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Design and Interpretation of Vaccine Field Studies

M. Elizabeth Halloran,' Ira M. Longini, Jr.,1 and Claudio J. Struchiner2

INTRODUCTION

Vaccine efficacy and effectiveness (VE) are gener-
ally estimated as one minus some measure of relative
risk (RR) in the vaccinated group compared with the
unvaccinated group:

VE - 1 - RR. (1)

Due to the dependent happenings in infectious diseases
(1), vaccination can produce several different kinds of
effects, at both the individual and the population levels.
The groups being compared could be composed of
individuals or of populations or communities.
Vaccination can induce a biologically protective
response in a vaccinated individual or reduce the
degree or duration of infectiousness for other individ-
uals. Widespread vaccination in a population can
reduce transmission and produce indirect effects, even
in individuals who were not vaccinated. Vaccinated
people might change their rate of making contacts with
potentially infectious sources and alter the overall ben-
efits of vaccination. In designing a study to evaluate
the effects of vaccination, the question of interest
guides the choice of unit of observation, comparison
groups, parameter of effect, and level of information
required (2).

In this presentation we review different measures of
effect of vaccination and vaccination programs. We
consider various study designs for estimating the dif-
ferent measures of effect based on the choice of corn-
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parison groups, the unit of observation, the choice of
parameter, and the amount of information about the
transmission system required for estimation. Our focus
is on field studies that may be double-blinded, placebo
controlled phase III trials, or phase IV post-licensure
studies that may be randomized or observational. We
regard the paradigm of the randomized, double-blinded
study as the point of departure for interpreting observa-
tional and nonrandomized studies (3, 4). Case-control
studies produce approximate estimators of the appro-
priate population parameters (5, 6). Our primary con-
cerns here are concepts of design and interpretation of
the estimates. For example, what does it mean exactly
when we say that a vaccine is 85 percent efficacious?

We begin by discussing some biologic aspects of
vaccination that are of interest or that need to be taken
into account when estimating vaccine efficacy.
Following that, we discuss designs for estimating the
direct protective effect of vaccination. Next we present
design options for evaluating how vaccination alters
the infectiousness of a person who becomes infected.
We then consider that a vaccination may result in
change in behavior, altering the exposure to infection.
Continuing on, we present community-based study
designs for estimating the indirect, total, and overall
effectiveness of widespread vaccination in popula-
tions. We conclude by touching upon the problem of
evaluating safety and adverse events.

EFFECTS OF INTEREST

Table 1 (2) provides an overview of several different
types of effects and the parameters used to estimate
them. Historically, the primary effect of interest of
vaccination has been how well it protects the vacci-
nated individual. Biologically, the protective immune
response can reduce the probability that a person
becomes infected given a specified exposure to or
inoculum of an infectious agent. That is, it can reduce
the transmission probability. If a vaccinated person
becomes infected, the immune response might reduce
the degree or duration of disease or the probability of
dying from the disease. It may also alter the rate of dis-
ease progression. For many infectious agents with
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TABLE 1. Parameters used

Level Parameter
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for measuring various
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* From Halloran et al., Am J Epidemiol 1997;146;789-803. Reproduced with permission. The subscripts 0 and 1 denote unvaccinated and
vaccinated people, respectively. Population A contains both vaccinated and unvaccinated people. All people in population B are unvaccinat-
ed (see figure 3). The subscripts S, /, and T denote susceptibility, infectiousness, and combined effects, respectively. The Cox proportional
hazards estimator is denoted by epi. Time has been omitted from the table for notational clarity.

t VE, vaccine efficacy/effectiveness; NA, not applicable.

short incubation periods, disease is used as the out-
come of interest in vaccine trials rather than infection.
Becoming infected results with some probability from
contact with an infectious source, while developing
disease depends on the within host interaction subse-
quent to successful infection. In many vaccine studies,
the distinction between infection and disease as out-
come is not made. Studies with either of these out-
comes are sometimes used to measure vaccine efficacy
for susceptibility (VES) (third column, table 1), though
the distinction between infection and disease should
always be kept in mind.

Another measure of effect evaluates the degree of
protection once a person has become infected. We call
this vaccine efficacy for progression (VEP) (not in
table 1). With infectious agents that have long incuba-
tion periods, such as tuberculosis or human immuno-
deficiency virus (HIV), evaluation of this sort of effect
is particularly important. Another example of VE/. is
the comparison of the degree of illness conditional on

becoming sick. For example, vaccinated persons who
contract chickenpox generally have much milder dis-
ease than unvaccinated persons who contract the same
disease.

The main distinction between VE5 and VEP is that
studies to estimate VE5 evaluate susceptibles and the
exposure to infection would need to be taken into
account. Studies to estimate VEP are conditional on
the participants already being infected, so the pro-
gression within infected individuals is important.
Studies to evaluate VES that use disease as an outcome
often do not differentiate the protective effects against
infection and against disease conditional upon infec-
tion. Nonlinearities of the pathway from infection to
manifest disease could mean that the efficacy as mea-
sured by the observed outcome would be quite differ-
ent from the biologic efficacy if it could be measured
along the pathway (7). The difference should be kept
in mind when designing, analyzing, and interpreting
the study.
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Vaccine Field Studies 75

A vaccinated person who becomes infected may also
be less infectious to other susceptibles or be infectious
for a shorter period of time. The vaccine efficacy for
infectiousness (VE;) (table 1, top row, columns 4 and
5), is of interest because a vaccine that reduces infec-
tiousness could have important public health conse-
quences. Vaccination could also change the distribu-
tion of carriers in a population.

Widespread vaccination can have indirect effects for
unvaccinated people as well as for vaccinated people.
The indirect effects are due to the change in collective
level of immunity in the population due to vaccination.
The collective level of immunity in a population
against a particular parasite is called herd immunity. It
is important to differentiate between the indirect
effects in the unvaccinated and vaccinated groups.
These are called the indirect and total effectiveness,
respectively (table 1, middle, columns 4 and 5). The
indirect effects in unvaccinated people might not be
the same as those in the vaccinated people. The over-
all effectiveness of a vaccination strategy or allocation
within a particular population is the weighted average
of the outcomes in the vaccinated and the unvaccinated
people (table 1, middle, column 6).

To evaluate the direct protective effects of vaccina-
tion, VES and VEP, usually the individual is the unit of
observation. To evaluate VE/5 generally small trans-
mission units, such as households or partnerships in
which contacts can be defined, are needed. This type
of study in small transmission units can also be used to
evaluate VES (table 1, top row). To evaluate the popu-
lation level effects, the unit of observation becomes the
population, so that several populations need to be
included in the study (table 1, bottom right portion; see
below in the discussion of figure 3).

