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Overview of Study Design

M. ELIZABETH HALLORAN

Concepts of study design in infecrious dis-
ease epidemiology have much in common
with those in noninfecrious disease epidemi-
ology. However, the presence of the infec-
tious agent, separate from but interacting
with the human host popnlation, introduces
further complexities. Whether a person be-
comes infected depends on who else in the
population is already infected and infec-
ticus. Alternatively it may depend on envi-
ronmental sources of infecrion. Sir Ronald
Ross (Ross 1216) coined the term “depend-
ent happenings” ro deseribe the characteris-
tic of contagious diseases that the number of
people becoming newly infected depends on
how many are already infected. The trans-
mission of the infecrious agent and depend-
ent happenings produce the special aspects
of study designs in infectious diseases.

Infectious disease epidemiology encom-
passes the study of diverse scientific ques-
tions:

o Is a disease commumicabler Whar infec-
tious organism is causing a disease? What
is the mode of transmission? How effec-
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tively is the infections agent transmitted?
What are the contact patterns and patterns
of spread within the host population?
What is the gource ar reservoir of a point
source epidemic?

Whar is the natural bistory of infecrion in
individuals? What is the latent period,
and the duration and degree of infectious-
ness? Whar is the probability of becoming
symptomatic? What is the incubation pe-
riod from acquisition of infection to symp-
toms? What is the duration of symptoms?
What is the probability of dying?

What are the population biology, epide-
miology, and dynamics of the infectious
agent and any vecror? Is the microbe en-
demic or epidemic? Is an epidemic oceur-
ring? Is a disease reemerging? Whar is the
age distribution of infection and disease in
the host popularion? Are there important
temporal and spatial aspecrs of the agent
and any vectors? How diverse are genetic
variants of the microbe? [s the microbe de-
veloping drug resistance or evolving owing
te some other pressure? Does transmission
inrensity influence microbial diversity?
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& Whart are the effects of covariates or inter-
ventions on infection, disease, and infec-
tiousness? Whar facilitates infection (risk
factors for exposure and suscepribility)?
What facilitates disease progression (risk
factors)? How can infection and disease
be prevented? Whar is the effect of inter-
vention at the individual level and ar the
population or communiry level?

The choice of study design needs to be tai-
lored to the question being asked, Several of
the questions listed above are concerned
with the eriology and natural history of the
infectious agent. The Henle-Koch postu-
lates for evidence that an organism causes a
disease are useful (Evans 1976). New tech-
niques in molecular epidemiclogy permit
more accurate tracking of transmission
(Glynn et al. 1999, Small et al. 1994), stud-
jes of the natural history of the disease, and
study of the evolution of microbes (Lipsitch
1997) than before. Several of the questions
concern the study of the dynamics and in-
teraction of the host population with the in-
fecrious agent population (see Chapter 4).

In this chapter, we focus on the dependent
happening relation and its consequences for
design and interprevation of studies in infec-
tious disease epidemiology. For coherence of
presentation, we also present some defini-
tions and concepts from general epidemiol-
ogy. In the nexr section, we present measures
of disease frequency, with a focus on the
trangmission probability. We give a formal
expression for the dependent happening ex-
pression and show its usefulness. In the third
section, we present measures of cansal ef-
fects and association, with a focus on the
transmission probability ratio, and the indi-
rect, total, and overall effects of interventions
in populations. We demonstrate the differ-
ence between causal effects and association
using a formal model for causal inference,
We also show how the formal dependent
happening relation can aid in interpreting
risk ratios. In the fourth section, we present
cohorr study designs, focusing on those ap-
propriate for estimating the transmission
probability and the secondary attack rate.
The contexr is developed asan expanded ap-

proach to cohort studies. We also discuss
case-control studies. In the fifth section, we
consider cross-sectional and community-
level studies. In the last section, we touch on
aspects of estimation and inference.

MEASURES OF DISEASE FREQUENCY

In this section we define several common
measures of disease frequency. Specific to in-
fectious disease epidemiology are the trans-
mission probability, the secondary attack
rate, and the basic reproductive number.
Common to all fields of epidemiology are
the incidence rare, hazard rate, incidence
proportion, and prevalence. Berause of the
phenomenon of dependent happenings in
infectious diseases, the common measures
of disease frequency have additional intrin-
sic relarions to one another through the un-
derlying transmission process. We give a for-
mal definition of the dependent happening
relation as a function of the measures of dis-
ease frequency. We discuss how this relation
contribures to the design and interpretation
of infectious disease studies.

Transmission Probability and Secondary
Attack Rate

In Chapter 4, we defined the transmission
probability, p, as the probability that, given
a conract berween an infective source and a
susceptible host, successful transfer of the
microbe will oecur so thar the susceptible
host becomes infected. The transmission
probability in a population is

o= 4,

where 7 is the toral number of contacts
made between susceptibles and infecrives in
a population, and A is the number of infec-
tions that occur during those contacrs. The
transmission probability depends on char-
acteristics of the infective source, the mi-
crobe, the susceptible host, and the type of
contact.

The secondary attack rate (SAR) is a spe-
cial case of the transmission probability. The
secondary atrack rate is the expected pro-
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portion of susceptibles who become infecred
when exposed to an infectious person. In the
secondary attack rate, the contact between
the infectious susceptible persons may be
defined a5 occurring over some time period,
such as the durarion of infectiousness or
over the period of the study. For example,
the bousebold SAR is the probability that a
susceptible individual living in the same
household with an infectious person during
his or her pericd of infectiousness will be-
come infected (Fine et al. 1988, Orenstein
et al. 1988). The secondary atrack rate is
defined

SAR =

?

El=

where M is the total number of susceptible
exposed persons and A is the number of per-
sons exposed who develop disease. The SAR
is a proportion, not a true rate.

Both the transmisston probability and sec-
ondary attack rate are defined conditionally
on the susceptibles being exposed to infec-
tion. Being conditional on exposure to in-
fecrion distinguishes the transmission prob-
ability and secondary attack rate from the
general meagures of disease frequency such
as incidence rate, hazard rate, and incidence
proportion presented below,

The probability, p, of becoming infected
given a contact with a source of unknown
infection status is relared 1o the ransmission
probability p, but it is not strictly a transmis-
sion probability. It is an infection probabili-
t¥. Under random mixing, the probability of
becoming infected from a contact with a
source of unknown infection status is p = pF,
where P is the prevalence of infectious
people in the population of contacts,

Incidence rate and hazard rate

The incidence rate, I, of an event in a popu-
larion is the rate at which the event occurs
per unit of persop-time ar risk. The inci-
dence rate is

=4
I—T,

where A is the number of cases observed
during a total of T units of person-time at
risk. Incidence that varies over time we de-
note at rime ¢ by I(#). If the incidence rate
changes in a time interval but is estimated as
an average over that inferval, the estimate
will not reflect the fluctuations that occur
within the interval. The hazard rate is the in-
stantaneous probability of an evenr occur-
ring in a small interval of time. The hazard
rate at time ¢ is denoted by (). The hazard
rate and incidence rate are defined some-
whart differently, but both are measures of
the probability of an event in an individual
in a small unit of time ar risk. The term force
of infection is used in infectious disease epi-
demiology to denote either the hazard rate
or the incidence rate of infection. The inci-
dence rate in infectious diseases can vary
rapidly, such as during an epidemic or due to
seasonality of the vector population. The
rapid changes in incidence rates are a source
of some of the challenges of infections dig-
eage epidemiology.

Incidence proportion

The incidence proportion, R, is the number
of people who experience an event in a
closed group of susceptible people over the
course of study. The incidence proportion is
expressed

=4
R-N,

where N is the number of people in the pop-
ulation and A is the number of people who
experience the event. We can be explicit that
the incidence proportion is measured over
a rime interval (0,T) by writing R{T). In in-
fectious disease epidemiology, the incidence
proportion is ofren called the atrack rate
{AR). The infection attack rate or incidence
proportion is the proportion of the popula-
tion who become infected. The dizease ar-
tack rate or incidence proportion is the pro-
portion who develop disease,

The mirror image of the incidence pro-
potrion is the survival probability, the prob-
abiliry of not experiencing an event in a time
interval (0, T). Use of the incidence propor-
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tion in the form given here requires thart the
population be a closed group from the be-
ginning to the end of the study. That is, no
one can leave the population. However, an-
alytic merhods in survival analysis allow es-
timation of the probability of experiencing
an event in the time interval (0, T) even
when some people leave the study.

Prevalence

The prevalence, P, is the proportion of a pop-
ularion that has the disease or outcome of
interest at a given time. Seroprevalence, also
denoted P, is the proporrion of a population
that has a serological marker ara given rime.
An example is the seroprevalence of immuy-
noglobulin G (IgG) against a specific mi-
crobe. Currenc seroprevalence can reflect
either past or current infection, depending
on which immune markers are measured.
We denote prevalence attime t by P(t). Preva-
lence of a disease ox of infectious people can
change rapidly with time, especially during
epidemics or due to seasonality of the mi-
crobe,

Basic Reproductive Number, R,

The basic reproductive number, Ry, of a
microbe in a population is the expected
number of new infecrives produced by one
infective in a large, completely susceprible
population during his or her period of infec-
tiousness. For microparasiric diseases, the
basic reproductive number is expressed as

RO = de,

where ¢ is the number of contaets per unit
time, p is the transmission probability, and
dis the duration of infectiousness. The basic
reproductive number is a measure of the re-
productive capacity of a microbe in a par-
tcular host population. It is discussed in
more derail in Chapter 4.

The Dependent Happening Relation

The key relation in infectious diseases is
the dependence of infection events among
individuals in a population, called depend-
ent happenings. Under random mixing, the

dependent happening relation can be ex-
pressed as

() = epP(2), (1)

where I{z) is the incidence rate, ¢ is the con-
stant contact rare, p is the rransmission
probability, and P(z) is the prevalence of in-
fectious persons at time £ The dependent
happening relation means thar the incidence
rate of infection is dependent on the preva-
lenice of infectious persons. The incidence
rate also depends on the contact process and
contact patterns, as well as the transmission
probability.

