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Summary. Vaccines with limited ability to prevent HIV infection may positively impact the HIV/AIDS
pandemic by preventing secondary transmission and disease in vaccine recipients who become infected.
To evaluate the impact of vaccination on secondary transmission and disease, efficacy trials assess vac-
cine effects on HIV viral load and other surrogate endpoints measured after infection. A standard test
that compares the distribution of viral load between the infected subgroups of vaccine and placebo
recipients does not assess a causal effect of vaccine, because the comparison groups are selected af-
ter randomization. To address this problem, we formulate clinically relevant causal estimands using
the principal stratification framework developed by Frangakis and Rubin (2002, Biometrics 58, 21–29),
and propose a class of logistic selection bias models whose members identify the estimands. Given
a selection model in the class, procedures are developed for testing and estimation of the causal ef-
fect of vaccination on viral load in the principal stratum of subjects who would be infected regard-
less of randomization assignment. We show how the procedures can be used for a sensitivity analy-
sis that quantifies how the causal effect of vaccination varies with the presumed magnitude of selection
bias.
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1. Introduction
Consider a randomized, two-arm, placebo-controlled clinical
trial to evaluate efficacy of a preventive HIV vaccine. The first
two trials of this kind began in 1998 and 1999, and are ongo-
ing (Francis et al., 1998). For each trial, the primary objective
is to assess the vaccine’s impact on the incidence of HIV infec-
tion (Rida and Lawrence, 1995). Another objective of these
trials and future trials is to assess the vaccine’s impact on
viral load after acquisition of HIV (Nabel, 2001); viral load
is the concentration of HIV in blood or another body com-
partment. This objective is important because natural history
studies have shown that the viral load of an infected person
predicts infectiousness (Quinn et al., 2000) and the rate of
disease progression (Mellors et al., 1997), and several animal
studies have identified vaccines that failed to prevent infec-
tion but successfully controlled viremia and prevented disease
(Shiver et al., 2002). Therefore, a vaccine effect to lower viral
load may be beneficial, whereas an effect to increase viral load
may hasten or exacerbate disease. The risk of harmful vaccine
“enhancement” of viral load is genuine (Burke, 1992), and
has been observed for several viral vaccines (Mascola et al.,
1993).

The impact of vaccination on viral load can be studied in
several ways. The data available for analysis are longitudi-

nal quantitative measurements of viral load in subjects who
become infected. Two main inferential approaches are intent-
to-treat (ITT) analyses of all randomized subjects and condi-
tional analyses of infected subjects only. The ITT approach
assesses the causal effect of randomizing to vaccine. However,
the majority (likely> 80%) of randomized subjects will have
zero viral load because they do not become infected during
the trial, which can give ITT analyses low power for detect-
ing certain alternatives of interest. Also, in ITT analyses, two
very different populations (uninfected and infected subjects)
are placed on the same response scale. Consequently, the ITT
analysis assumes that the outcomes of both absence of in-
fection (with zero viral load) and infection with viral load
below the quantification limit of the assay are approximately
equally prognostic for disease progression. This assumption is
difficult to justify, because the initial vaccine-induced suppres-
sion of viral load may be lost due to HIV evolution (Barouch
et al., 2002). Alternatively, rank-based ITT methods could
be used that assign the lowest two ranks to absence of infec-
tion and viral load below the assay limit. However, to achieve
greater power, and to study the causal effect of randomizing
to vaccine in a subpopulation of persons who would become
infected, as described below, in this article we consider con-
ditional analyses.
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Conditioning on infection poses a major challenge to mak-
ing an unbiased inference of the vaccine effect on viral
load, because the analyzed groups are selected by the post-
randomization event HIV infection. This problem of post-
treatment selection bias is common in biomedical studies
(Rosenbaum, 1984; Robins and Greenland, 1992), and im-
plies that a comparison of viral load between infected sub-
groups, which measures the “net vaccine effect,” does not
have a causal interpretation. In particular, partial efficacy of
the vaccine to prevent HIV infection can bias the comparison.
For example, the vaccine may prevent infections in individuals
with strong immune systems, but allow infections in individu-
als with relatively weak immune systems. If a weaker immune
system correlates with a higher viral load upon infection, then
the viral loads in infected subjects will be selectively shifted
upwards in vaccine relative to placebo recipients. On the other
hand, selection bias could occur in the opposite direction, for
example if the vaccine better protects against virulent than
mild viruses. Therefore, a two-sample test comparing viral
loads between infected groups may give a misleading impres-
sion that vaccination enhances or suppresses viral burden. Or,
the test may fail to detect a meaningful vaccine effect.

Frangakis and Rubin (FR) (2002) developed a framework
for causal inference that can be used for studying a causal
effect of vaccine on viral load that adjusts for the post-
randomization selection bias. This framework defines causal
estimands using potential outcomes (Rubin, 1974, 1978;
Holland, 1986). For the present problem, each trial partici-
pant has a potential infection status under each randomiza-
tion assignment. Additionally, subjects who would be infected
under randomization to vaccine have a potential viral load un-
der vaccine assignment, and subjects who would be infected
under randomization to placebo have a potential viral load
under placebo assignment. Within FR’s framework, a causal
vaccine effect on viral load is defined as a comparison of po-
tential viral loads under the two randomization assignments
for a subgroup of subjects with a common pair of potential
infection status outcomes; FR referred to such a group as a
principal stratum.

Hudgens, Hoering, and Self (HHS) (2003, in press) devel-
oped tests for a causal vaccine effect on viral load in the
“always-infected” principal stratum of subjects who would
be infected regardless of randomization to vaccine or placebo.
Under plausible assumptions described in Section 2, vaccine
recipients who become HIV infected would also be infected
had they received placebo. Consequently, inferences drawn for
the always-infected subpopulation address a practical ques-
tion for individuals vaccinated in a public health program: “If
I acquire HIV despite vaccination, what is the viral load com-
pared to if I had forgone vaccination?” We consider inference
on causal estimands defined for the always-infected principal
stratum, which are defined in terms of potential outcomes in
Section 2.