Vaccination can induce heterogeneous response, and
protection might wane or be boosted by exposure to
wild-type infection. Exposure to infection might be
heterogeneous within comparison groups. Vaccine
antigen mixes might be effective against some strains,
but not others. Belief in the protective effects of vacci-
nation could result in people increasing their exposure
to infection. These characteristics affect the interpreta-
tion of the vaccine efficacy estimates. In the following
sections, we review some of the issues related to eval-
uating each of the various effects.

VACCINE EFFECT ON SUSCEPTIBILITY, VES

We first consider study designs for estimating the
protective effects of vaccination, VES. In table 1, these
are represented in the third column. Important for
choosing methods to estimate VES and for interpreting
VES estimates is to consider some model for the pro-
tection conferred by the vaccine (8). To begin, sup-

pose that vaccination provides a multiplicative reduc-
tion in the probability of being infected given a spec-
ified exposure to infection or a specified inoculum.
That is, the transmission probability in a vaccinated
person is a fraction, denoted by 0, of that in an unvac-
cinated person. We then define VE5 = 1 - 9 , where
VES represents the proportionate reduction in the
transmission probability given a specified exposure to
infection.

Under the assumption of equal exposure to the infec-
tious agent in the vaccinated and unvaccinated groups
(9), the estimates of VES are obtained from the relative
risk of infection or disease in the vaccinated individu-
als compared with the unvaccinated individuals:

V E c =
R (vaccinated people)

R (unvaccinated people)'

where R denotes one of the measures of risk. Given our
assumption about the multiplicative effect of the vac-
cine on the transmission probability, if we can estimate
the relative transmission probability to the vaccinated
compared with the unvaccinated individuals, then we
can estimate VES = 1 - 9 . However, this requires
information on exposure to infection, which is often
difficult or impossible to obtain. The incidence rate,
hazard rate, and cumulative incidence (or incidence
proportion) are measures of disease frequency that
generally do not require knowledge of contacts with
infectives to estimate. They also can be used to esti-
mate VE5, but then the interpretation of the estimated
efficacy is different.

VES based on the transmission probability

Let the transmission probability, denoted /?,-,, be the
probability that, conditional upon a contact between an
infective source with covariate status / and a suscepti-
ble host with covariate status j , successful transfer and
establishment of the infectious agent will occur. The
transmission probability could also be defined condi-
tional on a specified level of inoculum. A related con-
cept is the secondary attack rate, (SAR,-,), defined as
the proportion of susceptibles with covariate status j
making contact with an infectious person of covariate
status i who become infected.

Let 0 and 1 denote being unvaccinated and vacci-
nated, respectively. Then, for example, p0l denotes the
transmission probability per contact from an unvacci-
nated infective person to a vaccinated uninfected per-
son. Let p0 andpj, denote the transmission probability
to unvaccinated and vaccinated susceptibles, respec-
tively, where the dot in the subscript can denote any
vaccine status or an average across the population.
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Then VESp based on the transmission probability or
secondary attack rate (table 1, top row) is estimated
from

= i -EA= i S A R '
Pa SARn

1 -

vaccinated infections

vaccinated exposures

unvaccinated infections

unvaccinated exposures

Estimating vaccine efficacy from the transmission
probability ratios requires information on who is infec-
tious and when, and whom they contact and how. The
concept of a contact is very broad and must be defined
in each particular study. Often it is defined within a
small transmission unit such as a household or sexual
partnership. For a sexually transmitted disease, the
contact could be defined per sex act or per partnership.
For pertussis, a contact could be defined as attending
school the same day as an infectious person or as liv-
ing in the same household during the entire period of
infectiousness of a case. The mode of transmission of
a parasite determines what types of contacts are poten-
tially infectious.

The type of contact and the infectiousness of the
infective source will determine the inoculum level per
contact. A vaccine that is protective against a low
inoculum might not protect against a high inoculum. If
it were possible to measure the infectiousness of the
infectives, the covariate^ in the transmission probabil-
ity might include information about this, and, there-
fore, provide a means to stratify by inoculum level in
computing the efficacy estimates. Similarly, if it were
possible to measure the different types of contacts,
then the transmission probability for each type of con-
tact could be estimated, and the VE5p estimates could
be stratified by type of contact. If it is not possible to
measure the levels of infectiousness, the inoculum
level, or the different types of contacts, then the esti-
mates will reflect the unmeasured heterogeneities.

There are two main ways to design a study to esti-
mate the relative transmission probabilities. The first
method, called the secondary attack rate (10-13), or
case-contact rate method, has been used since the per-
tussis vaccine trials in 1930s (14) to estimate vaccine
efficacy. In this case, the focus is on identifying the
infected individuals and the proportion of people
exposed to them who become infected. Another
method of estimating the transmission probability is
based on the binomial model. In this case, we observe
susceptible people, count the number of contacts they

make with infectives, and count the number of these
susceptible people who become infected. The trans-
mission probability is estimated using the binomial
model. Secondary attack rate studies are commonly
used for directly transmitted infectious agents with
high transmission probabilities, such as measles,
chickenpox, mumps, pertussis, and tuberculosis.
Contacts are often defined within small transmission
units such as households. In tuberculosis, contact trac-
ing and testing are often used to estimate the secondary
attack rates. The binomial model is commonly used in
studies with low transmission probabilities, such as
HIV, in which susceptibles often make more than one
contact before becoming infected. The ascertainment
of the susceptibles or infectives can occur prospec-
tively or retrospectively, depending on the design of
the study.

VES not conditional on knowledge of exposure to
infection

Information on exposure to infection is often diffi-
cult or impossible to collect. More commonly, studies
are designed to estimate VE5 from events per person-
time of potential rather than actual exposure or simply
from the proportion of people who become infected in
the vaccinated compared with the unvaccinated
groups. Standard parameters for estimating VES are
incidence rates, hazard rates, or cumulative incidence.
Halloran and Struchiner (5, 15) called these compar-
isons study design type I (table 1, third column, lower
rows). Here information on actual exposure to infec-
tion is not required to estimate VES. The assumption is
made that the vaccinated and unvaccinated groups are
equally exposed to infection (9), so that any differ-
ences in the risk in the two groups is due to the bio-
logic effects of the vaccine.

Estimation of the different VES parameters requires
differing levels of information and make different
demands on study design and data collection (16).
Incidence rates or hazard rates require the time to
event and the period of potential exposure of each per-
son under study. The hazard rate in infectious diseases
is often called the force of infection. A Cox propor-
tional hazards model requires only the ordering of the
event times. An estimate of cumulative incidence
requires only final value data, that is, whether an infec-
tion occurred by the end of the study or not.
Correspondingly, in table 1, VE5IR based on incidence
rates (IR) and VESJl are level II parameters, VE5PH

based on Cox proportional hazards (PH) is level III,
and VE5 CI based on cumulative incidence (CI) or final
value data is level IV. Each level requires less infor-
mation about the transmission system, with only level
I requiring actual contact information. Thus, the levels
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form a hierarchy. Since VE S p based on the transmis-
sion probability is defined conditional on exposure to
infection, it is called a conditional parameter, while the
other measures are called unconditional parameters.