The formal expression (1) of the depend-
ent happening relation helps clarify our
thinking about several issues. First, in de-
signing and interpreting studies in infectious
diseases, it'is crucial to distinguish risk fac-
tors or interventions related to exposure to
infection from cthose related to susceptibil-
ity. The dependent happening expression
(1) makes explicit the different components
related to the risk of becoming infected. All
three factors on the right in relation (1) con-
tribute to exposure to infection. If individu-
als increase their rate of contacr, ¢, it could
increase their exposure to infection. The
transmission probability, p, depends on the
degree of infectiousness of the contacr as
well as the type of contact, and so plays a
role in determining the level of exposure to
infecrion. The prevalence of infectious people
in the population P(t) also helps determine
the level of exposure to infection. Behay-
ioral changes aimed at lowering exposure to
infection could be aimed ar reducing the
contact rate, ¢, altering the transmission
probability, p, or reducing the probability
that a person makes contact with someone
who is infectious. The latter would mean
being more selective about with whom ope
makes contacr, with the effect of reducing
the prevalence of infectives P(2) in one’s con-
Tact groups.

Suscepribility of the person at risk to be-
come infected enters into the dependent
happening relarion primarily through the
transmisgion probability, p. Thar is, condi-
tional on actually being exposed to a certain



20 FOUNDATIONS

level of infection, the susceptibility of the
exposed person determines whether the per-
son becomes infected. Althengh in any given
study, the separare components of the de-
pendent happening relation (1) may not be
measured, assumprions about the relation
of the incidence rate to the contaet process,
rransmission probability, and prevalence are
fundamenrtal in designing and interpreting
studies.

Second, the dependent happening relation
(1) applies in epidemic and rapidly changing
situations as well as in stationary situations.
It does not rely on the asgsumption of equi-
librium to be valid. Conrrast this with
another well-known relation from epidemi-
ology that does rely on the assumption of
equilibrium incidence rate and prevalence.
If D is the average duration of disease, and [
is the equilibrium incidence rate of disease,
then prevalence approximately equals the
product of the incidence rate and average
duration (Freasman 1980):

P=ID (2)

Relation (2} holds approximartely for preva-
lence less than 0.10. At higher prevalences,
the left side would be better represented by
the prevalence odds. In Chapter 4 on trans-
mission dynamics, we presented a hypotheti-
cal example of gonorrhea in men and women.
The dependent happening relation (1) in that
example is that incidence of infection in each
gender depends on the prevalence of infec-
tious people in the other gender. This does

- ot require that gonorrhea is at equilibrium

in the population. In contrast, at equilibri-
um, expression (2) says that prevalence of
infection in each gender depends on the in-
cidence and duration in the same gender
The capital D for duration of digease distin-
guishes it from the lower case d for duration
of infecrionsness. The word disease empha-
sizes thar relation (2) is more closely related
to the natural history of disease, whereas the
dependent happening relation (1) is more
closely related to the course of infectious-
ness, as discussed in Chapter 4.

Third, expression (1) not only demon-
strates the relation between the transmission

probability and incidence rate as measures
of disease frequency bur also clarifies their
difference. While the transmission probabil-
ity is defined conditional on exposure to in-
fection, the incidence rate i3 defined as
events per person time. The incidence rate as
well as the incidence proportion rely on the
notion that the people being studied are po-
rentially exposed to infection, but do not re-
quire that any particular individual is actu-
ally exposed. Halloran and Struchiner (1295)
call the transmission probability a condi-
tional measure of disease frequency, while
the incidence proportion, mcidence rate, and
hazard rate are unconditional measures. The
paramerers transmission probability, inei-
dence rate, and incidence proportion form a
hierarchy requiring deereasing amounts of
information abour the rtransmission and
conract processes (Rhodes er al. 1994).

Fourth, the dependent happening relation
for the incidence rare I(#) = cpP(t) can be
contrasted with the expression for the basic
reproductive number, Ry = ¢pd. Both con-
tain the product of the contact rate and the
transmission probability, ¢p, a fundamental
expression of the rransmission process. How-
ever, the incidence rate reflects the point of
view of the susceptible and the probabiliry
of beconing infected per time unir. The basic
reproductive number, R, reflects the point
of view of the infectious host as the number
of people he or she will infect.

Finally, the dependent happening relation
(1) can be used to estimate different quanti-
ties, depending on which components have
been measured. The producr of the conract
rate and the transmission probability equals
the more easily estimable ratio of the inci-
dence rate to the prevalence of infectives,
ep = I{t}/P{t). Thus we do not need to ob-
serve the underlying contact process and
transmission probabilities to obtain some
information abour their product ecp. The
transmission probability can be estimated if
the other three components are measured,
p = I{t)/cP(#). To estimate ¢ separately from
p, however, generally information is needed
about the contact process. That is, ¢ and p
are not separately identifiable from ¢p with-
our information on contaces.

3
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MEASURES OF EFFECT
AND ASSOCIATION

Evaluating interventions and determining
risk factors for infecrion and digease are im-
portant goals of infectious disease epidemi-
ology. Risk differences and risk ratios are
formed from the measures of disease fre-
quency disenssed eatlier. Measures of effect
and association based on the transmission
peobability are specific ro infectious diseases
epidemiology, while those based on the in-
cidence rates or incidence proportion are
common to all fields. Because of the de-
pendent happening relarion, interventions
in infectious diseases can also have impor-
tant indivect effects on individuals not re-
ceiving the Intervention directly. In this sec-
tion, we focus on the measures of effect and
association that are particularly important
for infectious disease epidemiology. We
begin with a discussion of the difference be-
tween causal effects and association.

Cansal Effects Versus Association

Suppose we do a study of condom use and
its relation to the rislk of sexually transmit-
ted infection. We observe that the difference
between the proportion of people who con-
tract a sexually transmitted disease in the
group unsing condoms and the group not
using condoms is 0.4. We can definitely say
we have observed an association berween
condom use and risk of infection, and quan-
tify the association using the observed risk
difference. Can we claim, however, that con-
dom use has a causal effect on reducing risk
of infection compared to no condom use?
No, we cannot gay that condom uge is the
cause of the reducrion in risk withour far-
ther restrictions. To clarify the difference be-
tween association and causal effects, we
turn to a formal structure for defining effecrs
Of CAnses.

The approach for defining the effects of
causes requires that the effect of a cause be
defined relative to another cause. The causes
could be different treatments, preventive in-
terventions, or risk factors. In our example,
the comparison is between condom use and
no condom use. The causal effect of condom

use compared to no condom use by an indi-
vidual is defined as the difference between
whart the infection outcome would be if the
person used condoms and whar it would be
if the person did not use condoms. This ap-
proach to defining causal effects assumes
that an individual has some potential out-
come for each of the various interventions
or rreatments under study, The causal effect
in an individual is the difference between his
or her porenrial outcomes under the two
treatments {Rubin 1978, Holland 19846).

Consider four individuals who are at risk
for a sexually transmitted disease. The po-
tential outcomes of the four individuals are
listed in Table 5—1. For individual 4, let ¥,
and Y, denote the potential infection out-
comes under no condom use and condom
use, respectively. Then, for any individual £,
the individual causal effect of condom nse
versus no condom use 18 Y, — Y. For sub-
ject one in Table 5-1,itis 0 — 1= —1, that
is, condom use prevents infection in subject 1.
For subject 2, the difference in the potential
ourcomes is 1 — 1 = 0. That is, there is no
causal effect of condom use in subject 2. The
person becomes infected in either case.

The fundamental problem of causal infer-
ence is that only one of these porendal out-
comes is abservable in any individual, since
we can observe the individual only either
using condoms or not using condoms. A sta-
tistical approach to solving the fundamental
problem of causal inference is to define the
average causal effect in a population. The
average causal effect, C, in the population is
the average of the individual cansal effecrs.
This, in turn, equals the difference between

Table 5=1 Potenrial Outcomes under
Condom Use or No Condom Use *

Portensial Qurcome*

Condom Use Mo Condom
{(Xml) Use (X=0)
Subject (Y1) (Yo}
1 0 1
2 1 1
3 0 0
4 0 1

#0,1 denate uninfected and infected, respectively,
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the average value of the potential ourcomes
if everyone received one intervention and
the average if everyone received the other in-
tervention. Thus

C = E[Y, — Y] = E[Y,] = E[V,},

where E means the average or expected
value. In Table 51, che average causal ef-
fect of condom use compared to no condom
use as measured by sexmally transmitred in-
fection is (P — 3)/4 = — 0.50.

Of course we still cannot observe the po-
tential outcomes of each individual under
each intervention. What we can observe is
each person’s potential outcome hader the
intervention that he or she actually used.
The potential outcomes that we do not ob-
serve are called counterfactual. We can ob-
serve the difference in the average porenrial
outcomes in the people who actually used a
particular intervention (X = 1) and the av-
erage of the potential outcomes in people
who did not use the intervention (X = 0).
We denote this actual observable difference
as A, and write

A= E[YX = 1] — E[Y,|X = 0],

where E[Y,;|X = 1] is the average of the po-
tential outcomes in people who actually re-
ceived X = 1, and similarly for E[Y,|X = 0].
In the example above, we observed a differ-
ence of 0.4 berween risk of infection ia the
two groups, so A = 0.4 in the example. The
value of A expresses an associarion berween
the intervention and the outcome, but does
this association equal the average causal ef-
fect in the population C? The answer is, not
in general. That is, in general

C = E[Y,] — E[Y,] # E[Y,|X = 1]
— E[Y|X = 0] = 4,

except under certain conditions.

Under two important assumptions, the
observable associarion, A, will equal the av-
erage causal effect in the population C, The
first assumprtion is that the potential our-
comes in one person are independent of the
treatment assignments in the other people.

This allows Table 5-1 to have only two

columns of potential ourcomes for each per-
som, one for each weatment. For instance,
the assumption is that subject 1% condom
use does not affect the potential outcomes of
subject 2. This is sometimes called the non-
interference of units assumption (Cox 1258).
The assumption is obviously violated in many
studies in infecrious diseases.

The second assumption is that the inter-
vention assignment for each individual is in-
dependent of his or her potential outcomes.
An example of an independent assignment
mechanism is randomization. Thart is, under
randomization, we do not assign people
whose potential outcome is infection to use
condoms, while assigning people whose po-
tential ourcome is no infection not to use
condoms. This would obviously bias our
measure of effect. Formally, under random-
ization and the noninterference of unirs, the
causal risk difference equals the observed
risk difference,

C=E[Y;] — E[Y,] = E[Y1|X =1]
—E[Y /X =0]=A.