The causal estimands are not identified, because member-
ship of an infected placebo recipient in the always-infected
principal stratum is unknown (i.e., the infection status had
the subject been randomized to vaccine is unknown). This
problem can be addressed by modeling the probability that
an infected placebo recipient is in the always-infected stratum
as a function of the potential viral load under randomization

to placebo. HHS implicitly took this approach, by defining
two selection models that express bounds for the maximum
plausible levels of selection bias. Under these models, which
identify the estimands, HHS developed testing procedures for
assessing differences in the potential viral load distributions
of always-infected subjects under the two randomization as-
signments.

Testing the null hypothesis presuming the maximal degree
of selection bias is practically very useful, because rejection
implies a significant effect of vaccination above and beyond
any plausible selective effects. However, the actual degree of
bias is likely less than that specified by an extreme model,
so that HHS’s tests may sacrifice power. Achieving maximal
power is especially important for key subgroup analyses, such
as by gender (Sterling et al., 2001), route of exposure, or host
genotype, and for analyses of seminal viral load, given the
higher variability of seminal versus plasma viral load (Coombs
et al., 1998). Therefore, it is important to also consider selec-
tion models that reflect intermediate degrees of selection bias,
which may be more realistic and will allow for more powerful
statistical tests. In this article, we develop a method for sen-
sitivity analysis that considers a continuous range of possible
selective effects spanning from no bias to maximal plausible
bias, as considered by HHS. In different contexts, Rosenbaum
and Rubin (1983), Scharfstein, Rotnitzky, and Robins (1999),
and Goetghebeur et al. (2000) also developed methods of con-
tinuously indexed sensitivity analysis of inferences on causal
effects.

The article is organized as follows. Section 2 defines causal
estimands and shows that they are identified from three as-
sumptions and a biased sampling model that specifies the na-
ture and degree of selection bias. A class of logistic-biased
sampling models is described, which is indexed by an inter-
pretable sensitivity parameter β that can be chosen to rep-
resent any magnitude of selection bias ranging between ex-
treme positive and negative bias. Given a particular model in
the class, Section 3 describes procedures for testing the corre-
sponding null hypothesis of no causal effect of vaccination on
viral load. A plot of the test statistic (or p-value) versus β pro-
vides a sensitivity analysis to help discern if the data support
a causal effect that is robust to plausible postrandomization
selective effects. Section 3 also shows how the sensitivity anal-
ysis can be based on estimation rather than testing. Section
4 evaluates the proposed testing procedures in simulations,
and Section 5 illustrates a sensitivity analysis on a simulated
vaccine trial dataset. Simulated data are used by necessity,
since real data will not be available until the ongoing trials
complete.

2. Causal Estimands and Biased Sampling Models
for Sensitivity Analysis

In this section, we first use the framework of potential out-
comes to formulate the causal estimands, which are defined in
terms of the distributions of potential viral loads (PVLs) given
assignment to receive vaccine or placebo for subjects in the
always-infected principal stratum. We then delineate assump-
tions that identify the estimands. Identifiability is achieved by
equating the PVL distribution if assigned to recieve vaccine
to the viral load distribution in infected vaccine recipients,
and by specifying the PVL distribution if assigned to receive



Sensitivity Analysis for the Assessment of Causal Vaccine Effects 533

placebo as a known weighted function of the viral load dis-
tribution in infected placebo recipients. These models use the
fact that the trial is randomized and blinded, and assume
that assignment to vaccine does not increase the probability
of HIV infection.

2.1. Definition and Identifiability of Causal Estimands
First we define the potential outcomes of the trial partic-
ipants. Let Z be the vector of vaccination assignments for
the N randomized subjects, with ith element Zi (Zi = v, vac-
cine; Zi = p, placebo). Let S(Z) be the N-vector with ith el-
ement Si (Z), which is the indicator of whether the ith sub-
ject would be infected given Z. For subjects with Si (Z)= 1,
let Yi (Z, S) be the PVL given Z and S=S(Z). In order to
limit the possible potential outcomes for each subject, we
adopt Rubin’s (1978) stable unit treatment value assump-
tion (SUTVA) throughout. It states that Si (Z)=Si (Z′) when-
ever Zi =Z ′

i, and Yi (Z, S)=Yi (Z′, S′) whenever Zi =Z ′
i and

Si (Zi )=S ′
i(Zi )= 1. SUTVA implies that potential outcomes

for each subject i are unrelated to the assignment Zj of other
subjects, and allows Si (Z) and Yi (Z, S) to be written as Si (Zi )
and Yi (Zi ), respectively. Therefore, under SUTVA, each sub-
ject has two potential infection outcomes (Si (v), Si (p)), and
at most two PVL outcomes (Yi (v), Yi (p)). For each subject
only one of Si (v) or Si (p) is observed, denoted Sobs

i
≡ Si (Zi );

in the subgroup with Sobs
i

=1, Y obs
i ≡ Yi (Zi ) is observed. Note

that Yi (v){Yi (p)} is defined only if Si (v)= 1{Si (p)= 1}.
By Property 2 of FR, a comparison between the ordered

sets {Yi (v) :Si (v)=Si (p)= 1} and {Yi (p) :Si (v)=Si (p)= 1}
is a causal effect, because it is made within a princi-
pal stratum. For subjects in the always-infected stratum
{Si (v)=Si (p)= 1}, suppose the Yi (v) are identically dis-
tributed as F alw.inf

(v) (·), and the Yi (p) are identically distributed

as F alw.inf
(p) (·). Then, any functional that measures a contrast

of the distributions

F alw.inf
(v) (y) ≡ Pr{Yi(v) ≤ y | Si(v) = Si(p) = 1}

F alw.inf
(p) (y) ≡ Pr{Yi(p) ≤ y | Si(v) = Si(p) = 1} (1)

is a causal estimand. Based on (1), a null hypothesis for no
causal effect of vaccination on viral load in the always-infected
principal stratum can be expressed as

H0 : F alw.inf
(v) (y) = F alw.inf

(p) (y) for all y. (2)

Unfortunately, because neither distribution in (1) is identi-
fiable (since Si (v) and Si (p) are not both observed), it is not
possible to test (2) without introducing assumptions. In ad-
dition to SUTVA, two assumptions are useful for identifying
the distributions:

A1: The assignment Zi of each subject is independent of
his/her potential outcomes.