Primary vaccine efficacy studies often report VES I R

based on relative events per person time, or level El
information,

VES,IR = 1 -
vaccinated events/person-person-time

unvaccinated events/person-time

The usual assumption is that the numbers of events fol-
low a Poisson distribution. Similarly, investigators
may estimate the hazard rates in the vaccinated and
unvaccinated Xx(t) and ^ ( 0 , respectively, using sur-
vival analysis methods. Then the VES is based on the

hazard rate ratio VE5 x(t) = 1 — . When covariates

such as age and gender are added, the analyses are
stratified by the covariates or Poisson regression can
be used. Under the assumption that the effect of the
vaccine is multiplicative, constant, and homogeneous,
the Cox proportional hazards model can be used. In
this case, it is not necessary to estimate the hazard rate
in the unvaccinated group, but only the relative hazard
rate. This requires only the ordering of the infection
times, as mentioned above. Covariates including time-
dependent covariates can easily be incorporated using
standard software.

An early example of estimating VE5IR is the study by
Kendrick and Eldering of pertussis vaccine in the
1930s (14), which reported both the proportion of peo-
ple exposed to infection who developed pertussis, as
well the number of cases per person-time. The vacci-
nated and control groups had 1,815 and 2,397 children,
respectively, who contributed 2,268 and 2,307 person-
years at risk, respectively. There were 52 cases in the
vaccinated and 348 cases in the control group, so

52 cases

VESJR = 1
2,268 person-years

348 cases

2,307 person-years

= 0.85. (2)

More recently, Urdaneta et al. (17) present estimates
of VES I R as the result of a randomized, placebo con-
trolled field trial of SPf66 malaria vaccine in Costa
Marques, Rondonia, Brazil. A total of 572 participants
completed the three dose vaccine schedule and were
followed up for 18 months. The 287 vaccinated indi-
viduals contributed a total of 12,178 person-weeks at
risk, and 76 first Plasmodium falciparum malaria

episodes were observed among them. In the placebo
group, 285 individuals contributed 11,698 person-
weeks at risk and 85 cases leading to an estimate of
VE5>IR = 0.14.

In some studies, it is possible to compute both a con-
ditional and an unconditional estimate of vaccine effi-
cacy from a single study. The Kendrick and Eldering
study on pertussis vaccine mentioned above also had
information on children who had been exposed to per-
tussis within their own households. In the vaccinated
group, 29 of 83 exposed children developed pertussis,
while 143 of 160 exposed children in the unvaccinated
group developed pertussis. Thus, the estimate of VEXp is

29 cases/83 vac exposed
s'p 143 cases/160 unvac exposed

While everyone is included in the estimate of VE5IR,
only the children with (presumed) exposure to infec-
tion are included in the VE5p estimate. The interpreta-
tions of the two estimates are also different, since one
measures the protection conferred as measured by
infections per person time and the other by the proba-
bility of an infection per potentially infectious contact.

Estimation of VE5CI(r) based on the cumulative
incidence requires only information about whether
persons are infected or not by the end of the study at
time T, that is, final value data:

VEs,a(T) =

vaccinated infection events/persons-at-risk
1 -

unvaccinated infection events/persons-at-risk

1 CI,(7Q

As an example, Greenwood and Yule (9) used the
cumulative incidence in studying the efficacy of
typhoid vaccination in the troops in the early part of the
twentieth century. In one analysis, Greenwood and Yule
assumed that the denominators were based on the vac-
cinated and unvaccinated groups at the beginning of the
study. They had 56 cases of typhoid in 10,378 vacci-
nated soldiers, and 272 cases in 8,936 unvaccinated sol-
diers. The estimated efficacy based on these numbers is

— 56 cases/10,378 at-risk
VES C I (7) = 1 0.82 .(4)5>CIV ' 272 cases/8,936 at-risk

A more recent example is the estimation of VE5 C I(7)
from a double-blinded live attenuated, cold-adapted
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influenza vaccine trial in children (18). In this trial, of
the 1,070 children who received vaccine, 14 were
infected, and of the 532 children who received
placebo, 95 were infected. Infection was defined as
being culture positive for influenza virus during the
acute phase of an influenza-like illness. Based on these

— 14/1,070
numbers, VE5,CI(r) = 1 - ^ = 0.93.

Because of the dependent happening structure of
events in infectious diseases, there is an intrinsic rela-
tion among the different parameters on which the VE5

estimators are based. Understanding this relation helps
to see the relation of the different estimators of VE5 to
one another. Let py be the transmission probability as
defined above. Let c denote the contact rate in a popu-
lation assuming that people are randomly mixing, and
let P(i) denote the prevalence of infectives at time t.
Then the hazard rate X(t) (or incidence rate or force of
infection) at time t can be expressed as the product of
the contact rate, the transmission probability, and the
probability that a contact is infectious:

= cPijP{t). (5)

So even if the different components of the hazard rate
are not measured, we can consider the underlying
process that is producing the infections we observe.
Similarly, the cumulative incidence, 0 (7} , at some
time T is a function of the hazard rate during the
follow-up period, and thus also a function of the trans-
mission probability, contact rate, and prevalence of
infection in the contacts. Even though the cumulative
incidence estimate is a sort of black-box estimator, it is
useful in vaccine studies to think about the underlying
transmission system that would produce the observed
final values.

axis into piece-wise constant components. Then a sep-
arate constant VEslR(t) is estimated for each time inter-
val. If there is time dependence, then the estimates will
vary across the time intervals. This method of analysis
was used to estimate VE5IR(f) of killed whole-cell-
only (WC) and B subunit killed whole-cell (BS-WC)
oral cholera vaccines over 3 years (1985-1988) of a
randomized, double-blinded vaccine trial in rural
Matlab, Bangladesh (19). The placebo was a killed
Escherichia coli strain. Participants included 89,596
subjects aged 2-15 years (male and female) and
greater than 15 years (females only). The first 3 years
of the vaccine trial were partitioned into 1-year seg-
ments. Cholera incidence was defined as the number
of culture-confirmed cholera episodes per 106 person-
days of follow-up during each of 3 years.