This statement can be interpreted that in a
large population, if half of the people are
randomly assigned to each of the two wreat-
ments, the difference in the observed aver-
age outcome of the two groups would be the
game as if it had been possible to observe the
entire population under each of the trear-
ments. Assignment mechanisms are usually
not random. That is, people decide for their
own reasons whether they want ro use con-
doms, and it could very well be associated
with their probability of becoming infected.
This is a simple formal argument for using
randomization to estimate causal effects. It
also clarifies the difference between associa-
tion and eansal effects.

Most studies are not randomized. Many
studies are observational, with the investi-
gator having little influence over the events
under study. In many experimental or inter-
vention studies, the Investigator may have
some control over allocation or the inrer-
ventions or covariates of interest, but does
not randomize them. The goal of observa-
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tional and nonrandomized studies may be to
clucidare cansal effects, but since they are
not randomized, the objective is difficulr to
achieve. Under these circumstances, the dif-
ference in the average ourcomes of two
groups could be due to something other
than the measured risk facror or interven-
tion. An estimared association between the
ourcormes of interest and the intervention or
1isk factors of interest could be due 1o un-
measured confounders,

For instance, people who use condoms
may also be very careful about whom they
choose for sex partners. Thus people wha use
condoms may also have a lower exposure to
infection, Although we may observe a four-
fold decrease in sexually transmirted dis-
eases among paople who use condoms com-
pared to those who do nor, the reduction
may have nothing ro do with condom use it-
self. Thus it would be incorrect to conclude
that use of condoms bas a causal effect on re-
ducing sexually transmitted diseases, It would
be correct to say that there is an observed as-
sociation. Causal inference will generally rely
on some unrestable assumptions.

There are many sources of bias in obser-
vational studies. Ascertainmenr or selection
biases result in the actual study population
not being representative of the population
that was targeted ro be studied. Ascertain-
ment bias can be important in infections dis-
ease studies that ascertain transmission units
through an infectious person, such as an in-
dex case. The types of infected persons so as-
certained might nor represent the infected
population. Also, larger transmission units
ina population would tend to be 2scertained
more often than smaller transmission units
because they have more people in them.
Other sources of biases and potential con-
founders are covered in detail in Rothman
and Greenland (1998) as well as many other
texrs.

It is important to measure possible con-
founders in nonrandomized studies to take
them into account in the analysis. However,
it is difficult 1o measure all confounders.
Sensitivity analyses can be used to quantify
potential hidden biases due to unobserved
covariates (Rosenbaum 1995, Rohins et al.

1999). The point of departure for sensirivi-
ty analyses is quite often the paradigm of the
randomized study and causal inference de-
scribed previously. When the goal is to make
causal statements based on observational
studies, sensitivity analyses can provide some
measure of uncertainty abour the bias and
how large the bias would need ta be to swamp
out the observed association. Although ran-
domization helps in interpreting study re-
sults as causal effecrs, it does not cantrol for
all confounding of estimates. The interested
reader can find more on this topic in Green-
land and Robins (1986}, Greenland (1987),
Greenland et al. (1999), Gail (1986, 1988),
and Gail er al. (1984, 1288).

Despite its general usefulness, the potential
outcome approach to causal effects encoun-
ters difficulty when applied ro dependent
happenings, such as in infectious diseases.
The assumprion commonly made when using
the porential outcome paradigm is that the
potential outcomes in any individual are in-
dependent of the treatment assignments in
other individnals. This is not true for many
of the situarions in infecrious diseases.

Suppose a person is vaccinated and does
not become infected, but if he had not been
vaccinated, he would have become infected
and infecred another person. This second
person’s infection ourcome is dependent on
the intervention assignment of rhe first per-
son. Although the assumption that the po-
tential outcome in one person does not de-
pend on the treatmenr agsignment in another
person is not conceptually necessary for this
approach 1o causal inference (Rubin 1974,
Rubin 1990), the problems arising when the
assumption is violated have not been solved.

For example, in Table 5-1, related to po-
tential outcomes for two treatments, the
two columns need to be expanded for each
individual to include all the treatment and
outcome possibilities of people with whoem
be or she may make potentially infectious
contact. However, this is not generally fea-
sible. Quite simply pur, because of the indj-
rect effects in infectious diseases, the popu-
lation causal rate ratio of receiving an
Intervention compared to not receiving the
intervention does not necessarily equal the



94 ' FOUNDATIONS

observed rate ratio. Another option is to
condition on exposure to infection, as in the
transmission probabiliry. This solution runs
into other problems. Studies that challenge
humans with inoculation by the microbe axe
unethical if they pose more than a minimal
risk, so exposure to infection can, in general,
not be randomized. Halloran and Struchiner
(1998) discuss in derail the problem of using
the potential cutcome approach to causalin-
ference in infectious diseases. Although solu-
tions are still being sought for applying the
approach to dependent happenings, the pas-
adigm is increasingly being used to study
causal effects, association, nonadherence,
and confounding. Infectious disease epide-
miologists need to be familiar with irs
strengths and its shorteomings.

Measures of Effect and Association

Commonly, the same ratio and difference
measures are nsed for estimating both causal
effects and associations. Their interpretation
i3 simply different. For simplicity of presen-
tation, we generally use the term effect in the
following discussion. In this section we pres-
ent an overview of many of the commonly
used risk rarios. Table 5-2 contains a sum-
mary of some imporrant relative risk meas-
ures in infections disease epidemiology by
choice of comparison group and level of in-
formarion required. In the top row are rela-
tive risk measures based on the rransmission
probability. These measures are specific to in-
fectious disease epidemiology. They estimate
the relative susceptibility and infectiousness
associated with risk factors or covariates
conditional on exposure to infection. In the
bortom part of the fivst column are the un-
conditional relative risk measures based on.
the incidence rate, hazard rate, and incidence
proportion. These relative risk measures are
not specific to infections disease epidemiol-
ogy. The unconditional relative risk meas-
ures estimare either relative exposure to in-
fection or suscepiibility depending on the
design of the study and assumptions regard-
ing exposure to infection. In the bottom
right portion of the table are measures of
community level relative risk in which the
comnparison groups are transmission dynam-

ically separate populations. They include
the indirect, total, and overall effects of in-
tervention. The indirect effects of inrerven-
tion are important in the dependent hap-
pening situarion.

Trangmission Probability Ratio

The transmission probability ratio, TPR, is
a measure of the relative rigk of transmission
to susceptibles berween different pairs of
risk factors in infectives during a contact.
For any given rype of contact and infectious
agent, we can estimate the effeer of a co-
variate on susceptibility, infectiousness, or
their combination by our choice of compar-
ison pairs in the transmission probability
ratrio. We may want to cormpare the male-ro-
male, male-to-female, fetnale-to-male, and
female-to-female transmission probabilities
of gonorrhea. We may want to kaow how
transmission of influenza between children
compares to that berween adults, or also be-
rween children and adults. We may want to
compare the ability of two types of mosqui-
toes to transmit malaria to humans, The
goal of a study might be to estimare the ef-
feet of vaccination on reducing susceptibili-
ty and infectiousness as measured by the sec-
ondary attack rate, We can also estimate the
transmission probability of differing types
of conracrs, infectious agents, routes of in-
fection, or strains of an infectious agent. For
instance, one clade (i.¢., strain) of HIV may
be more transmissible than another,
Suppose that there are two types of infec-
tives and susceptibles making a specified type
of contact for a given type or strain of mi-
crobe. We denote the two risk levels as 0 and
1. The risk factors might be vaccinated and
unvaccinated, for example. Then there are
four different possible combinations of the
risk factors in the transmission probability.
If the first subseript denotes the infectious
person and the second denotes the suscepti-
ble in the contact, then the four transmission
probabilities are fyg, Po15 Pres Prg- For in-
stance, py, denaotes the transmission proba-
bility of an infecrive with risk factor level 1
to a susceptible with risk factor level 0. The
relative susceptibility as measured by the
transmission probability ratio, TPRg, 1s

[P
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Table 5-2 Various Measures of Relative Risk.

Compariton Groups and Effect

Combined Change
in Susceptibility

Level Parameter Choice Suszeepribility Infectiousness and Infectionsness
A. Parameter conditional on cxposure to infection
1 Treansmission probabilivy, p
Secondary arack rare TP = En, TPR, = Fu TrR. = Fu
(SAR) Poo Pro Poo
B. Parameter not conditional on exposure to infection
Study Disign
I IIA IIB m
Direct Indirect Toral Overall
= Ly Ly Ly Iy
Incidence rare (I] I.Rl = I_ IR.([A = I_ IR[]E = I_ IR][] = I_
A0 w0 B0 )
_ My _ Mg _ Ay _ A
Hazard () HR;= T HRp, = ey HRm = Ao HRy = T
il Proportional hazards (PH) HBEypy, = &b NA NA NA
. - Rai R Ra Ry
v Incidence proportion (R, RE;= 5+ RRy, === RRp =5 RRy=7"
ney prapor {R) 1T Rap 1A~ Ry, B~ Ry, me R,

Attack rates (AR}

Adapted from Helloran et al., Am J Epidemiol 146:788-803, 1997,

The subscripts 0 and 1 deseribe rwo levels of risk. The sobscripes 5, Tand T denote suscepribilicy, infecriousness, and combined of-
fects, respecrively. The Cox proportional hazards estimator is denoted by e®, Time has been amitted from che table for norarional

clagicy.

measured by comparing the transmission
probabilities to susceptibles with different
covariates from infectives. The relative in-
fectiousness, TPR,, of infected people with
the two covariare levels is measured by com-
paring the transmission probakilities from
infectives with different covariate levels to
suscepribles. To measure the combined effect
of the covariates, TPRr, the transmission
probability between people who are both co-
variate level 1 is compared to that between
people in which both are covariate level 0.
The transmission probability ratios are:

relative susceptibility: TPR; = ij—’(lj,
e Py
relative infecripusness: TPR; = By’ (3)
i
P11

and combined effect: TPRy = e

The wansmission probability ratios are in
the top row of Table 5-2. In general, there
could be several levels of covariates, with py
denoting che transmission probabilicy from
an infective with covariarte status i to a sus-
ceprible with covariate status /.