A2: For each subject i, Pr{Si (v)= 1, Si (p)= 0}=0.

Assumption A1 plausibly holds in HIV vaccine efficacy trials
due to randomization and blinding. A2 states that no sub-
ject would be infected if randomized to vaccine, but would
be uninfected if randomized to placebo and, under A1, A2
will hold if vaccination does not increase the per-exposure in-

fection probability for any subject. The SUTVA assumption
may not hold, because HIV disease is infectious (Halloran and
Struchiner, 1995); however if the study population is a small
sample from a large population of susceptible individuals and
there are few infectious contacts between trial participants,
then it should approximately hold. SUTVA can be checked
through epidemiologic studies and data on mixing of risk be-
havior among trial participants. Given SUTVA, A1 can be
tested based on risk behavior data; under SUTVA and A1,
A2 can be checked by testing if the HIV infection rate is
higher in vaccine than placebo recipients for any participant
subgroup.

Assumption A2 is very useful, because it implies that in-
fected vaccine recipients must be in the always-infected prin-
cipal stratum. Together with A1, this result implies that
F alw.inf

(v) (y)=Fv (y)≡Pr(Y obs
i ≤ y |Sobs

i =1, Zi = v), where Fv (·)
is the distribution of viral load in infected vaccine recipi-
ents; thus F alw.inf

(v) (·) is identified from the observed data. A2 is

similar to Angrist, Imbens, and Rubin’s (1996) Monotonicity
Assumption 5, which is useful for identifying a causal esti-
mand defined for a principal stratum of compliers. On the
other hand, A1 and A2 do not identify F alw.inf

(p) (·), because
they do not determine whether an infected placebo recipient
is in the “protected” {Si (v)= 0, Si (p)= 1} or always-infected
{Si (v)= 1, Si (p)= 1} stratum.

Given the randomization assignment and observed infec-
tion status of a trial participant, Table 1 indicates the prin-
cipal stratum or strata to which the participant must belong,
and lists the information available on potential viral loads.
The table makes clear that the always-infected stratum is the
natural subpopulation for causal inference on viral load, be-
cause it is the only stratum for which causal estimands in-
volve only well-defined potential viral loads. Rubin (2000)
made this point through a parallel example in which there
are two randomized treatments, and vital status is observed
one year after randomization, with the goal of causal inference
being to assess the treatment effect on quality of life within
the principal stratum of subjects alive under either treatment
assignment.

2.2. Logistic Selection Bias Models that Identify
the Causal Estimands

The set of subjects infected under randomization to placebo,
{Si (p)= 1}, partitions into the principal strata of protected
and always-infected subjects, with the level of vaccine effi-
cacy (VE) against infection determining the proportion in
each. Specifically, define VE = 1 − RR = 1 − Pr{Si(v) = 1}/
Pr{Si(p) = 1}; VE is a causal estimand measuring the relative
reduction in infection risk conferred by randomizing to vac-
cine versus placebo. A2 implies VE=Pr{Si (v)= 0 |Si (p)= 1},
which is the probability that a subject in {Si (p)= 1} is in
the protected principal stratum (note that A2 is crucial here;
Pr{Si (v)= 0 |Si (p)= 1} is not identified by randomization
alone). The density of Y (p) in subjects infected under ran-
domization to placebo (f (p)(y)) can be written as a mixture
of the densities of Y (p) for the protected (f prot

(p) (y)) and always-

infected (f alw.inf
(p) (y)) strata:

f(p)(y) = V E ∗ fprot
(p) (y) + (1 − VE) ∗ f alw.inf

(p) (y). (3)
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Table 1
For the two randomization assignments Zi = v, p, and infection outcomes Sobs

i ≡
Si (Zi )= 0, 1, the table indicates the basic principal stratum or strata to which the
subjects belong, and the information available on the potential viral loads Yi (v)
and Yi (p). Note that Yi (Z) is defined if and only if Si (Z)= 1, Z = v, p, and the
principal strata of uninfected placebo recipients and of infected vaccine recipients

are known by assumption A2.

Randomized Observed Principal Stratum {Si (v), Si (p)} and
assign. infection information on potential viral
Zi status Sobs

i loads Yi (v), Yi (p)

Vaccine Uninfected Protected or Never-infected
{Si (v)= 0, Si (p)= 1} {Si (v)= 0, Si (p)= 0}
Yi (v) undefined Yi (v) undefined
Yi (p) unobserved Yi (p) undefined

Placebo Uninfected Never-infected
{Si (v)= 1, Si (p)= 0} {Si (v)= 0, Si (p)= 0}
(empty set by A2) Yi (v) undefined

Yi (p) undefined

Vaccine Infected Always-infected
{Si (v)= 1, Si (p)= 0} {Si (v)= 1, Si (p)= 1}
(empty set by A2) Yi (v) observed

Yi (p) unobserved

Placebo Infected Protected or Always-infected
{Si (v)= 0, Si (p)= 1} {Si (v)= 1, Si (p)= 1}
Yi (v) undefined Yi (v) unobserved
Yi (p) observed Yi (p) observed

With some calculations, the mixture (3) can be reexpressed
as a biased sampling model

f alw.inf
(p) (y) = W−1w(y)f(p)(y), (4)

where w(y)=Pr{Si (v)= 1 |Yi (p)= y, Si (p)= 1} and W =∫ ∞
−∞ w(y)f(p)(y) dy is a normalizing constant equal to

1−VE=RR. The weight function w(y)=RR(y)= 1 − VE(y)
is the probability that a subject infected with viral load y if
randomized to placebo would be infected if randomized to
vaccine.

