faster than is possible using current
vaccine technologies. A delay of 4months from the start of the global
pandemic wouldmean that the initial epidemic would be largely over
by the time most of the modelled populations could be vaccinated. If
two doses were required 1month apart to achieve the same level of
protection, then vaccination needs to start amonth earlier still for the
same impact. However a 20% stockpile of pre-prepared vaccine
against the source avian virus could have a substantial impact on
attack rates (Fig. 4c and Supplementary Table SI 1), even if its efficacy
was less than a vaccine matched against the pandemic strain (we
assume only a 30% reduction in susceptibility conferred). A staged
vaccination programme has maximum effect on reducing trans-
mission if children are vaccinated first, because school-age children
have the highest transmission rates (Fig. 4a). Vaccinating the elderly
first gives the lowest impact on transmission.
In reality, interventions will be applied in combination to reduce

transmission in different social compartments simultaneously. We
explore a representative sample of combination policies in the
Supplementary Information, and show a subset of these in Fig. 4c.
In addition to the impact of pre-vaccination, a number of other
conclusions stand out. Household quarantine is potentially the
most effective social distance measure, but only if compliance with
the policy is good. Reactive school closure has limited impact on
overall attack rates, but can enhance other policies. For the high

transmissibility scenario only policies using .99% border controls
can delay spread by enough to enable pandemic vaccine to reduce
attack rates substantially (vaccine is assumed to be produced from
month 4 of the global epidemic).
The transmissibility of a future pandemic virus is uncertain, so we

explored a number of scenarios here. It is also uncertain whether the
generation time of a future pandemic strain would resemble that of
typical human influenza, given the greater disease severity and more
protracted course seen in patients infected with the avian H5N1
virus10,11. Paradoxically, a virus that causedmore severe and extended
disease might be easier to control so long as R0 was still comparable
with previous pandemic strains. A further uncertainty is the pro-
portion of transmission occurring in schools and workplaces. If the
proportion is higher than we assume, the impact of school closure
and school/workplace-targeted prophylaxis would increase. The
impact of case isolation and household quarantine also depends on
the assumptions made about the extent to which clinical cases and
other members of the household reduce their contact rates while they
are ill. Finally, the proportion of infections identified as clinical cases
during the pandemic (here assumed to be 50%) can affect policy
outcome significantly. See the Supplementary Information for dis-
cussion of these issues.
Lack of data prevent us from reliably modelling transmission in

the important contexts of residential institutions (for example, care
homes, prisons) and health care settings; detailed planning for use of
antivirals, vaccines and infection control measures in such settings
are needed, however. We do not present projections of the likely
impact of personal protective measures (for example, face masks) on
transmission, again due to a lack of data on effectiveness12.
Althoughmore detailedmodel validation and parameter estimation

using data from past pandemics should be a priority for future
research, it will be impossible to predict the exact characteristics of
any future pandemic virus. If transmissibility is found to be more
similar to the levels seen in 1968 or 1957 rather than in 1918, global
spread will be slower, and all the non-travel-related control policies
examined here will have substantially greater impact. If the duration of
disease and shedding were to be extended compared with typical
human influenza10,11, then spread might be slower still, offering more
potential for intervention. It will be imperative to collect the most
detailed data on the clinical and epidemiological characteristics of a
new virus and the impact of controlmeasures early in the emergence of
a pandemic, and to analyse those data in real time23,24 to allow
interventions to be tuned to match the virus the world faces.
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