One of the covariates might be considered
a control or baseline value. Table 5-3 pres-
ents an example from a measles vaccine
study of the secondary attack rates from vac-
cinared or unvaccinated index eases to vac-
cinated or unvaccinared susceptibles. Recall
that the secondary attack rate is a special
case of a rransmission probability, so we can
use the SAR, in place of the p;; in the expres-
gions for the transmission probability ratios.
We use the subscripts 0 and 1 to denote un-
vaccinated and vaccinated, respectively. Asg
an example, consider the data in Table 5-3.
The secondary attack rate if both the index
case and the exposed children are unvacei-
nated is SAR, = 0.38. If both are vaccinated,
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Table 5=3 Secondary Atrack Rares by Vaccimation Staus of che
Index Child and the Vaccination Seatus of the Exposed Children in a
Measles Epidemic in Sencgal, 1994-1923

Sceondary Arwack Rare
Vaccinated, Unvaccinated,
Exposed Excpased
Index Case Children Children, All Children
Vaecinared 6/83 (0.07) IN70.18) 2/100 (0.09)
Unvaccinared 41/374 (0.11) 47/124 (0.38) BE/498 (0.18)
Total 471457 (0.10) 50/141 (0.35) 97/598 (0.16)

From Cisse er al. 1992,

SAR,; = 0.07. If we calculate TPR; sepa-
rately for children exposed to unvaccinated
or vaccinated index cases, the estimares are
TPRs=SARqy/SAR,=0.11/0.38 =029 and
TPR;=SAR,,/SAR,=0.07/0.18§=0.39, re-
spectively. Without stratifying on infective
vaccination status, the effect of vaccination
on susceptihility iz estimated as TPER; =
SAR /SAR ;= 0.10/0.35 = 0.29, The dotin
the subscript indicates summation over both
the 0 and the 1 strata. The interpreration is
that the average transmission probability to
vaccinated children is 0.292 that of the trans-
mission probability to unvaccinated chil-
dren. The analogous calculations for the ef-
feet of vaccination on infectiousness are
TPR ;= SARy/§ARy, = 0.07/0.11 = 0.64,
TPR; = SARy; ZSARy, = 0.18/0.38 = 0.47,
and TPR; = SAR ; #5AR, = 0.09/0.18 =
0.50, respectively. The vaccine seems to
have a srronger effect on susceptibility than
on infectiousness. The ratio of the transmis-
sion probability if both the index case and
the exposed children are vaccinated com-
pared to if both are unvaceinated is TPRy =
" SAR,,/SAR,, = 0.07/0.38=0.18.

The corresponding vaccine efficacies
based on the transmission probability ratios
can be calculated from VE; = 1 — TPR;,
VE; =1 — TPR;, and VE; =1 — TPR;
{Halloran et al. 1997). In this case, the aver-
age vaccine efficacy for suscepcbility is
VE; =1—0.29 = (.71, the average vaccine
efficacy for infectionsness is VE; =1 — 0.50
= (.50, and the efficacy if both are vacci-
nated compared to if neither are vaccinated
is VEr=1—0.18 = 0.82.

A slightly different approach to the TPR;
can be used in the binomial models de-
scribed in Chaprer 4. Assume that the effect
of the covariates on infectiousness and sus-
ceptibility are multiplicative on the trans-
mission probability, and thar the two effects
are independent. Denote the relative suscep-
tibility of risk factor level 1 to 0 by 6, so that
TPR; = 8, and the relative infectiousness of
level 1 to 0 by &, so that TPR; = ¢. By the
agsumption that the two effects are inde-
pendent, then TPR; = 8d. Assume that py,
is the baseline transmission probability, de-
noted simply by . The transmission proba-
bility between an infective of covariare sta-
tus w and a susceptible of covariare status v
is writren 8* ¢* p. For example, if both people
in the contact are of covariate status 0, this
reduces simply to § = po. If the infecrious
person has covariate status p = 1 and the
susceptible person has covariate status
v = 0, then the expression reduces to
dp = pyo. A simple extension of the binomi-
al model to inelude covariares is ro insert the
appropriate expression for the transmigsion
probability for each contact observed. The
expression can be solved using numerical
methods for the estimates of p, 8, and & to
obtain the desired TPR;. Other more com-
plex models for estimating transmission
probability ratios are mentioned in the Study
Degigns section.

Incidence and Hazard Rate Ratios

Consider the situation that there is just one
covariare with two levels, denoted by O and 1.
The incidence rate ratio at time ¢ is
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where I (£) and I, (#) are the lncidence rates
inthe two covariate groups. The hazard rate
ratio is A {8/ Ag(2). If the hazard rate ratio in
the two groups is constant over time, the
proportional hazards model is said to hold
(Cox 1972). The proportional hazard ratio
is often denoted eB, where B is the estimated
parameter. In the proportional hazards
model, the baseline hazard rate in the two
groups cancels out and does not need to be
estimated. The incidence rate ratio and haz-
ard rate ratio do not condition on exposure
te infection. They are not specific to infec-
tious diseases. In Table 52 the incidence
rate 1atio and hazard rate ratio are the sec-
ond and third row of paramerers. The fourth
row contains the proportional hazard pa-
rameter, but only under the column for di-
vect effects. Vaceine efficacy estimated by the
incidence rate ratio is VER(t) = 1 — IR{(#).
Vaccine efficacy can also be estimated from
the hazard rate ratio.

Relative Incidence Proportion

Assume again that there is just one covariare
with two levels, denoted by Q and 1. The in-
cidence proportion ratio at time T in a scudy
that goes from time {0, T) is

_Ry(T)
RR(T) = Ry

where Ry (T) and R, (T) are the incidence
ptoportions up to time T in the two covari-
ate groups. The bottom row in Table 5-2

contains the incidence proportion ratio. The-

incldence proportion ratio does not require
information on exposure to infection and is
not specific to infections disease epidemiol-
ogy. It is sometimes called the attack rate
ratio. Vaccine efficacy can be estimated from

VEgg (T) = 1 = RR(T).

Conditional Versus Unconditional Relative
Risks Measures

The relative risk measures require differing
levels of information for their estimation.

The greatest difference is between the con-
ditional paramerers, such as the transmis-
sion probability ratio, and the uncondition-
al paramerters, such as the incidence rate
ratio and the incidence proportion ratio. To
estimate the TPR, information on contacts
between susceptibles and infectives and
knowledge of infection events is generally
required. The transmission probability ra-
tios are specific to infectious diseases. For es-
timartion of the incidence rate ratio, the tirne
at which each event occurs and the time at
potential risk are required. Similar time-to-
event data are needed to estimate the rela-
tive hazard rates. For the incidence propor-
tion ratio, only informarion on whether an
event occurs by the end of the study is re-
quired: Thus the ordering of the rows in
Table 5-2 corresporntds to a hierarchy of in-
formation needed for estimating the relative
risks (Rhodes et al. 1996).

In designing a study, a choice needs to be
made about which relarive risk measure will
be used in the analysis to help determine
what data to collect. The primary choice is
between using the transmission probability
ratio or one of the unconditional measures,
such as the incidence rarte rario. We can use
the dependent happening relation (1) to
clarify some of the irnplications of nging the
incidence rate ratio. Analogous arguments
would apply to the hazard rate ratio and the
incidence proportion ratio. We expand the
dependent happening relation (1) to include
two covariate groups. We ler I, (#) in covari-
ate group 1 be the producrt of the contace
rafe ¢y, the transmission probability from an
average infecrious person with whom they
make contact, p 4, and the prevalence of in-
fection in those people with whom they
make contact, PX{z). The index is in the su-
perscript to indicate it is the prevalence in
those people with whom people in covariate
group 1 make contact. This might not be co-
variate group 1 itself. Similarly, the inci-
dence rate I, () in covariate group 0 is the
product of the contact rate ¢, the transmis-
sion probability p,, and the prevalence in
their conracts, P%(z). The incidence rate ratio
can then be expressed
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Lt) _eapa (1)

RO =1 = epa 0

(4)

Although the incidence rate ratio com-
pares the incidence rates in two groups of sus-
ceptibles, its interpreration is not limited to
being a measure of the relative susceptibility
of the two groups. In expression (4), the inci-
dence rate ratio could differ from 1 for a vari-
ety of reasons. The contacr fates, ¢, and ¢y,
of the comparison groups could differ. The
rransmission probabilities, p.o 2nd p., could
differ either because the susceptibility of the
comparison groups differs, the groups make
different types of contacts, or they make con-
tacts with infective people of differing infec-
tiousness. The proportion of contacts the
zroups make with infective people Py{t) and
P,(t) could differ becanse they circulate in
differing subpopulations. For example, we
might observe thar the incidence rate of yel-
[ow fever is three times higher in men than
in women. The higher incidence rate in men
could result from: a higher conract rate with
the mosquito vector for yellow fever; men
may be more susceptible to developing yel-
low fever when exposed; or men may spend
time in areas where a higher proportion of
the yellow fever vector mosquitoes are in-
fecied.

Consider again a study of the effect of con-
doms on sexually rransmitted infection. As-
sume that condom use reduces infectious-
ness, so that the transmission probability
to people whose partners use condoms is
p, = 0.25p,. Assume we conduct a study in
which we do measure contacts of the study
subjects with infectives. Assume that there
are 100 contacts berween infectives in each
group. In the group nsing condoms, four
people become infecred, while in the other
group, 16 people become infected. Then we
estimate that p,. = 0.04, po. = 0.16, and that
TPR, = 0.25. Suppose thar instead of col-
lecting information on contacts with infec-
tives, we collect only rime-of-event data and
person-time-at-risk data, and use the mci-
dence rate ratio. If the study is randomized
and people do not change their behavior
after randomization except to use condoms,

the contact rates, prevalence of infection,
and infectiousness in the sexual partners of
the two groups might be equal. Then

_ ¢y oy P =&
copo. PP () po

= 0.25.

In this simple case, we would get a similar
estimate from both the TPR; and the IR.