Let Fp(y) and fp(y) be the distribution and density of
the viral load in infected placebo recipients. Under A1,
F (p)(y)=Fp(y), and (4) can be restated as f alw.inf

(p) (y)=

(1−VE)−1w(y)fp(y). Then, under A1–A2, the null hypoth-
esis of interest (2) is equivalent to

H0 : Fv(y) = (1 − VE)−1

∫ y

−∞
w(z) dFp(z) for all y. (5)

By A1, VE is identified from the observed data. If w(·) were
known, then both F alw.inf

(v) (·) and F alw.inf
(p) (·) would be identified,

and the hypothesis (2) could be tested. However, w(·) is un-
known, and it is not possible to test whether a particular
w(·) is correctly specified from the data plus A1-A2. Our ap-
proach to this problem assumes w(·) is known, and tests (5)
for a variety of fixed choices of w(·). For such an approach
to be fruitful, it is important that the unidentified sensitivity
function w(·) be interpretable.

Towards this goal, we parameterize w(·) as logistic,
indexed by an interpretable selection bias parameter β,
which allows w(·) to be constant or smoothly monotone

increasing or decreasing: w(y) = w(y | α, β) = exp(α + βy)/
{1 + exp(α + βy)}. For β finite, eβ is the odds ratio of in-
fection under randomization to vaccine given infection under
randomization to placebo with viral load y versus with vi-
ral load y − 1. This interpretation allows the choice of β to
be guided by beliefs about plausible degrees of selection bias.
For fixed β ∈ [−∞, ∞], the logistic selection bias model is
specified by

F alw.inf
(p) (y) = (1 − VE)−1

∫ y

−∞

exp(α + βz)

1 + exp(α + βz)
dFp(z)

≡ Fp(y | β). (6)

Given fixed β, α is determined as the solution to the equation
Fp(∞|β)= 1.

Figure 1 illustrates five selection models specified by (6)
and β fixed at −∞, −1, 0, 1, or ∞, which represent different
ways to distribute VE of the mass of f (p)(y) into the protected
principal stratum via (3). Note that if VE=0, there is no se-
lection bias, regardless of β, and the higher VE, the greater
the opportunity for bias. Heuristically, β specifies how much
bias occurs through VE. Fixing β =0 specifies a constant
weight w(y |α, β =0)=RR, and reflects an assumption of no
selection bias. Fixing β > 0 makes w(y |α, β) monotone in-
creasing in y and reflects “positive” selection bias, with infec-
tion odds under randomization to vaccine higher for a larger
PVL Y (p)= y. In this case, if the causal null hypothesis (2) is
true, then the net vaccine effect is that Fv (·) is stochastically
larger than Fp(·). Similarly, β < 0 makes w(y |α, β) monotone
decreasing in y and reflects “negative” selection bias, with
infection odds under randomization to vaccine lower for a
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Figure 1. The upper panels show plots of the density of Yi (p) for subjects infected under randomization to placebo
{Si (p)= 1} (total area) partitioned into the subdensity for “protected” subjects not infected under randomization to vac-
cine {Si (v)= 0, Si (p)= 1} (hatchmarked area =VE) and the subdensity for subjects “always infected” under randomization
to either vaccine or placebo {Si (v)= 1, Si (p)= 1} (unshaded area =1−VE). Using model (6) with β =−∞, −1, 0, 1, or ∞,
the five panels reflect different assumptions about how the vaccine relative risk w(y |α, β)=RR(y)=Pr{Si (v)= 1 |Yi (p)= y,
Si (p)= 1} depends on the potential viral load (PVL) Yi (p)= y for subjects infected under randomization to placebo. The
lower panels show corresponding plots of the logistic weight function w(y |α, β). The hatchmarked areas equal VE=0.30, and
α was calculated from 1−VE =

∫ ∞
−∞ w(z | α, β)dF(p)(z) with F (p)(·) given a normal distribution.

larger y; under (2) the net vaccine effect is that Fv (·) is
stochastically smaller than Fp(·).

HHS developed tests for (5), using two models representing
maximum plausible positive and negative bias. HHS’s “pos-
itive” selection model is specified by placing all subjects in
{Si (p)= 1} with Y(p) less than the VEth percentile qVE

(p) of its
distribution into the protected principal stratum; the “neg-
ative” selection model is specified by placing all subjects in
{Si (p)= 1} with Y (p) greater than the upper VEth percentile
q1−VE

(p) of its distribution into the protected principal stratum.
These models are limiting members of the class of logistic
models (6), specified, respectively, by β =∞ (Figure 1, right-
most panel) and β =−∞ (Figure 1, left-most panel). To see
this, note that setting α=−βqVE

(p) implies limβ→∞w(y |α, β)

equals I{y > qVE
(p)} for y 
= qVE

(p) and 1/2 for y= qVE
(p),

and that setting α=−βq1−VE
(p) implies limβ→−∞w(y |α, β)=

I{y < q1−VE
(p) } for y 
= q1−VE

(p) and 1/2 for y= q1−VE
(p) . Therefore,

based on the logistic weight function with β ranging between
−∞ to ∞, the class of models (6) spans all plausible magni-
tudes of selection bias.