In the first year of the trial, the estimated incidence rate
for those vaccinated with the BS-WC vaccine was 41/106

person-days and for the placebo HO/106 person-days.
41

Thus, in the first year VEWR(1) = 1 - — = 0.63

(one tailed 95 percent confidence limit 0.50). The VE
estimates for the BS-WC vaccine for the second and
third year of the trial were 0.57 (one tailed 95 percent
confidence limit 0.42) and 0.17 (one tailed 95 percent
confidence limit -0.15), respectively. Thus, we see a
waning time trend in efficacy, with no significant pro-
tection by the third year. Since the partitioning bound-
aries are selected at 1-year intervals, it is not clear if
the waning protection is continuous or precisely at
what point in time significant protection is lost. With
use of a Poisson regression including covariates, the
problem still remains of how to partition the time axis
into piece-wise constant components. The problem can
be solved by the use of survival analysis methods
described in the next section.

When estimates of VES vary with time

In introducing the various VE$ estimators, we made
the very simple assumptions that the protective effect
was the same multiplicative effect in everyone, that
protection did not wane nor was it boosted, and that
exposure to infection was not only the same in the vac-
cinated and unvaccinated groups, but that everyone
was exposed equally. Unmeasured heterogeneities in
susceptibility, protection, and exposure to infection
can produce time-varying estimates of VESIR(r) or
VE5Jt(f) that are artifacts of the choice of analysis,
while true waning of protection or boosting can lead to
real time-varying effects.

Consider first the situation that protective efficacy
actually wanes with time. One way to build time
dependence into the analysis is to partition the time

Nonparametric estimation of time-varying vaccine
effects

In this section, we assume that individual or grouped
time-to-event data (level II) are available. Durham et
al. (20) adapted and compared two basic approaches
for the nonparametric estimation of smoothed curves

for VEsx(t) = 1 - RR(0 = 1 - r ~ . The first is a

generalized additive models approach that involves
using a time-varying coefficient (21) version of the
proportional hazards model assuming a Poisson model
(22). It is useful for diagnostics to ascertain the shape
of (3(0, but it cannot provide an estimator for VEsx(t).
The other method uses Schoenfeld residuals (23, 24).
The general idea is to fit an ordinary proportional haz-
ards model to the data, then to compute the scaled dif-

Epidemiol Rev Vol. 21, No. 1, 1999



Vaccine Field Studies 79

ferences between the actual and expected covariate
values at each event time, called Schoenfeld residuals.
The scaled residuals are added to the coefficient from
the proportional hazards model. The time-varying
regression coefficient (3(0 is recovered by smoothing
the rescaled Schoenfeld residuals. Conceptually, we
are nonparametrically estimating the instantaneous
hazard rate ratio e^'\ thus VEsx(t). Both methods pro-
vide a hypothesis test for the null Ho: P(/) = |3 for all
t, that is, for no time-varying effects. The method using
the Schoenfeld residuals is easy to use, provides an
estimate of e^(I) on the natural scale, and allows easy
incorporation of time-dependent covariates, so we rec-
ommend this approach in general.

Durham et al. (25) used the method involving
Schoenfeld residuals to estimate smooth plots of the
VE5^(0 for the two oral cholera vaccines from the
cholera vaccine trial described above. Figure 1 shows
the plot of the VE5^(0 estimates and the 95 percent
confidence intervals for the two vaccines. The bending
downward of the curves is indicative of waning. The p
values for the hypothesis test for departures from the
proportional hazards assumption are 0.008 and 0.002
for the estimated model of the WC and BS-WC vac-
cines, respectively. The WC vaccine gives fairly con-
stant and significant protection, with a VE55t(O of
about 0.50 for the first 2.5 years of the trial, but then
protection appears to wane rapidly. After 3 years of the
trial (May 1988), the point estimate of the VE5X(0 is
0.245 and the 95 percent confidence interval covers
zero. Protection from WC-BS vaccine starts out higher
than that from WC vaccine, i.e., 0.713 versus 0.430,
but then gradually wanes at a fairly constant rate, i.e.,
about 2-3 percent per month. This analysis provides a
more complete description of the VES than that based
on yearly incidence ratios described above.

Unmeasured heterogeneity (frailty mixture
models)

Consider now heterogeneous protection. Smith et al.
(8) considered two models for vaccine protection, one
which acted homogeneously and multiplicatively on
the hazard and the other which protected some people
completely against infection while not having any
effect on the others. They showed that whether an esti-
mator varies with time depends on the distribution of
protection. We extended the discussion of mechanism
of protection to the action being directly at the level of
the transmission probability (26, 27). We then devel-
oped more general distributions of protection (28-31)
that can include some people who are completely pro-
tected, some who have no protection, and the rest hav-
ing a continuous distribution of protection. Vaccines
with a multiplicative effect are called "leaky" (32),

WC vaccine

Ma/85 Nov"85 Ma/86 N0V86 Ma/87 Nov-87 Ma/88 N0V88 Ma/89 Nov-89

time

BS-WC vaccine

Ma/85 Nov-85 Ma/86 N0V86 Ma/87 No/87 Ma/88 N0V88 Ma/89 NovTO

time

FIGURE 1 . Smoothed plots of VE(f) versus /, with 95% confidence
intervals, for the whole killed cell (WC) and B subunit whole killed cell
(BS-WC) vaccines, Matlab, Bangladesh, May 1, 1985, through
November 31,1989. The smoothing was carried out with regression
splines with 4 degrees of freedom. These plots were constructed
controlling for age as a covariate. VE, vaccine efficacy; t, time. From
Durham et al., Am J Epidemiol 1998; 147:948-59. Reproduced with
permission.

while those conferring complete protection or none at
all are called "all-or-none."

With an all-or-none vaccine, the estimator VEX.CI

does not vary with time, and provides an estimate of
the proportion of the vaccinated completely protected
(8). If VESIR or VES x is

 use(* t o estimate protection of
a vaccine conferring all-or-none protection, the esti-
mates will increase with time. This is due to the people
with no protection becoming infected, so the unin-
fected vaccinated group remaining becomes enriched
with highly protected people. Thus, the VES^ appears
to increase with time. If a proportion of the vaccinated
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group is completely protected, and another portion is
only partially protected, then there are additional vac-
cine efficacy parameters of interest to estimate. These
include a, the proportion of people completely pro-
tected, and 6, the mean reduction in susceptibility in
those individuals still at least partially susceptible. The
summary measure under heterogeneity is VE5SUM =
1 - (1 - a)9.

Longini and Halloran (30) derived a frailty mixture
model for estimating a, 0, and VESSUM when there is
unmeasured heterogeneity in the vaccine effects on the
host's immune response. The model is also applicable if
there is heterogeneity in exposure to infection, though
the interpretation of the estimates is different. The
model falls into the general category of frailty models
(33) employed in survival analysis, but like cure models
(34), allows for a point mass at zero. It also incorporates
the infection process into the baseline hazard rate. The
model includes a continuous family of vaccine effect
distributions ranging between the two extremes of leaky
and all-or-none effects (28). The model also can be used
for individual time-to-event data (35). Longini and
Halloran (30) applied the methods to estimate the VES

of measles vaccine in children from an observational
study of a measles outbreak in Muyinga, Burundi. They
estimated that a proportion a = 0.80 of the vaccinated
children were fully protected (95 percent confidence
interval: 0.69,0.92), but the 20 percent without full pro-
tection had a higher hazard of measles illness than did
the unvaccinated children. This lead to an estimated
summary VE5SUM of only 0.46 (95 percent confidence
interval: 0.32, 0.67). The frailty model was shown to
provide an adequate fit to the measles data as indicated
by a nonsignificant chi-square goodness-of-fit statistic.
This validated the use of the frailty model for estimating
measles vaccine efficacy in this setting.