Suppose that the study is observational
and that people using condoms have a three
times higher conract rate than people not
using condoms, ¢, = 3¢, However, we do
not collect informarion on the relative con-
tact rates in the groups. Then the expected
estimate of IR(t) would be

It _ ep P

R =30 = 2 0,50
3 2
_ 300209 _ 5
ey Py

Interpretation of the estimare 0.75 would be
difficult without further informarion. If we
falsely assumed that the behavior of the two
groups was similar, then the resulrs suggest
that condom use reduces transmission by
less than a factor of two, rather than by a
factor of four.

If the contact rate were the same in the
rwo groups, but people who asked their part-
ners to use condoms chose cheir sexual part-
ners from a partner pool in which prevalence
was five times higher, then Pl(r} = 5P%z).
The expected estimate would be

Lit) _ o paPME)

RO =70 ™ 2 poP)
_{0.25p0)59°(8) _
- =R - LS

It would appear that condom use actnally
increases incidence. Thus there could be a
difference in the incidence rates of two
groups for a variety of reasons.

Under whar circumstances could we in-
terpret a difference in the incidence rates in
two groups as due to a difference in suscep-
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tibility? First, che risk factor {e.g., age) orin-
tervention (e.g., vaccinarion} in question
would bave to be associated with the study
individual’s susceptibility, not exposure to
infection. Second, the exposure to infection
in the comparison groups would have to be
the same. Under randomization, and assum-
ing nothing changed postrandomization, we
would expect exposure to infection to be
equal in the two groups. Since several fac-
tors contribure 1o exposure to infection, it
may be that not each of rhe factors is the
same in each group, but the overall exposure
to infection is the same. If exposure to in-
fection in the groups is not the same, how-
ever, just as with any confounder, stratifying
on a surrogate measure for exposure to in-
fection can improve the estimates of the
effects on susceptibility. To stratify by sur-
rogates or risk factors for exposure o infec-
tion is not the same as conditioning on ac-
tual conracts with infectives.

In designing and interprering studies, it is
important to distinguish risk facrors for ex-
posure to infection from risk factors for sus-
ceptibility. For any particular risk factor or
inrervention, one must give thought to the
component of the dependent happening ex-
pression to which it corresponds. It should
then be clear whether the risk factor corre-
sponds to exposure to infection or to sus-
ceptibility. Behavioral interventions could
affect the comtact rare, the transmission
probability, or the probability that a given
conract is infections (Halloran et al. 1994).
Randomization can help interpretation of
the results. With randemizarion and mask-
ing, on the average, the comparison groups
should be similar in the absence of interven-
tion. Although estimating the transmission
probability ratio requires more information
than the unconditional measures, it has
clear advanrtages. Estimates of the transmis-
sion probability ratio can be more directly
mterpreted as evaluating refative infections-
ness and susceptibility (Koopman et al.
1991). In facr, estimation of the relative in-
fectiousness is generally not possible except
by using the rransmission probability ratio.
Also, by controlling for contacts between

suscepribles and infectives and exposure to
infection, the transmission probability ratio
is more robust than the unconditional meas-
ures to deviations from randomization.

Population and Community Level
Relative Risks

Because of the dependent happenings in in-
fectious diseases, inrervenrions often have
effects not only on the peopie receiving the
intervention but also on people not receiv-
ing the intervention. The indirect effects are
defined not only with regard to a kind of in-
tervention, such as vaccination, but for the
allocation of the intervention in the entire
population. Although outcomes will still be
measured on individuals, evaluation of indi-
rect effects of an intervention in a popula-
tion involves comparison of populations or
communities, not just individuals. The pri-
mary unit of analysis and inference is the
popularion.

We define three different types of effects
at the population level (Fig. 5-1). Indirect
effecrs are benefits, or detriments, from an
intervention program in a popularion to indi-
viduals not directly receiving the intervention,
compared to their hypothetical experience if
their population had not had the interven-
tion program. Total effects are the combined
direct effect in individuals actually receiving
the intervention and the benefits due to the
indirect effects of the intervention program
as a whole. The overall effect of an inter-
vention program is the effect on the popula-
tion as a whole, including both those receiv-
ine and those not receiving the intervention.

Vaccination programs are a Common ex-
ample in which individuals receive the inrer-
vention but its widespread applicarion can
have indirect effects on those who were not
vaccinated. The indirect effects in the un-
vaccinated people may be different from
those in the vaccinared people, which is why
we define both indirect and votal effects. For
example, the average age of first infecrion
may be shifred in both the vaccinared and
the unvaccinated people. However, it may be
shifred even more in the vaccinated people
because of the protection directly conferred
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POPULATION A POFULATION B
DESIGN I
/\ overall
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DESIGN |
direct DESIGN lla
indirect
DESIGN lIb

direct + indirect

Figure 5-1. Types of effects of interventions against infectious disease and different study de-
signs based on comparison popolations for their evaluation.

Source: Halloran and Steuchiner 1991,

by the vaccine. As an example of estimating
overall effects, Hayes and colleagues (1925)
studied the effect of improved treatment of
sexually transmitred disease on HIV infec-
tion in rural Tanzania with a community
randomized controlled trial. Bed net studies
for protecting against malaria infection can
also be evaluated for their effect on popula-
tion level incidence. Some inrerventions are
not applied at the level of the individual and
have only overall effects. For example, drain-
ing mosquite breeding sites is intended to re-
duce transmission of malaria by reducing the
abundance of mosquiroes. Introducing wells
for obtaining warer is supposed to reduce
Guinea worm infection (dracunculiasis).

In Figure 5-1, the assumption is that
some individuals in population A received
the intervention program and population B
did not receive the intervention program.
The different kinds of effects are measured
by comparing different subpopulations in
population A to population B. For indirect
effects, individuals in population A not re-
ceiving the intervenrtion are compared to in-
dividuals in pepulation B, all of whom did
not receive the intervention. To measure
total effects, the subpopulation in A com-
posed of individuals receiving the interven-
tion is compared to population B. For the
overall public health benefits, the average
outcome in the entire population A is com-
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pared to thar in B. The comparison of dif-
ferent subgroups from population A to pop-
vlation B are designated study designs T1A,
IIB, and III, respectively They are called the
study designs for dependent happenings
(Struchiner et al. 1990, Halloran and Stru-
chiner 1991,1925). Different strara within
the subpopulations such as age groups or
gender can also be compared.

The bottem right portion of Table 5-2
contains examples of possible comparisons
using the unconditional estimators to esti-
mate the indirect, roral, and overall effects.
For example, if the incidence rate ratio is
used to measure the indirect effects, then
IRHA(I.‘) = IAO (I)IIBO (f), WhEI@-AO Elnd B de-
note those not receiving the intervention in
A and B, respectively. The total effects are
estimated from IRy (8) = I, (2)/15, (2). The
proportional hazards parameter is not in-
cluded in that portion of the table, because
the assumption that the baseline hazard rare
in the comparison groups is equal would
presumably be violated. A change in the
basie reproductive number R, or shift in age
distriburion could also be used for compar-
ison of the overall or indirect effects,

Study designs of type I measure those di-
rect effects discussed previously with un-
conditional parameters and compare peaple
receiving the intervention with people not
receiving the inrervention within the same
population. One important difference to
noninfecrious disease epidemiology can be
made explicit here. In noninfectious dis-
cases, the prevented fraction in a covariate
group is generally measured by comparing
the incidence proportion in a group with a
particelar covariate value with that in a
group with another covariate value in the
same population. The actual number of pre-
vented cases can be calculated by knowing
what fraction of the population has the co-
variate of interest and the relative difference
in the two incidenee proportions. However,
in infectious disease, becanse of the indirect
effects of intervention, this would not be the
appropriate comparison. For example, if
many people were vaccinated, then the inci-
dence proportion would be lower in both
the vaccinated and the unvaccinared groups

than it would have been withour vaceina-
tion. The number of prevented cases is larger
than would be estimated by the comparison
used in noninfectious diseases. The appro-
priate comparison would use a study design
IIB. However, gencrally, use of study design
IIB is not possible to estimate the prevented
number of cases. If study design type I is
used, then the estimated prevented fraction
will generally underestimate the total num-
ber of cases prevented by the covariate or
intervention. This should be kept in mind
when interprering the resnlts.

STUDY DESIGINS

Many study designs are the same for infec-
tious diseases as for noninfectious diseases.
Here we focus on concepts relating to these
study designs that are specific to infections
diseases, such as the interaction of the study
cohorts with the popularion at large, designs
that allow estimation of the transmission
probability ratio, and the role of assump-
tions abour population mixing structures in
the use and interpretation of dara. Other
books such as Rothman and Greenland
(1998} describe principles of study designs
to estimate the unconditional relative rsks.

Cohort Studies

In cohorr studies, usually the investigator
identifies a group of disease-free people and
follows them over time to see how their dis-
ease ourcome depends on varying levels of
risk factors or interventions. The quesrion
of interest is how the different levels of rigk
factor affect the time to onset of infecrion or
disease or whether they are infected or not
by the end of the study. Cohort studjes are
generally nsed to estimate the uncondirion-
al relative risks such as incidence rate ratio,
hazard rate ratio, or incidence proportion
ratio. With information on contacts be-
tween infectives and suscepribles, cohort
studies can also be used to estimate the
transmission probability ratio. The unit
composed of the susceprible, the infective,
and the contact between them is the irre-
ducible element in the study of transmission,
In the infectious disease setting, the cohort
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may be composed of small transmission
units, such as parmerships, households, or
schools. The small transmission units can be
considered independent of one another and
analyzed as minicohorts. Alternatively, the
small transmission units may be thought of
as embedded within a larger community in
which members of the small units mix with
one another. The contact patterns of the co-
hort members ecither with one another or
with the population at large can influence
the transmission dynamics and the interpre-
tation of the study results. In this section, we
present some of these different study designs.