If selection bias is presumed to follow model (6) for some
unknown β within a plausible range βneg to βpos, then a
two-sided null hypothesis representing no causal vaccine effect
in the always-infected stratum, allowing for possible selection
bias, is given by

H0βpos,βneg : Fp(· | βpos) ≤ Fv(·) ≤ Fp(· | βneg),

βpos ∈ [0,∞], βneg ∈ [−∞, 0]. (7)

Under A1–A2, H0βpos,βneg is equivalent to F alw.inf
(p) (·) ≤

F alw.inf
(v) (·), assuming model (6) with β =βpos and F alw.inf

(v) (·) ≤
F alw.inf

(p) (·), assuming model (6) with β =βneg. For the special
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case βpos =βneg =0, (7) collapses to the null hypothesis of no
net vaccine effect on viral load, H0 :Fv (·)=Fp(·). Therefore,
under the assumption of no selection bias, a standard compar-
ison of viral load distributions between infected subgroups as-
sesses the causal effect of vaccine in the always-infected prin-
cipal stratum.

One-sided null hypotheses representing no causal vaccine
effect are given by

H0βpos : Fp(· | βpos) ≤ Fv(·), βpos ∈ [0,∞], (8)

H0βneg : Fv(·) ≤ Fp(· | βneg), βneg ∈ [−∞, 0]. (9)

If (8) is rejected, then always-infected individuals have sig-
nificantly higher viral loads under randomization to vaccine
than placebo when controlling for selection bias. In sum,
A1–A2 and model (6) can be used to specify a one- or two-
sided null hypothesis for no causal effect of vaccine in the
always-infected stratum that can be tested, and a sensitiv-
ity analysis can be performed by testing the hypothesis for a
range of fixed values of βpos, βneg.

3. Statistical Hypothesis Tests and Estimation
Let Y v1, . . . ,Y vnv and Y p1, . . . ,Y pnp denote the viral loads of
infected vaccine and placebo recipients, respectively. Y could
be the average of two or more viral load measurements taken
from an infected subject, or another continuous outcome such
as the area under the longitudinal viral load curve. We assume
each sample is independently, identically distributed, and the
two samples are independent of one another.

3.1. Nonparametric Test Statistics
Fix βpos ≥ 0 and βneg ≤ 0. Using the empirical distribu-

tions F̂v and F̂p calculated from the two observed samples,
and an estimate of VE, nonparametric tests of H0βpos , H0βneg ,

and H0βpos,βneg can be based on comparisons of F̂v(·) with

F̂p(· | βpos), F̂p(· | βneg), and both estimates, respectively. The

VE parameter can be estimated by V̂E = 1 − (nv/Nv)/
(np/Np), with Nv (Np) the number of subjects randomized to

vaccine (placebo). Under A1, V̂E is unbiased for VE if the vac-
cine protects by an “all-or-none” mechanism, and is approx-
imately unbiased if it protects by another mechanism, since
HIV infection is a rare event (Halloran, Haber, and Longini,
1992). We consider three criterion functions for summarizing
the comparisons, based on means, suprema, and integrated
squared differences.

The statistic TMβ for comparing means, appropriate for
testing (8) or (9), is given by

TMβ =

∫ ∞

−∞
y{dF̂v(y) − dF̂p(y | β)}, (10)

where
∫ ∞
−∞ y dF̂v(y) = n−1

v

∑nv

i=1 Yvi and F̂p(y | β) is the max-
imum likelihood estimator of Fp(y |β) under model (6), cal-
culated as

F̂p(y | β) = (1 − V̂E)−1 1

np

np∑
i=1

I {Ypi ≤ y}w(Ypi | α̂, β).

Here, α̂ is computed by solving the equation F̂p(∞ | β) = 1
for α, i.e., α solves

1 − V̂E =

∫ ∞

−∞

exp(α + βy)

1 + exp(α + βy)
dF̂p(y). (11)

A solution to (11) can be found rapidly using a numerical
one-dimensional line search.

The null hypothesis H0βpos is rejected if TMβpos is large.
For large positive βpos and α̂ = −βposq̂

V̂E
p , with q̂ V̂E

p the
{np(1 − V̂E)}th largest value of Y p1, . . . ,Y pnp , TMβpos reduces
to HHS’s nonparametric statistic TM that tests (8) with
βpos =∞. Similarly, H0βneg is rejected if TMβneg is negative and

large, and for large negative βneg and α̂ = −βnegq̂
1−V̂E
p , TMβneg

reduces to HHS’s statistic TM that tests (9) with βneg =−∞.
The maximum of |TMβpos | and |TMβneg | can be used for a
two-sided test of (7).

Second, a one-sided Kolmogorov-Smirnov-type statistic for
testing (8) is defined by

TKSβpos = m1/2sup−∞<y<∞|{F̂p(y | βpos) − F̂v(y)} ∨ 0|, (12)

with n=nv + np , m=(nvnp)/n; an Anderson-Darling-type
statistic is defined by

TADβpos = m

∫ ∞

−∞

[{F̂p(y | βpos) − F̂v(y)} ∨ 0]2

Ĥn(y | βpos)(1 − Ĥn(y | βpos))

× dĤn(y | βpos), (13)

where Ĥn(y | βpos)= (np/n)F̂p(y | βpos)+ (nv/n)F̂v(y). One-
sided statistics for testing (9) are given by (12) and (13)
with βpos replaced by βneg and ∨ replaced by ∧. Two-sided
statistics for testing (7) can be defined similarly. When β =
βpos =βneg =0, the two-sided statistics reduce to the classi-
cal Kolmogorov-Smirnov and Anderson-Darling test statis-
tics for comparing two distribution functions (D’Agostino and
Stephens, 1986).