Halloran et al. (31) explored the potential use of the
above-described frailty mixture model for the estima-
tion of VE5 over the parameter space that covers the
possibilities of most vaccine studies. They showed that
the parameters are identifiable under reasonable field
conditions as long as there is not too much right cen-
soring. Most importantly, they showed that the con-
ventional VE5 estimators, i.e., proportional hazards
and cumulative incidence, can be considerably biased
when unmeasured heterogeneity is present. This bias is
removed when the correct frailty mixture model is
used.

A general strategy for estimating VESi

We present a general strategy for estimating VEsx(t)
from time-to-event or incidence data. The first step is
to conduct diagnostics. Then, with the help of the diag-
nostics, we find the best estimator of the VE5.

Diagnostics. We begin by constructing log-minus-
log plots of the Kaplan-Meier or actuarial estimates of
the survival curves for the unvaccinated and vacci-
nated groups, such as those in figure 2a (31). These
plots provide information about whether the vaccine
effect is leaky, all-or-none, or a mixture. In addition,
they provide some information about whether vaccine
induced protection is waning. If the curves are parallel,
then the effect is mostly leaky (multiplicative), and we
should model the vaccine effect with a proportional
hazards model. Any divergence from parallelism indi-
cates time-varying effects and the presence of some
form of heterogeneity and/or waning protection. In this
case, a model other than the proportional hazards
model is needed. If the curves tend to diverge, then
there is all-or-none effect, and if they tend to converge,
then the model still may be leaky, but with an unmea-
sured random effect (heterogeneity). Convergence
could also indicate waning protection. Although con-
struction of log-minus-log plots is an important first
diagnostic step, they are sometimes difficult to inter-
pret (30). If there are a sufficient number of events, a
more informative plot is a smoothed hazard ratio plot
of VEsx{t) = 1 ~~ ^i(?)/A^(f) as described above.
The possible patterns associated with different vaccine
effects are shown in figure 2b (31). A line with zero
slope indicates a purely leaky or multiplicative effect.
The researcher can construct a formal hypothesis test
for zero slope (20, 24, 25).

Estimation. If there is no evidence of time-varying
effects from the diagnostics, then the VES PH = 1 - (r
can be estimated by fitting a proportional hazards
model. If there is evidence of time-varying effects,
then the investigator should fit the full family of frailty
mixture models. If these models provide an adequate
fit to the data, then the estimated parameters may be,
but are not necessarily, the appropriate measures of the
VES. If there is evidence of waning or other time-
varying effects not attributable to unmeasured hetero-
geneity, then the nonparametric estimate of VEs(f)
itself will provide the best estimate. In this case, it may
be possible to construct a time-dependent parametric
model of the VEs(r) that would provide tighter confi-
dence intervals than the nonparametric approach.

Interpretation of measures. Which parameter to use
to estimate VES in a particular study depends on the
type and duration of the study, the infectious agent and
its transmission mode, the resources available, and the
assumptions of the distribution of protection within the
vaccinated group. Given the above discussion, there
are clear limits on the interpretability and generaliz-
ability of estimates of VES. Even if time-dependent
effects are detected, knowledge of the underlying biol-
ogy will need to be used to interpret the effects and to
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FIGURE 2. a, Diagnostic natural log In (-In Sy{t) survival plots checking the proportional hazards assumption for a vaccine conferring homo-
geneous partial protection, an all-or-none vaccine, and a mixed degenerate vaccine model compared with the unvaccinated group, b, different
possible 1 - hazard ratio shapes over time. Plots of 1 - hazard ratios for homogeneous partial protection (6 = 0.5), the all-or-none vaccine (a,
= 0.5), and the mixed degenerate model (6 = 0.75, a, = 0.33). VESUM = 0.5 at time t0 = 0 in these three cases. VE, vaccine efficacy; SUM, sum-
mary. From Halloran et al., Am J Epidemiol 1996;144:83-97. Reproduced with permission.

help choose between actual waning, boosting, or hetero-
geneities. Most vaccine trials nowadays collect data on
immune response, some using a data structure of longi-
tudinal data and repeated measures. This information
can be used to help estimate and interpret vaccine
effects. Also, measuring actual or potential exposure to
infection in individuals will help identify heterogeneities
in exposure to infection. Some trials of vaccines for
vector-borne diseases have entomologic data. These
help in quantifying potential exposure to infection.

That randomization does not control for confound-
ing of estimates has been discussed by several authors
in the noninfectious disease setting (36-41).
Struchiner and Halloran (42) show that these results
hold as well in randomized vaccine trials, but a new
dimension is added when the possibly omitted covari-
ate is exposure to infection, as is the case when going
from VE5p based on the transmission probability to
VES based on the unconditional estimators.
Differences in transmission intensity, previous expo-
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sure to infection, and preexisting partial immunity and
heterogeneities across communities result in different
VES estimates, even when the actual biologic action
of the vaccine is the same conditional on these factors.
Reporting of any estimate of VES should include the
general elements of the study design, for instance
whether the estimate is based on events-per-person
time, the transmission probability, or final value data.
It should also include indications concerning hetero-
geneities or time-dependence of efficacy. However,
Struchiner et al. (7) demonstrate that the complex
biology and possibly nonlinear relation between the
biologic mechanism of action of vaccine and the mea-
sured outcome make it important to interpret the esti-
mates with caution. Reviews of pertussis vaccine
trials in different populations using different estima-
tors consider some of these issues (13, 43).

In addition, systems of causal inference that define
causal effects in terms of potential outcomes (44, 45),
that is the potential outcome if a person receives a cer-
tain treatment, say a vaccine, compared with if the per-
son received another treatment, such as a placebo or
other vaccine, generally assume that the outcomes in
any individual are independent of the treatment assign-
ment of other individuals. It is obvious that this
assumption does not hold in most infectious diseases
due to the dependent happenings (1). Halloran and
Struchiner (46) discuss several of the open questions
of causal inference in relation to vaccine studies.

Additional concerns. The definition of a case in a
vaccine study is important. The sensitivity and speci-
ficity of the case definition can be crucial in determin-
ing the magnitude of the efficacy or effectiveness esti-
mate. Often several case definitions are used in the
analysis to explore how changing the case definition
alters the estimates of vaccine effect.