A fixed cohort is assembled at one time
and followed, with no new additions to the
cohort. If a fixed cohort does not lose people
during follow up, it is a closed cohort. A
closed population in an epidemnic is a closed
cohort. I people leave a cohort before expe-
riencing an event or they do nort experience
an event before the end of a study, their
evenrt times are not observed. Their event
times are said to be right censored. Dynam-
ic cohorts can have people entering and
leaving the risk set during the period of ob-
servarion. Natural history studies describe
the course of infection, disease, mortality,
and infectiousness within the human host.
Longitudinal studies in which several read-
ings are obrained on the same individual are
quire common. Since the observations with-
in an individual are correlated, longitudinal
studies usually require special methods of
analysis (Diggle et al. 1994). Baseline stud-
ies observe cohorts before an intervention to
learn about the feasibility of doing an inter-
vention and to estimate preintervention in-
cidence of infecrion. For example, a haseline
study will yield informarion on retention
rates and how large the study population
needs to be,

The cohort may be composed of people
who are infected, with the goal being to es-
timate disease progression ot infectiousness
based on parasite shedding. Ideally, people
will enter the study cohort at the time they
are infected. However, sometimes study co-
horts are recruired among people who were
infecred before they entered the study. A co-
hort of people recruited after they were in-

fected is called a prevalent cohorr. At the be-
ginning of the HIV epidemic, of necessity,
cohorts of already infected people wete as-
sembled. Brookmeyer and Gail (1987) dis-
cuss biases in risk ratios estimated in preva-
lent cohorts.

Cobort within a population

‘We can assemble either a fixed or a dynam-
ic cohort of suscepribles within a larger dy-
namic population and follow them as in a
usual cohort study, The rransmission pro-
cess in the population at large outside the
cohort under study can affect incidence
within the cohort. If we entoll 2 cohort of
susceptibles and follow them as they be-
come infected, we will observe an epidemic
within the cohort. If the contacts made by
the cohort members are made at random
predominantly with people outside the co-
hort, the prevalence of infection in the con-
tacts will be similar to the prevalence in the
population at large. Prevalence in the popu-
lation at large may be changing rapidly over
time or it may be fairly constant.

Suppose data are collected on the infec-
tion status of the cohort members and the
number of contacrs made by them. Assume
also that an estimate of the prevalence, F, of
infection in the pool of potential contacts is
available, either from the study irself or
from other sousces. The expression for the
infecrion probability from a contact with
unknown infection status can be used to es-
tmate the transmission probability. The
probability of infection after » total conracts
is p, = 1 — (1 — Pp)". In this case, the actu-
al infection status of the contacts does not
peed to be known to estimate the per contact
infection probability with someone of un-
known infection status. If some estimate of
prevalence P is available, then the expres-
sion can be used to estimate the rransmis-
sion probability p. In one study, Hooper and
colleagues (1978) used the number of con-
tacts made by men, the number of men who
became infected, and an estimate of gonor-
rhea prevalence in sex workers o estimate
the transmission probability of gonorrhea
per sex act from women to men. Hudgens
and associates {2001} used an estimare of



OVERVIEW OF S5TUDY DESIGN 103

HIV prevalence in injection drug users, the
number of needle sharing acts and the num-
ber of injections, and the number of infec-
tions to estimate the trangmission probabil-
ity of HIV per needle sharing. If the contacrs
are predominantly with other members of
the initially susceptible study cohort, then in
the early phase of the study there will he few
infectious contacts. However, the number of
infectious contacts will increase as the epi-
demic within the study cohori spreads as in
an epidemic process. If contacts are made
with other members of the cohort, then it is
likely the infection status will be known.

Transmission probability
and contact studies
To estimate the transmission probability or
the transmission probability ratio we gener-
ally need information on contacts between
suscepribles and infectives. The concept of 2
contact 1s very broad and must be defined in
each particular study. The microbe’s trans-
mission mode determines what types of con-
tacr are potentially infectious. Conracts can
be defined berween two individuals, or an
ndividual and a vector. More generally, con-
tacts can also be defined within small trans-
srission uAits, such ag households, child care
centers, school classes, or retirement homes.
Within small transmission units, mixing is
often assumed to be random. A small trans-
tmission unit can also be defined as two indi-
viduals, such as a steady sexual partnership
or a household with jusr two susceptible
people. The definition of a contact within a
study can depend on the definition of the
uransmission units, The small transmission
unit can also be thonght of as a minicohort.
Different definitions of a potentially in-
fective contact and transmission unit are pos-
sible for the same microbe, and even within
the same study. In a study of chickenpox
transmission, a potentially infective contact
could be defined as being in the same school
on one day with someone with chickenpox.
Alrernarively, it could be defined as living in
the same house during the presumed infee-
Tious period of the person with chickenpox.
In the first case, the transmission unit is the
school, and in the larter, it is the household.

In the first case, the contact is defined over
one day, and in the latter, it is defined over
the enrive infecrious period. In tuberculosis,
a conract could be defined as riding on the
same bus with someone with open tubercu-
losis, or as being in the same prison with
someone with tuberculosis. In the former
case, the rransmission unit is the bus, and in
the larter, it is the prison.

There could be different definitions of a
contact for one definition of transmission
urit. In an FIIV study, 4 porentially infective -
contact could be defined as each sex act be-
tween two sexual pariners in a steady rela-
tionship, one of whom is infected with HIV.
Alternarively, the partnership over its enrire
duration or over the duration of the study
could be defined as one potentially infective
contact.

In Chapter 4, we discussed transmission
units in the conrexts of chain binomial
models and of nonrandom mixing. Here we
further discuss the implications of thinking
about rransmission units and contacts with-
in populations for study design and analysis.

Identification of infectives

In one approach to ascerraining transmis-
sion units or contacts, infecrious individeals
are identified, then their transmission units
or contacts are identified. The initally iden-
tified infectious person in each unit is called
the primary or index case, The transmission
probability or secondary attack rate is esti-
mared by observing the proportion of the
people in the transmission unit who become
infected. Alternarively, a cohort of suscep-
tible individuals could be recruited and fol-
lowed over time. As individuals become in-
fected the transmission units or contacts
might be ascertained. As mentioned in the
discussion on observational studies, ascer-
tainment bias can be substantial when as-
certaining transmission units by mfectives.
The latrer method of ascerrainment of trans-
mission units would be less prone to ascer-
tainment bias.

To estimate the conventional household
SAR, data on the time of onser of disease for
each case in the household as well as knowl-
edge of who is susceptible are required. Also
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needed are estimares or assumptions abour
the minimum and maximum ineubation pe-
riods, the latent period, and the maximum
rime that 3 person remains infectious. Using
this information, one then needs ro define
the time interval afrer the occurrence of the
index case that would include the secondary
cases. Based on the time of onset data with-
in each household or transmission unit, each
case is defined as being either 2 secondary
case or not. In the measles study in Senegal
presented earlier, assumptions abour all of
these factors were made to define the sec-
ondary cases presented in Table 5-3. The
estimared household secondary atrack rate
is the total number of secondary cases in all
households divided by the rotal mumber of
at-risk suscepribles in all households. A gen-
eralized estimaring equation (GEE) (Liang
and Zeger 1986) approach can be used to
deal with clustering effects that may occur.
In some cases, tertiary or higher generation
cases may be included in the analysis by call-
ing the secondary cases the index case. Norte
that the index cases are not included in the
analysis, nor are any coprimaries. Copri-
maries are people who developed disease
too soon after the index case to have been in-
fecred by the index case. The assumption is
that the households or other small rransmis-
sion units are independent of one another.
Similar to the household secondary attack
rate is the case-contact approach. In the case-
contact approach, an index case 1s ident-
fied, then the people who have made contact
with the index case are identified. For ex-
ample, in tuberculosis or HIV, through con-
tact tracing the people who have made con-
tact with the infective person might be
identified and their infection status ascer-
rained. One difficulty in estimaring the
transmission probability from such a study
is in derermining the temporal order of in-
fection in the contacts. Difficulries in esti-
mating the conventional SAR and case-
contact rates include determination of the
latent and incubation periods, ascertan-
ment of onser times of cases, and determin-
ing when an exposure to infection has talen
place. The acrual value of the estimated SAR

cant depend on the choice of the transmis-
sion unit and the definition of contact. For
example, in a study of measles transmission
in Senegal, the SARs estimated in schools, at
homes, and in huts differed (Cisse et al.
1999), Kemper (1980) discusses biases in
conventional 5AR estimation,

Susceptibles exposed to infective contacts
Anorther study design approach to estimate
the transmission probability is ro assemble a
cohort of susceptibles. The study then fol-
lows the susceprtibles and collects informa-
tion on their contacts with infectives or po-
tential infectives, Study subjects might give
information on the average number of con-
tacrs rather than the exact number of con-
tacts they each make per unit time. From
this, the expected number of contacts during
the study period can be estimated. The bi-
nomial model is probably the most com-
monly used model for estimating the trans-
mission probability when suseeptibles make
more than one potentially infecrious con-
tact. It can take on very complicared forms,
depending on assumprions abour variability
in the transmission probability, time-varying
covariates, and the amount and quality of
data avaijlable. The model can be embedded
in complex Markov or survival models. The
principles of the binomial model were dis-
cussed in Chapter 4, One approach to in-
cludimg covariate effects as multplicarive
factors on the transmission probability was
discussed previously in the section on the
transmission probability ratio. The data re-
quired are infection outcome, number of po-
tentially infective contacts, and covariate
status for each person in the study. Parame-
ter estimates are obtained using numerical
methods. Unfortunarely, only limited soft-
ware is available for estimating tramsmis-
sion probabilities using the binomial model,
Software is usually written for particular
situations.

The secondary attack rate can also be de-
fined based on the binomial model for sev-
eral contacts. For example, let = be the
number of sexual contacts between two
partners over the course of a study, where
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one of the partners is infected. Then the
probability of being infected after # con-
tacts is 1 = (1 — p)™, the per partnership
SAR over the study interval.

Studies in a community

of transmission units

In the study designs to estimate the trans-
mission probability rarios described before,
the transmission units such as houses or part-
nerships were assumed to be independent of
each other. The susceptibles in the transmis-
sion unit were assumed to be exposed to in-
fection only by the index case, who had
somehow become infected. In Chaprer 4, we
discuss having small trapsmission units with-
in a larger community. If the small transmis-
sion units (e.g., households or partnerships)
are part of a community in which individu-
als from different transmission units inter-
act, then the individuals ¢can become infect-
ed either within the transmission wnit ar in
the communiry at large,

The model developed by Longini and
Koopman (1282) for transmission in a com-
munity of households takes into account
both sources of infection. Two paramerers
are estimared. One is the SAR, the probabil-
ity of being infected within the transmission
unit from one infective. The other is the
community probability of infection (CPI),
the probability of being infected in the com-
munity at large over the course of the study
or during an epidemic. Thus the model al-
lows estimation of parameters from two dif-
ferent Jevels. The SAR is 2 conditional pa-
rameter from level I of Table 5-2. The CPI
is an unconditional parameter from leve] IV
of Table 5-2, and is closely related to the jn-
cidence proportion. The simplest version of
the model assumes that mixing is random
within the small transmission units and ran-
dom within the community outside of the
tranismission units.