3.2. Computing Critical Values for the Tests
We use a modification of the “controls only” bootstrap proce-
dure developed by HHS for computing critical values for the
test statistics. The modification is that once the bootstrap
estimate of vaccine efficacy V̂E

�
is computed as in HHS, a

bootstrap estimate α̂� is computed as the solution to equa-
tion (11), with V̂E replaced by V̂E

�
. Estimating VE within

each bootstrap iteration appropriately accounts for the un-

certainty in V̂E.
The nonparametric bootstrap tends to approximate smooth

distributions better than distributions with discontinuities.
For β finite, the use of a smooth logistic selection weight
function in the test statistics suggests that the nonparamet-
ric bootstrap should perform well. For |β| infinite, Fp(· | βpos)
and Fp(· | βneg) have discontinuities at the truncation point,
which could abrogate bootstrap performance. The simulation
study confirms that tests with βpos =∞ have poorer size and
power characteristics than tests with βpos =1.

3.2. Nonparametric Estimation
Under A1–A2 and a model (6) with β fixed, µ̂ACE(β) ≡ −TMβ

is a consistent estimate of the average causal effect (ACE)
parameter µACE(β) =

∫ ∞
−∞ y{dF alw.inf

(p) (y) − dF alw.inf
(v) (y)}. By
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bootstrap resampling from F̂v(y) and F̂p(y | β), 95% boot-
strap percentile confidence intervals about µACE(β) can be
constructed. An estimation-based sensitivity analysis can be
carried out by plotting point and interval estimates of µACE(β)
versus β.

4. Simulation Study
Through simulations of an HIV vaccine trial, we evaluate
the three one-sided tests of the null hypothesis H0βpos in (8).
Rejecting (8) implies that individuals infected under either
assignment have significantly higher viral load if assigned
vaccine than if assigned placebo when controlling for selec-
tion bias specified by βpos and model (6). We consider an
intermediate-sized efficacy trial with 45 infections expected
in the placebo group (Rida et al., 1997), and suppose the true
VE equals 30% or 50%. The true amount of selection bias
is determined by the parameter β =βpos in model (6), with
β =0, 1, or ∞. Thus, data are generated under three kinds of
null models, which assume no selection bias, an intermediate
amount of selection bias (supposing the infection odds un-
der vaccine of a subject who would be infected under placebo
increases e1 =2.72-fold per one unit higher PVL Y (p)), and
maximal plausible positive selection bias. We assume two in-
dependent measures of viral load are available per person. The
sample Y p1, . . . ,Y pnp is generated from a normal distribution
Fp(y) with mean 4.50 and variance 0.36. These parameter
values equal those used by HHS, selected based on a cohort
of recently HIV-infected people. The sample Y v1, . . . ,Y vnv is
generated from Fp(· |β) in model (6) with true β =0, 1, or
∞. For each true β, three vaccine effects on viral load in
the always-infected are evaluated: mean shifts of ∆ = 0, 1/3,
or 1/2 log10; these are over and above any selection bias in-

Table 2
Power × 100% for detecting a 0, 1/3, and 1/2 log10 mean-shift alternative, over and above any selection bias induced by the

true β, based on a one-sided 5% level test

Nonparametric mean Kolmogorov-Smirnov Anderson-Darling
True Presumed
β β 0 1/3 1/2 0 1/3 1/2 0 1/3 1/2

VE = 30%
0 0 4.8 73.8 96.8 5.4 69.0 91.2 4.0 72.0 94.4
0 1 3.2 49.8 82.0 3.0 44.8 78.2 2.4 46.8 79.6
0 ∞ 0.2 15.8 36.0 0.8 16.8 37.6 0.2 15.4 33.6
1 0 14.6 91.8 99.8 15.6 85.4 97.8 14.4 90.2 99.2
1 1 5.8 67.6 94.6 7.2 63.4 90.8 5.4 65.4 94.0
1 ∞ 1.8 26.0 52.2 1.4 27.6 51.8 1.6 25.8 48.8
∞ 0 69.6 100 100 76.2 100 100 79.8 100 100
∞ 1 37.4 95.8 100 42.6 97.0 100 45.8 97.4 100
∞ ∞ 8.8 55.0 83.2 12.0 55.2 82.4 10.8 57.2 86.2

VE = 50%
0 0 6.6 70.0 93.2 5.8 63.8 89.8 5.8 66.4 92.6
0 1 1.0 30.6 64.2 0.4 25.8 58.0 0.2 26.6 61.2
0 ∞ 0.2 3.4 10.2 0.4 3.6 9.0 0.2 2.8 7.4
1 0 25.8 92.2 99.0 24.8 87.4 99.0 24.0 91.0 99.2
1 1 5.0 62.4 88.2 5.8 57.2 84.2 4.2 60.6 87.8
1 ∞ 0.4 9.8 30.6 0.2 8.6 25.0 0.2 8.2 24.6
∞ 0 94.8 100 100 97.2 100 100 97.6 100 100
∞ 1 56.8 99.2 100 72.6 99.8 100 69.0 99.6 100
∞ ∞ 5.2 59.2 84.2 6.0 55.6 79.4 6.4 57.8 82.0

duced by the true β, i.e., the samples are drawn such that
F alw.inf

(p) (y)=Fp(y |β) and F alw.inf
(v) (y)=Fp(y − ∆ |β).

For each of 500 datasets simulated under each parameter
configuration, the three one-sided test statistics are calcu-
lated, with presumed selection bias levels β =0, 1, or ∞. Crit-
ical values for the tests are determined using 500 bootstrap
replications.

Using a nominal 5% type I error level, Table 2 shows es-
timated sizes and powers of the tests. The sizes are judged
by the bolded rows, for which the correct amount of selec-
tion bias is presumed (true β = presumed β). All tests have
empirical size close to nominal, except when VE=30% and
β =∞; then the size is inflated to 8–12%. The elevated size
is caused by the simulated trials with estimated VE less than
zero; this occurred 18 times and of these, the nonparamet-
ric mean-based test rejected the null hypothesis 16 times. If
the 18 trials with V̂E < 0 are discarded, then the rejection
rate is 5.8%. A similar pattern was seen for the other test
statistics. When V̂E < 0, the testing procedure operates un-
der the assumption of no selection bias, and simply tests H0:
Fv (·)=Fp(·). However, in fact Fv (·)<Fp(·) due to positive
selection bias (true β =∞), which explains the inflated prob-
ability of rejection. Note that when VE=50%, the sizes are
not elevated, because the estimated VE is rarely negative. In
summary, the tests generally have nominal size, except that
when VE is low and the sample size is moderate, underesti-
mation of VE can lead to an increased risk of false rejection.
This phenomenon was also found by HHS.