It is possible that there are several wild-type strains
of a parasite circulating in the host population. The
vaccine under investigation may contain just one anti-
genic variant, or it may contain a cocktail of the sev-
eral variants, but still not have all the wild-type vari-
ants. As molecular epidemiology and immune
diagnostic measures improve, strain-specific estimates
of VES and VE, will be in increasing demand. Gilbert
et al. (47) discuss statistical methods for inferring how
VES may vary with viral type when several wild-type
strains might be circulating in a vaccine study. The
methods are presented for final value data, that is level
IV, with the further additional information on each
infection of what strain of wild-type parasite caused
the infection. Additional considerations including
adjusting for covariates, multiple events, and complex
outcomes, such as malaria in which morbidity is very
complex, go beyond the scope of this review.

EFFECT ON PROGRESSION, VEp

As discussed above, the protection conferred by a
vaccine if a vaccinated person does become infected is
of interest. A vaccine could alter post-infection disease
in several possible ways. The outcome of interest
could be the probability of developing disease or of
death in some specified time interval after becoming
infected, the rate of progression to disease after infec-
tion, or the severity of illness after becoming infected.
Evaluation of the effect of prophylactic vaccination on
disease progression, VE/,, requires comparison of mor-
bidity or mortality in vaccinated people who have
become infected with that in infected unvaccinated
people. Thus, infection status must be determined sep-
arately from disease status. If VEP were evaluated by
the relative rate of progression to disease, then obser-
vation of the infected individuals over time would be
required. If VE/. is based on relative morbidity, then
appropriate definitions of morbidity levels would be
necessary. Similar to the VES measures discussed
above, VE/, would be estimated by one minus the cor-
responding ratio in the vaccinated compared with the
unvaccinated, including in the calculation only those
people who had become infected.

VACCINE EFFECT ON INFECTIOUSNESS, VE,

The efficacy of a vaccine in reducing infectiousness,
VE7, can be estimated epidemiologically by comparing
the per-contact transmission probability from vacci-
nated people who become infected with the transmis-
sion probability from unvaccinated people who
become infected. The relative risk comparison groups
are defined according to the vaccination status of the
infectious person contacting the susceptible person
(46). In table 1, the VE, estimate is shown in the sec-
ond column of the top row of conditional parameters.
For completeness, the third column contains the esti-
mate of combined effect of the vaccine in reducing the
transmission probability if both the infectious person
and the susceptible person in the contact are vacci-
nated, (VEr). If we assume that the vaccine has a mul-
tiplicative effect in reducing the transmission probabil-
ity from a vaccinated infectious person to an
unvaccinated person, then the efficacy for infectious-
ness is VE/ = 1 — <{). In contrast to VE5, which can be
estimated using either conditional or unconditional
parameters, the VE/ can generally be estimated using
only conditional measures such as the transmission
probability or secondary attack rate (46, 48-50). By
making strong modeling assumptions, Longini et al.
(51) suggest a method for estimating the effect of the
vaccine on infectiousness using grouped time-to-event
data from studies in multiple populations.
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Studies for estimating VE, can be incorporated into
those for estimating VE5p based on the transmission
probability, if the vaccination status of the infectious
person in a contact is known. The analysis can then
simply stratify on the vaccination status of both the
infectious and susceptible persons in the contact to get
estimates of VE5, VE,, and VEr. In the case of the
binomial model, the likelihood can simply be con-
structed from the different contributions of each con-
tact, where the parameters 6 for relative susceptibility
and § for relative infectiousness are built directly into
the likelihood (49, 52). In this case, it is simplest to
assume that the effect on infectiousness and suscepti-
bility are multiplicative and independent, so that/?n, =

Estimating VES and VE, from multilevel
information

In some vaccine studies, there may be information
on contacts within transmission units such as house-
holds or sexual partnerships, but the individuals may
also be exposed to infection outside of the transmis-
sion unit. Such an example is the pertussis study by
Kendrick and Eldering (14) mentioned above. It may
also be that some individuals in a study are not mem-
bers of clearly defined transmission units. In these
cases, it is possible to develop a statistical model to
express both the within household transmission proba-
bility and the probability of being infected from the
community at large (53). Rather than presenting two
separate analyses for conditional and unconditional
estimates, the probability model includes the probabil-
ity of being infected within the transmission unit from
contact with an infective and the probability of being
infected outside the unit. In essence, then, the model
combines elements of level I conditional parameters
with elements of levels II, III, or IV unconditional
parameters. People who are members of transmission
units can contribute information to estimation of both
VE5 and VE,, while people who are not in transmission
units and on whom no contact information is available
contribute only to estimation of VE5.

Augmented vaccine trial design. It is possible to
design studies prospectively that intentionally make
use of multilevel information in estimating vaccine
efficacy. One such design is the augmented trial
design (49, 52). For example, the trial may initially
recruit and randomize individuals by some usual eli-
gibility criteria. Then the trial can be augmented by
including information on contacts and transmission
units such as households or partnerships of the pri-
mary trial participants. This is one method to preserve
the individual level analysis and randomization that
some investigators think is important in randomized

controlled trials. The primary analysis can still be
focused on estimating VE5, although estimation of
VE/ is also possible.

Using validation sets in vaccine studies. Collecting
information on contacts between infectives and sus-
ceptibles, though necessary for estimating VE, and
useful for estimating VE5, is difficult, expensive, and
inherently prone to mismeasurement. An area of cur-
rent research is the possible use of validation sets for
exposure to infection to improve estimation of vaccine
efficacy (54-56). For example, it might be possible to
get good contact information on a small subset of
study participants, but only a coarse estimate on every-
one else as well as the validation set. Then using meth-
ods developed for missing data (57) and two-phase
sampling designs (58-62), it is possible to decrease
bias and increase efficiency by combining the different
levels of information.

Efficacy estimates are seriously attenuated when
the diagnosis of a particular disease is not culture-
confirmed but based on a nonspecific case definition.
For example, if the case definition in an efficacy
study of an influenza vaccine is fever and coughing,
then the efficacy estimates could be much lower than
the efficacy estimates based on culture-confirmed
influenza. We are exploring the use of validation sets
for outcomes in vaccine efficacy and effectiveness
studies. In these designs, the diagnosis of the disease
of interest would be confirmed by a specific test in a
selected group of the study population. Statistical
methods for combining validation sets with the larger
main study in which the diagnosis is less specific
would be used to obtain efficient, unbiased estimates
of vaccine efficacy or effectiveness.