In the simplest study design the data re-
quirements to fir the model are 1o know for
each individual his transmission unit and his
infection starus at the beginning and the end
of the study or epidemic. That is, simple
final value data and the distriburion of sus-

ceptibles and infected people within the
Lrangmission units are sufficient to estimate
the SAR and the CPL. For any particular per-
son, there would be uncertainty abont the
source of infection. The community could be
a rown, and the transmission units be house-
holds, schools, ar other units, This method
can be used to study transmission of diseases
such as measles, influenza (Longini and
Koopman, 1982), or dengue (Dantes et al.
1988). Alternarively, the community could
be composed of sexually active people, with
nonmonogamous partnerships forming the
transmission units.

Table 5—4 presents data from an Asian in-
tluenza epidemic from households with three
initially susceptible people in them, which
we assufne to be the whole community. The
data are the number of households thar had
either 0, 1, 2, or all 3 people infected by the
end of the epidemic. Using the model devel-
oped by Longini and Koopman, the esti-
mared SAR is 0.166, and the estimated CPI
1s 0.114. The interpretation is that the prob-
ability of being infected from one infective
in a household is 0.166, while the proba-
bility of being infected in the communiry
at large, allowing for transmission within
households, is 0.114. We emphasize thar the
two estimates have very different meanings.
The SAR is conditional on being exposed to
infection, while the CPI is an unconditional
measure related to the incidence proportion.

In fact, we can estimate the usual inci-
dence proportion from chese dara by simply
ignoring the household structure. That is,

Table 5-4 Observed and Expected Distribu-
tions of Asian Influcnza Data (Sugiyama 1960)in
Households of Size Three as Analyzed by Longi-
ni and Koopman (1932)

Observed Expected

Number of Number Number of
of Cases Households Houssholds
] 25 25,17
1 7.87
2 2 3.62
3 L34

Total 42 42.00
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suppose we do not have information on
households. There are 42 households with
three people each, so the total population is
126 people. From Table 5-4, we can calcu-
lare that 19 people became infected. The in-
cidence proportion is R = 19/126 = (.151.
The incidence propotrion is interpreted as
the probability of becoming infected with-
in the population without any further as-
sumprions abour the dynamics of interac-
rion. Note that the incidence proportion, R,
is higher than the estimare of community
probability of infecrion, CPL The simple in-
cidence proportion is higher than the com-
munity probability of infection, because the
incidence proportion includes the portion
of the infected individuals who, under the
model that included the SAR, were esti-
mated to have been infected within house-
halds. This simple example illustrates the
importance of considering the mixing as-
sumptions within a population when devel-
oping models for estimating meaningful
population parameters in infecrious disease
epidemiology.

At the other extreme, we could fit the
Reed-Frost model, presented in Chapter 4,
to these data. Thar model assumes that
households are independent of one another.
The probability of becoming infected from
the community would be O and the esti-
mated transmission probability within the
household would be higher than thart esti-
mated with the model of Longini and Koop-
man. The Reed-Frost analysis would also
not include the 29 households in Table 54
in which no one was infected. The Reed-
Frost model, similar ro the conventional
SAR approach, assumes that there is at least
one index case in each rransmission unit
included in the analysis. Note that in this in-
fluenza example, we do nor have the infor-
mation required to estimare the convention-
al SAR, because we have no data on the time
of onset of infection, and we have made no
assumptions about the latent, incubation, or
infectious periods. Also, we have not made
assumptions about who became infecred
from inside the household or outside in the
community. We have parrially replaced our
data requirements with model assumptions.

Covariates are easily incorporared into
the model to estimate the effect of risk fac-
tors on both the SAR and the CPI (Longini
et al. 1988, Haber et al. 1988, Magder and
Brookmeyer 1993, O*Neill et al. 2000). Ina
study of dengue transmisgion, Dantes and
associates {1988) used the model to estimate
the relative risk of transmission at both the
individual and the household level,

The general principle of modeling trans-
mission in small units embedded within a
community can be extended in many differ-
ent ways. Time can be incorporated into the
model and time-to-event data used (Addy et
al. 1991, Rampey et al. 1992). We can col-
lect informarion from study participants on
their number of sexual contacts both within
their partnerships and with other people in
the community (Longini et al. 1999). The
parameters of the model to be estimared are
then the transmission probability per sexual
conract within the partnership and the prob-
ability of infection with a person of un-
known infection sratus in the community at
large. If an estimate of prevalence of infee-
tion in the population is available, then the
transmission probability in the community
at large can also be estimated {Hudgens
et al. 2001).

The augmented study design is another
exrension of the idea of small transmission
units within a community (Longini et al.
1996, Datta et al. 1998). In the augmented
study design, individuals are recruited and
possibly randomized to imnrerventon. The
individual recruirment and randomization
is similar to standard randomized stndies
that aim to estirnate relative risks based on
one of the unconditional measures, such as
incidence rate. However, then individuals
with whom the primary study parricipants
make contact, such as in a bousehold or
parmership, are also recruited. Thar is, the
transmission unit of the participant is re-
cruited into the study and augments the
original primary study. The augmented par-
ticipants may or may nort be also random-
ized to intervention. In this way, the design
is similar to that discussed under the con-
ventional SAR studies. The advantage of the
augmented design over conventional indi-
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vidnal recruitmeni with randomization is
thar it permits estimanion of the transmis-
sion probability ratos and, in particular, the
effeer of risk factors or interventions on in-
fectiousness.

Comparison of Assumptions
and Data Structures

There are more variants of study designs
that incorporate information and assump-
tions about contaet structures and rransmis-
sion units than those presented here, but
they will follow the same principles. To esti-
mate the transmission probability and effects
of risk factors on suscepribility and infec-
tiousness, generally some informartion about
conracts between susceptibles and infectives
is required. Agsumptions about how a pop-
wlation mixes in small transmission vnits
and how the transmission units interact in-
fluence the transmission model thar is devel-
oped. This in rurn derermines how data are
analyzed, and ultimarely what the parame-
ter estimates are and how we interpret them.
In conventional SAR studies, the assump-
tion i3 that the households or transmission
units are independent, while in the model of
tiouseholds within communities, infection
can take place both within and outside the
small eransmission unit. If the transmission
probability or SAR is estimated without tak-
ing into account the opportunity to become
infected outside of the transmission unit, it
will overestimate the actual probability of
becoming infected per contact. In general,
ratio measures are less biased by this prob-
lern. The drawback In using a model such as
thar developed by Longini and Koopman ig
that it contains strong modeling assump-
tions about the mixing in the community. It
also requires that the transmission units in
fact are part of a community. An advantage
of the conventional SAR studies or case-
contact study designs is that the minicohorts
or transmission units do not need to be with-
in a single communiry. The minicohorts are
assumed to be independent of one another,
The data requirements and use of the data
are different in the different approaches.
While in1 the conventional SAR studies, the
index cases are excluded from the analysis,

in the approach assuming transmission units
within a community, all cases are included in
the analysis. We leave it as an exercise for the
reader to create a hypothetical community
composed of small transmission units. Assign
to each individual a covariate status (0,1) and
also an infection time and infection status ar
the end of an epidemic. Consider the various
approaches for estimaring the effect meas-
ures, such as the conventional SAR, the SAR
and the CPI simultaneously, and the simple |
incidence proportion. How do the data being
used for each approach differ? Whar pa-
rameters can be estimated? Whar is the in-
terpretation of the measures under each ap-
proach?

Case-Control Studies

Case-conrrol studies can produce good esti-
mates of either the incidence rate ratio or the
incidence proportion ratio {Greenland and
Thornas 1982). In case-control studies, cases
are ascertained from the population of in-
terest, or source population. Rather than
following an entire cohort or gathering in-
formation on the entire source popularion,
however, conrrols are sampled from the
source population to estimate the relative
person-time at risk or the relative propor-
tiong of the source population in the differ-
ent treatment or covariare groups. In in-
fectious disease epidemioclogy, case-control
studies can also be used to estimate the trans-
migsion probability ratio and for prelimi-
nary etiologic studies in outbreak investi-
garions. If properly conducred, case control
studies are important, efficient alrernatives
to cohort studies as well as randomized tri-
als (Smith 1982, 1987, Smith et al. 1284,
Rodrigues and Smith 1929},

A cage-control study might be conducted
within the cohort that is under study (i.e.,
a nested case-control study), or at least with-
in a well-defined population. Thinking of the
cage-control study as being nesred within a2
cohort or a well-defined source population
enables clearer formulation of assumptions
about the underlying dynamics and covar-
iate distributions. This, in turns, aids in
choosing the appropriate sampling method
and method of analysis for estimaring the in-
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cidence rate ratio, the incidence proportion
ratio, or the cransmission probability ratio.
We consider first estimating the incidence
rate ratio of two covariare groups with a
case-contro! study. The odds ratio, OR, is

(A1 /4g) _ ABy
OR = =
(B, /By AcBy’

where Ay and A, are the number of cases in
the two different covariate groups, and B,
and B, are the number of controls selecred
in the two groups. To estimate the incidence
rate ratio using the odds ratio, the goal in
sampling the controls is to estimate the rel-
ative person-time at risk in the two groups.