When the correct selection bias model is assumed, the three
tests have comparable power, with that of the Kolmogorov-
Smirnov procedure being slightly less. In addition, power di-
minishes as the true β increases. Next we consider power when
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an incorrect amount of selection bias is presumed (Table 2,
unbolded rows). If zero bias is presumed (β =0), but in truth
there is moderate bias (β =1), power is high, but at the ex-
pense of an inflated false rejection rate; it is at 15% when
VE=30% and 26% when VE=50%. If zero bias is presumed
and there is actually extreme bias (β =∞), then power is
extremely high and the sizes are extremely inflated. This il-
lustrates the importance of accounting for the possibility of
selection bias to avoid being misled. Next, suppose there is no
selection bias, but one conservatively presumes β =∞. Then
power drops severely, e.g., to 10% for detecting a 1/2 log10

mean shift when VE=50%, compared to 93% if the correct
β =0 is assumed. For the more moderate assumption β =1,
a much smaller price is paid, with power dropping to 64%.
Thus, making a highly conservative assumption of maximal
selection bias can cause great power loss. This finding sup-
ports the use of a continuously indexed sensitivity analysis,
as proposed here.

The Kolmogorov-Smirnov-type and Anderson-Darling-type
tests are expected to have greater power than the mean-
based test for detecting non-mean-shift alternatives. We stud-
ied this conjecture by generating placebo group viral loads
from a normal mixture distribution 0.5N(3.50, 0.36) + 0.5
N(5.50, 0.36) (e.g., infection with a mild or virulent virus)
and vaccine group viral loads from a mixture of truncated nor-
mal distributions 0.5TruncN(3.50, 0.36) + 0.5TruncN(5.50,
0.81), with truncation point of each distribution at the
70th percentile. Presuming β =∞, the Kolmogorov-Smirnov-
type test has 78% power to reject (8), while the other
tests have between 13% and 20% power. Thus, if the viral
load distributions are expected to differ in respects other
than a mean-shift, then the Kolmogorov-Smirnov-type and
Anderson-Darling-type tests merit consideration.

5. Example
To illustrate how a sensitivity analysis could be carried out
on a forthcoming vaccine trial dataset, we analyze a sin-
gle dataset, simulated using Gaussian distributions assuming

np =45 infections in the placebo group, V̂E = 40% (and thus
nv =27 infections in the vaccine group), a true causal vaccine
effect to reduce the mean viral load in the always-infected by
0.33 log10, and true β =βneg =−1, i.e., moderate negative se-
lection bias that leads to lower viral loads in infected vaccine
recipients. The true causal and biasing vaccine effects on vi-
ral load imply that the net vaccine effect on mean viral load
is 0.49 log10. For βneg ranging in [−∞, 0], we consider testing
H0βneg in (9) versus the alternative hypothesis that vaccina-
tion lowers viral load in the always-infected.

The first step is to produce descriptive plots and summary
measures comparing the observed viral load distributions be-
tween the infected subgroups. The average viral loads are 3.96
and 4.48 in the infected vaccine and placebo groups, respec-
tively. The second step is to calculate a test statistic for values
of β =βneg ranging between 0 and a negative value that makes
the selection bias odds ratio OR= e−β large (e.g., β =−5
yields e−β =148), and for the extreme model (β =−∞). The
third step is to plot the p-value of the test statistic versus OR,
which will always be monotone except for stochastic variations
in the bootstrap. This provides a graphical sensitivity analy-
sis (Figure 2). Fourth, calculation of the value of β at which

Figure 2. Based on the nonparametric mean-based,
Anderson-Darling-type and Kolmogorov-Smirnov-type test
statistics, the figure shows the one-sided bootstrap p-value
plotted as a function of the selection bias odds ratio
OR= e−β =e−βneg ; eβ is the odds ratio of infection under ran-
domization to vaccine given infection under randomization
to placebo with viral load y versus with viral load y − 1. If
the magnitude of selection bias is believed to be less than
OR= e1.83 =6.23, then a significant causal effect of vaccina-
tion to lower viral load in the always-infected subpopulation
can be inferred.

the test statistic is exactly statistically significant at the 0.025
level allows one to assess the extent of selection bias needed to
lose the significance of the result. A 0.025 significance level is
chosen because the test is one-sided. In this example, the crit-
ical β value for the test statistic TMβ is −1.83, which implies
the selection odds ratio must be at least e1.83 =6.23 before the
significance of the result is lost. The sensitivity analyses based
on the other two test statistics give similar results (Figure 2).

Fifth, an estimation-based sensitivity analysis can be car-
ried out (Figure 3). Suppose vaccination must lower mean
viral load in the always-infected by at least 0.2 log10 to be
considered clinically significant. The value of β at which the
lower 95% confidence limit for µACE(β) crosses 0.2 is −0.50,
corresponding to a “critical” odds ratio of e0.50 =1.65.