Sample size calculations. Sample size calculations
should be based on the analysis method that is going
to be used. For example, if the analysis is going to be
based on a Cox proportional hazards model with
covariates, then the sample size calculation should be
based on that model, not on a model using final value
data. Sample size calculations are frought with uncer-
tainty. Even if baseline transmission intensities are
measured, these may change abruptly during the trial.
It is better to be generous in estimating the number of
people required in the study. Precise estimation of
both VE, and VE/> require larger samples than esti-
mates of VES because they both are measured on peo-
ple who have already become infected, which might
be a small fraction of the participants. If more com-
plex effects such as waning, frailty models, or VE,
are to be estimated, it is good to simulate the pro-
posed vaccine study to examine what numbers of par-
ticipants are required to produce the precision
desired.
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CONTACT RATES AND EXPOSURE EFFICACY

Vaccinated people may alter their contact and expo-
sure to infection patterns if they believe the vaccine is
protective. Exposure or behavior efficacy is the relative
increase or decrease in the relative risk of infection or
disease due to the change in exposure to the infectious
agent (54). For example, if we consider the components
of the hazard rate as discussed above, changes in expo-
sure to the infectious agent can occur in the rate of con-
tacts, in the prevalence of infection in the contact
groups, or in the transmission probability through
changing the type of contact. In nonrandomized or
observational studies, the vaccinated and unvaccinated
groups often differ in their exposure to infection, result-
ing in biased estimates of VE5. Although VE5 estimates
based on the transmission probability require more
information than those based on the unconditional
parameters, they are less sensitive to bias from unequal
exposure to infection in the two groups. The overall
effect of biologic protection and change in exposure to
infection might be of interest for understanding the
public health consequences of vaccination. Study
designs need to be explicit about differentiating factors
related to susceptibility, such as vaccination status, and
factors related to exposure to infection.

INDIRECT, TOTAL, AND OVERALL
EFFECTIVENESS

Interest in evaluating the indirect and overall effects
of vaccination strategies as part of phase III as well as

POPULATION A POPULATION B

DESIGN m
overall

A

DESIGN!
direct

DESIGN Ha
indirect

DESIGN l ib
direct + indirect

FIGURE 3. Study designs for dependent happenings. Types of
effects of interventions against infectious disease, and different
study designs based on comparison populations for their evalua-
tions. From Halloran and Struchiner, Epidemiology 1991;2:331-8.
Reproduced with permission.

post-licensure is increasing (63, 64). Struchiner et al.
(5) and Halloran and Struchiner (15) define study
designs for dependent happenings that allow evalua-
tion of the indirect and overall effects of vaccination
(figure 3). Since the population-level effects of a vac-
cine are defined within the context of a particular inter-
vention program, or allocation of vaccination, the unit
of inference is the population, and several populations
or communities should be included in the study.

Defining the intervention program or allocation of
interest and what the comparison program or alloca-
tion of interest is can be complicated. The comparison
or control populations might have no vaccination at
all. The controls may be the same populations that
receive the vaccination, but before the vaccination pro-
gram started. In table 1 and figure 3, the different type
of population level effects are considered on the sim-
ple example that no vaccination has taken place in
population B, and a proportion of people are vacci-
nated in population A. The indirect effects of the vac-
cine given a specific allocation of vaccination is then
the comparison of the incidence or other outcome of
interest in the unvaccinated people in community A
compared with the unvaccinated people in the unvac-
cinated community B. These comparisons are called
designs type IIA. The indirect effectiveness measures
are designated VEIIA. The total effects of the combina-
tion of being vaccinated and the allocation is the out-
come in the vaccinated people in the communities A
compared with that of the unvaccinated people in the
unvaccinated communities B. These comparisons are
called designs type IIB, and the total effectiveness
measures are designated VEIIB. The overall effective-
ness of the vaccine and allocation compare the average
outcomes in the vaccinated communities with those of
the unvaccinated communities. These comparisons are
called designs type III, and the overall effectiveness
measures are designated VEni. Table 1 contains exam-
ples of the VEnA, VEUB, and VEm based on the usual
unconditional measures incidence rate, hazard rate,
and cumulative incidence. Many other measures could
be used, including average age of infection or the basic
reproductive number, RQ.

It is important in choosing the communities or pop-
ulations to assure that they are separated as much as
possible in every way that is relevant for transmission.
If the populations are not transmission dynamically
separated, then the indirect effects of the programs will
not actually differ among the groups, and the study
will yield an attenuated estimate of the potential effect
of intervention. Transmission patterns can differ
greatly among communities. The variability could
mask the effects of vaccination. Matching by transmis-
sion characteristics is an option to consider (65).
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Exactly what the intervention program of interest is
will depend on the vaccine and which subgroups suf-
fer the greatest morbidity. The comparisons may be
made between different levels of vaccination cover-
age, between allocation within different age groups or
otherwise defined subgroups. For example, the inter-
vention of interest may be vaccination of school-age
children against influenza, with the primary outcome
of interest the reduction in influenza incidence in
unvaccinated adults. That is, the primary goal of the
study might be to evaluate the pure indirect effects in
unvaccinated adults. The comparison of interest would
be between unvaccinated adults in populations in
which children were not vaccinated and unvaccinated
adults in populations with vaccinated children. If the
risk measure used was cumulative incidence, then the
measure would be VEIIACI in unvaccinated adults.
Another outcome of interest might be the overall
reduction of cumulative incidence in one influenza
season in school-age children, VEincI, the indirect
effects in unvaccinated children of vaccinating a por-
tion of the children, VEIIA CI, or the total effects in the
vaccinated children, VEtIB CI, all compared with unvac-
cinated children in the unvaccinated populations.

Example

Monto et al. (66) estimated both the protective effi-
cacy, VES, and the overall effect, VEni, of an
influenza vaccination program. They vaccinated 85
percent of the school-age children in Tecumseh,
Michigan, against Hong Kong influenza just before
the epidemic in 1968. The 10-week epidemic period
was from November 17, 1968, to January 26, 1969.
The weekly mean influenza illness rates in vaccinated
and unvaccinated children were 0.072 and 0.090,
respectively. This yields an approximate estimate of

0.072
VE5 jR ~ 1 = 0.20, which is rather low. The

overall influenza illness cumulative incidence in
Tecumseh for the epidemic period was 0.14, while the
adjusted overall influenza cumulative incidence in
unvaccinated, neighboring Adrian, Michigan, was 0.42
for the same period. Using the methods of study design
III, the overall effectiveness of vaccinating 85 percent
of Tecumseh's school children is estimated to be
VEUIjCI~ 1 - 0.14/0.42 = 0.67.

When designing a population-level study, it is nec-
essary to give some thought to the likely transmission
patterns and sources of exposure to infection in a pop-
ulation. These transmission patterns will greatly influ-
ence the magnitude of the indirect effects. For
instance, if one is interested in evaluating the indirect
effects in preschool children of pneumococcal vacci-

nation, one may decide to vaccinate a large fraction of
preschool children in several populations and compare
it with incidence in preschool children in unvaccinated
populations. However, if a large amount of the source
of exposure to infection is from older children who are
not included in the study, then the indirect effects of
vaccination could be quite low. Vaccination of the
older children as well may be necessary to have mea-
surable indirect effects.