Sixth, interpretations are made. In this example, a study
team might conclude that it is unlikely that selection bias
could fully explain the observed lower viral loads in infected
vaccine recipients, and therefore a genuine viral suppressing
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Figure 3. Point estimates µ̂ACE(β) = −TMβ (bold
line) and bootstrap 95% confidence intervals (dotted
lines) for the average causal effect of vaccine µACE(β)=∫ ∞
−∞ y{dF alw.inf

(p) (y)− dF alw.inf
(v) (y)} in the always-infected prin-

cipal stratum as a function of the selection bias odds ratio
OR= e−βpos (left side of 0) and of OR= e−βneg (right side of
0); eβ is the odds ratio of infection under randomization to
vaccine given infection under randomization to placebo with
viral load y versus with viral load y − 1. If the magnitude
of selection bias is believed to be less than OR= e0.50 =1.65,
then a significant causal effect of vaccination to lower the
mean viral load by at least 0.2 log10 in the always-infected
subpopulation can be inferred.

effect of vaccine in the always-infected is inferred. However,
whether the effect is clinically significant is inconclusive.
These conclusions would be based on beliefs that a selection
bias effect with odds ratio 6.23 or higher is implausible, but
a selection odds ratio of 1.65 is not unexpected.

Note that if only the hypothesis H0βneg with extreme se-
lection bias βneg =−∞ had been tested, then the team would
likely not be able to conclude that vaccination reduced viral
load in the always-infected (p-value > 0.20, Figure 2). This il-
lustrates the added value of a continuously indexed sensitivity
analysis.

6. Discussion
Appropriate interpretation of analyses of vaccine effects on
viral load is challenging. Two main reasons are the lack of

validation of viral load measures as accurate surrogates for
secondary transmission and disease progression, and the po-
tential for selective effects of the vaccine to bias inferences. As
with HHS, we address the second problem, and extend their
work to provide a method of sensitivity analysis over a con-
tinuous range of levels of putative selective effects. Since the
true amount of selection bias may be considerably less than
the worst-case amounts considered by HHS, the methods de-
veloped here may provide for more powerful assessments.

As illustrated in the Section 5, lower viral loads observed
in infected vaccine recipients compared to infected placebo
recipients could be caused partly by a causal viral suppress-
ing effect of vaccine in the always-infected principal stratum
and partly by selective vaccine protection against viruses that
produce higher viral loads. Both effects are beneficial, and
the assessment of the net vaccine effect (in the infected sub-
groups) gives useful information about the overall benefit of
vaccination; this result should be reported together with the
causal inference for the always-infected principal stratum. On
the other hand, as for assessing a vaccine’s effect of increas-
ing viral load, the inference on the net vaccine effect could
dangerously mislead. Selection bias could create higher vi-
ral loads in infected vaccine recipients compared to infected
placebo recipients, i.e., produce a negative net vaccine effect,
even though the vaccine has no adverse causal effect on viral
load and has beneficial VE> 0. Therefore, it is crucial to build
robustness to selection bias into assessments of vaccine harm,
to protect against a spurious conclusion that could prevent
use of or slow development of a safe and partially efficacious
vaccine.

Within the framework of FR, this article develops tech-
niques for causal inference in the always-infected principal
stratum. Alternatively, causal inference could be made using
a missing data framework that assumes all randomized sub-
jects will eventually become HIV infected, and thus at some
point will have a viral load value. In such an approach, the
viral load is missing in subjects who have not yet been in-
fected by the time of the analysis, and causal estimands can
be defined based on functionals of contrasts of the viral load
distributions for the vaccine and placebo groups. The goal of
assessing such estimands is to compare the viral load distribu-
tion between the randomized groups had (contrary to fact) all
subjects been infected during the trial. Rotnitzky and Robins
(1997) developed an inverse probability of censoring weighted
estimating equations method that could be used for causal
inference on a mean-difference version of this estimand. This
technique would model the viral load by a semiparametric
conditional mean model with unspecified error distribution,
and the infection probability (i.e., the response probability) by
a parametric model. If the hazard rate of infection rather than
the binary infection probability was modeled, then Scharfstein
et al.’s (1999) method would apply for making inference on
the same estimand. The advantages of these approaches in-
clude that they minimize modeling assumptions, that they
can incorporate predictors of the infection risk, and that they
can be used for sensitivity analysis of the effect of misspeci-
fication of the model for infection risk. The drawback of any
such missing-data approach for the present application is that
the causal estimand may not be relevant or interpretable,
because it is unrealistic to suppose that all subjects would
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eventually be HIV infected. FR criticize use of such a causal
estimand because it uses nonexistent “a priori” counterfactu-
als. Inferences for the always-infected subpopulation provide
interpretable and practical information for vaccine recipients
who become HIV infected despite vaccination.

In addition to HIV vaccine trials, the methods developed
here apply to general randomized clinical trials, for sensitiv-
ity analyses of causal treatment effects in the subpopulation
of subjects who would experience a postrandomization event
under either assignment.
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Résumé

Des vaccins avec une capacité limitée d’empêcher l’infection
HIV peuvent avoir un impact positif sur la pandémie HIV/
SIDA en limitant une transmission secondaire et une mal-
adie chez les receveurs qui deviennent infectés. Pour évaluer
l’impact de la vaccination sur une transmission secondaire et
sur la maladie, des essais d’efficacité estiment les effets du vac-
cin sur la charge virale du HIV et d’autres aspects ultérieurs
mesurés après l’infection. Un test standard qui compare la
distribution de la charge virale entre les sous-groupes infectés
de vaccinés et les receveurs placebo n’estime pas un effet
causal de la vaccination, car les groupes de comparaison sont
sélectionnés après randomisation. Pour résoudre ce problème,
nous formulons une estimation cliniquement adaptée de la
causalité par l’utilisation du cadre de la stratification princi-
pale développée par Frangakis et Rubin (2002), et nous pro-
posons une classe de modèles logistiques biaisés de sélection
dont les membres identifient les estimations. Etant donné
un modèle de sélection dans la classe, des procédures sont
développées pour tester et estimer les effets causaux de la
vaccination sur la charge virale dans la strate principale des
sujets qui seraient infectés sans se soucier de l’affectation de
randomisation. Nous montrons comment les procédures peu-
vent être utilisées pour une analyse de sensibilité qui quantifie
comment l’effet causal de la vaccination varie avec la magni-
tude supposée du biais de sélection.
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