Because of the great variability among communities,
precise definition of the actual intervention of interest
will usually be difficult. When designing a study that
includes several populations, the definition of the
entire allocation and its implementation play an impor-
tant role in the interpretability of the outcome. There
will be limits in the interpretability and general applic-
ability of the results to other settings.

Comparisons across communities would also allow
study of other biologic questions. For example, vac-
cines might contain only particular serotypes or strains
of an organism. Widespread vaccination could allow
the expansion of nonvaccine serotypes that had been
less important before vaccination (67, 68) or put evo-
lutionary pressure on the existing strains. Comparison
across populations or before and after introduction of
vaccination would be the method to evaluate such
changes.

Many issues related to the design and interpretation
of studies to evaluate indirect and overall effects are
active areas of research and go beyond the scope of
this review. Community trials fall into the category of
cluster or group randomized trials where whole social
units, rather than independent individuals are ran-
domly assigned to treatment groups (65, 69-73). The
analysis and sample size calculations need to take the
clustering and possible group randomization into
account. Unmeasured heterogeneity may be dealt with
using random effects models in the analysis phase,
although such models for use in the dependent hap-
penings setting have not yet been fully developed.
Other approaches for examining population level
effects include time series and population dynamic
models.

Comparison with prevented fractions in noninfec-
tious diseases

The unconditional vaccine effect parameters are
analogous to the family of prevented fraction parame-
ters discussed by Greenland and Robins (74, 75), with
some essential differences. In their work, the prevented
fraction in the group with a risk factor is estimated by
comparing the cumulative incidence in the individuals
with a risk factor to cumulative incidence in individu-
als without the risk factor in a study design similar to
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study design I with level IV information. The group
without the risk factor is supposed to represent what
would have happened to the group with the risk factor
had it not had the risk factor. The number of prevented
cases in the group with the risk factor can be estimated
from the prevented fraction based on the cumulative
incidence if it is known how many people had the risk
factor. Under dependent happenings, however, in study
design I, say in population A, the number of cases in the
unvaccinated individuals does not represent the number
of cases that would have occurred in the unvaccinated
individuals had the vaccination program not taken
place. If vaccination is widespread enough, the cumu-
lative incidence in the unvaccinated group will usually
be lower in the presence of the vaccination program
than if no one had been vaccinated. Thus, the estimated
number of cases prevented generally will underesti-
mate the actual number of cases prevented in the vacci-
nated group if calculated using methods for noninfec-
tious diseases as in study design I. The comparison
needs to be made between the cumulative incidence in
the vaccinated group and what the cumulative inci-
dence would have been in the unvaccinated group if no
vaccination program had taken place, as in study design
IIB. A similar argument applies to estimation of the pre-
vented hazard fraction.

Multiple questions within a study

Conducting a trial to evaluate effectiveness across
several different populations or communities does not
preclude evaluating VES or VE, of vaccination within
the populations. A phase lH vaccine trial can be
designed to answer several questions at the same time.
Randomization within a population can be used to
answer efficacy questions, while comparison across
populations can be used to evaluate the indirect and
overall effects of vaccination. Consider a study of vac-
cination in several populations to measure the indirect,
total, and overall effects of vaccination with different
levels of coverage in each population. Within each
population, a comparison can be made of the relevant
vaccinated and unvaccinated portions of the popula-
tion to estimate VEIIA, VEIIB and VEm. If information
is gathered within the populations on actual contacts,
then the effect of the vaccine on infectiousness as well
as susceptibility could be evaluated. The most impor-
tant consideration in designing a vaccine study is to be
clear about the effect(s) or question(s) of interest, and
the level of information that can be gathered. Then the
parameters of interest and the choice of comparison
populations should be chosen to provide the effect
measures of interest. There is a tradeoff in designing
studies to measure both direct and indirect effects of

vaccination between vaccinating high numbers of peo-
ple so that indirect effects are high, and vaccinating too
many people so that the number of events in the vacci-
nated populations is too low to estimate VE5 or VE,
well (51). Combining estimates of VE5 and VE, across
populations is not necessarily straightforward (42) due
to lack of exchangeability (76).

SAFETY

The Food and Drug Administration in the United
States is putting more emphasis on evaluating rare
adverse events related to the vaccine during phase III
trials. Generally, evaluation of rare adverse events has
taken place after licensure when large numbers of peo-
ple are vaccinated. After licensure, most studies will not
be randomized, however, creating challenges for the
design and interpretation of such studies. Although this
brief section cannot do justice to the problem of safety
evaluation, we include it as a reminder that safety eval-
uation belongs to all phases of vaccine studies.

An example of an adverse event is the possible asso-
ciation between inactivated influenza vaccine and
Guillian-Barre syndrome. Since there may be a back-
ground level of such events that are not vaccine
related, the rate of adverse events in the vaccinated is
compared with that in the unvaccinated. If we let these
adverse event rates be rx and r0 in the vaccinated and
unvaccinated, respectively, then the null hypothesis
that the adverse events are not associated with the vac-
cine is HQ : /-, < r0. We have the inequality in the null
hypothesis since we will suspect that the vaccine is
associated with the adverse events only if the adverse
event rate is greater in the vaccinated. Usually the total
number of adverse events is small, thus the event rate
is assumed to follow a Poisson distribution. A good
strategy for carrying out the above test is to condition
on the total number of adverse events in both groups,
and then construct the uniformly most powerful unbi-
ased test based on the resulting binomial model (77). If
the number of vaccinated and unvaccinated people at
risk is reasonably small, then Fisher's exact test is
used. For a large number of vaccinated and unvacci-
nated people, the binomial approximation is used.
Several further approximations for large samples are
also available (78).

In a randomized, double-blinded, phase EH vaccine
trial, the unvaccinated group consists of people who
get placebo or some other vaccine. However, for
unblinded trials, such as large community trials or
post-licensure phase IV trials and surveillance, the
comparison group must be carefully selected from
among unvaccinated comparable people. These types
of studies provide an excellent opportunity for adverse
events analysis since large numbers of people are vac-
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cinated, but issues concerning comparability must be
addressed (79, 80).

SUMMARY

There are many different effects to consider when
evaluating vaccines in the field. In this review, we
have covered some of the various measures and issues
related to study design and interpretation of the differ-
ent measures. We emphasize that in designing and
understanding vaccine studies, it is necessary to be
specific about what the effect of interest is and about
the assumptions underlying the interpretation of the
results. Halloran et al. (81) present design, analysis,
and interpretation of vaccine studies in more detail.
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