There are rtwo main ways to sample the
controls that give a consistent and unbiased
estimare of the incidence rate ratio under
certain condirions if the incidence rate ratio
is constant in time {Greenland and Thomas
1282). One approach is density sampling,
also called risk ser sampling. In rthis ap-
proach, controls are selected from rhe pop-
ulation art risk at the time of onser of each
case. By selecting the controls matched on
time with the cases, density sampling sam-
ples the relative distribution of person-time
in the two covariate groups. Another ap-
proach to sample controls does not march
the sampling on time with the cases. In time-
unmatched sampling, controls are selected
so that the expected ratio of the number of
controls in one covariate group o the num-
ber in the other covariate group equals the
expected ratio of the total person-time at
risk in one covariate group to the person-
time at risk in the other covariate group over
the enrire case ascertainment petiod. Thus
the probability that any conrrol is selected
should be proportional to the amount of
time that he or she is at risk in the study to
become a case.

The underlying cohort can be 2 dynamic
cohort as long as the assumptions are satis-
fied. If people enter and leave the group at
risk so that individuals have different person-
time at risk, then the probability of being
sampled should be proportional to the
person-rime at risk. This will occur as a con-
sequence of time-matched sampling, buc

would need to be computed with time-
unmatched sampling. In both the time-
matched and the time-unmatched sampling
schemes, controls should be sampled inde-
pendently of the covariates of interest.

If controls are sampled matched on time
with cases using the densiry sampling, then
the odds ratio can be computed using either
a time-unmatched or a time-martched analy-
sis. If the odds ratio is compured using an
unmatched analysis of the time-matched
cases and contrals, then it is a consistent es-
timator of the constant incidence rate ratio
if the proportion of the population art risk
that has a particular covariate value is con-
stant. This assumption would be violared,

- for ingtance, if a vaccination program were

beginning so that the proportion of people
who were vaccinated increased over the
course of the study. If the odds ratio is cal-
culated using a matched pair or discordant
pair analysis that is matched on time, then it
is a congistent estimator of the consrant
incidence rate ratio with no further assump-
tions. That is, if vaccine coverage were In-
creasing, density sampling with a time-
matched analysis could still be used to
estimate the incidence rarte ratio, and thus,
the vaccine efficacy. In both of these situa-
tions, as long as the incidence rate ratio is
constant, the baseline incidence rate may
vary. For insrance, there could be seasonal
variation over the course of the study, such
as in malaria, or there could be an epidem-
ic, as with influenza.

If controls are sampled without matching
on time, then the apalysis cannot be
matched on time. The odds rartio compured
from the unmatched sampling scheme is a
consisten estimator of a constant incidence
rate ratio if either (1) the baseline incidence
rate or (2) the proporrion of those ar rigk
who are in each of the covariate groups is
constant. For example, if people were all
vaccinated before the influenza season, then
the time-unmatched approach could be used
to estimate the incidence rare rario.

If the incidence ratio is not constant, then
there is no unique effect to estimare with the
odds ratio. A useful illustration of these prin-
ciples is found in Struchiner and colleagues
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{1990). Using the example of malaria vacci-
nation and seasonal wansmission of malar-
ia, they compare the three different odds
ratio estimators of the incidence rate ratio.

To estimate the relative incidence propor-
tion ratio using a case-cohort study, the con-
wols are used 1o estimate the relative pro-
portions of the population in each covariate
group. Thar is, the goal is to use rhe rado
B,/B, to estimate the distribution of the co-
variate among the cohort members rather
than among the person-time at risk. The
controls in the cohort are sampled regard-
less of their person-time at risk (Wacholder
1991, Rothman and Greenland 1998). Indi-
viduals who become cases may also be sam-
pled a5 controls. Again, the controls should
be selected independently of their covariate
groups.

Case-control studies in infectious diseases
need to satisfy the same assumptions as case-
control studies in noninfecrious diseases.
The assumptions underlying many types of
case-control studies may, however, be dra-
matically violared in studies of infectious
diseases. Stationarity (i.e., dynamic equilib-
ria of the human and parasire populations)
assumptions commonly do not apply, the in-
cidence rate ratio may change with tire if
the effect of an intervention wanes, and the
proportion of the population with a partic-
ular covariate value can change quickly
{Struchiner ecal. 1990). Thus the underlying
assumptions should be examined closely for
their applicabiliry.

To estimate the transmission probabiliry
ratio for suscepribility, cases are those people
(n the population for whom information on
expogure to Infection is available. Controls
are selected conditional on being exposed
ro infecrion, possibly matched on a similar
level of exposure, to estimare the odds of
having a particular covariate status. The use
of case-control studies to estimnate the trang-
mission probability ratio needs more formal
research.

The preceding sampling designs do not
rely on the rare disease assumption for the
odds ratio to be a consistent estimator of the
effect measure of interest {Rothman and
Greenland, 1998). However, a study degign

frequently used in infectious diseases does
rely on the rare disease assumption for the
odds ratio estimaror to be a good approxi-
mation to the incidence rate ratio or the in-
cidence proportion ratio. In outbreak inves-
tigations where a point source epidemic is
suspected, the potential controls are usually
considered to be those people who did not
get the illness. Sampling of controls general-
ly takes place afrer the outbreak has oc-
curred, so it is not matched on time. In this
situation, if a large portion of the popula-
tion became ill; the odds ratio could differ
substantially from the population parame-
ter of interest. However, in such studies, the
maifl interest may be in simply identifying
that people in one covatiate group have a
higher risk of being ill than those in the other
covariate group. For example, it may be of
interest to determine that people who ate
potato salad had a higher risk of being ill
than those who did not. An unbiased esti-
mate of the underlying relarive incidence
rate or relative incidence proportion is prob-
ably not imporrant.

Tiwo-stage case control studies and studies
with validation sets

Exposure to infecrion is often difficule to
measure accurately. Also, definitive diagno-
sis of a case of a particular infections disease
can be expensive or difficult. For example,
in influenza studies the case definition in a
study might be a set of symptoms such as
coughing, fever, aches, or sore throat, bur
not include culture-positive confirmation.
In either case, with poorly measured expo-
sure to infection or a nonspecific case defini-
tion, estimates of effects could be very bi-
ased and, in parricular, artenuated. Study
designs have been developed in nurritional
and cancer epiderniology that have potential
use in infectious disease epidemiolozy. The
general idea is to measure an inexpensive or
easily available covariate or outcome meas-
ure on everyone in the study. In a smaller
subsample of the study, called 3 validation
set, the more aceurare exposure or outcome
measure that is somehow correlated with the
poorer value is measured. Statistical meth-
ods have been developed to combine the two
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levels of informarion (Pepe and Fleming
1991, Carroll and Wand 1921, Reilly and
Pepe 1995, Robins et al. 1994, 1995). The
small group with the good measurement
helps ta get more accurate effect estimates,
while the arger study helps to have smaller
variance in the estimate. Case-control studies
can be done as two-stage studies (Cain and
Breslow 1988, Breslow and Cain 1988, Flan-
ders and Greenland 1991, Zhao and Lip-
shitz 1992, Breslow and Holubkov 1997),
where the more accurate meagures ot addi-
tional covariates are collected on a sample
of the cases and controls. Golm and associ-
ates {1998, 1999) showed the potential for
using two levels of exposure to infection in-
formation for good estimates of vaccine efft-
cacy for suscepribility and infectiousness in
HIV vaccine trials. Increased use of valida-
tion sets and two-stage case-control methods
could greatly improve che design of efficient
studies in infectious disease epidemiology
(Halloran and Longini 2000).

OTHER TYPES OF STUDIES

Cross-Sectional Studies

A cross-sectional study rakes place within a
short time window and includes all people
or a sample of the people in the population
at that ttme. Prevalence studies using a cross-
gectional study design are used to estimate
the current status of infection in a popula-
tion, Similarly, seroprevalence studies meas-
ure the prevalence of immune response to an
infectious agent and give information on the
history of infection in a population. Estimar-
ing incidence rates, also age-specific incidence
rates, from prevalence dara is possible, as-
sumning that the conditions of disease trans-
mission have remained fairly srable and that
immunity does not wane (i.e., once infected,
the seralogic test remains positive) (Grenfell
and Anderson 1985, Keiding 1991).

As shown in Chapter 4, seroprevalence
can be used as a measure of herd immunity.
Seroprevalence can also be used for a simple
method to estimate the basic reproductive
pumber, Ry, if the transmission system is as-
sumed to be in dynamic equilibrium, that
is, not changing a lot over time. The under-

lying idea is that when the average incidence
rate and prevalence of disease are not chang-
ing, an infectious case produces on average
one other infections case, so the reproduc-
tive number R = 1. From the relarion
R = Ryx = 1, the proportion susceprtible at
equilibrium would be x = 1/R,. Assuming
random mixing, then R, is roughly estimat-
ed by the reciprocal of the proportion sus-
ceptible. In the study of hepariris A and E in
Viemnam {(Hau et al. 1999), seroprevalence
of anti-HAV IgG was 0.97 and of ant-HEV
IgG was 0.09. The proportion susceptible to
each is then 0.03 and 0.91, respecrively. The
estimare of R, for hepatitis A in this popula-
tionis Ry = 1/0.03 = 33 and for hepatitis E
is Ry = 1/0.91 = 1.1. Hau and colleagnes
(1999) express concern that condirions such
as flooding or poor hygiene could favor the
epidemic spread of heparitis E. Essentially, a
worsening of conditions would increase the
R, of hepatitis E.

Spatial mapping and GIS systems

Spatial studies of infectious diseases, includ-
ing vector-borne diseases, are becoming more
common. These studies ofren include the use
of geographical information systems (GIS5).
For instance, they may be used to map the
mosquito breeding grounds in relation to
houses.

Corrrrunity level studies

As mentioned previously, estimation of the
indirect, total, and overall effects of inter-
ventions using the study designs for de-
pendent happenings requires comparison of
populations, not just individuals. Such com-
munity trials fall inco the category of cluster
ot group randomized trials where whole
social units, rather than independent indi-
viduals are randomly assigned to treatment
aroups (Hayes er al. 2000, Koepsell et al.
1992, Donner 1998, Prentice and Sheppard
1995, Klar et al, 1995, Murray 1958). Ob-
servarional studies in which the community
is the level of observation are called ecologic
studies. In choosing the communities or pop-
ulations to include in a study, it is important
to assure that they are separared as much as
possible in every way that is relevant for
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trapsmission. If the populations are not
rransmission dynamically separated, then
the intervention in one population will affect
transmission in the other population. The in-
direct effects might be similar in the two
populations. A study that compares nonsep-
arate popularions will yield an atrenuated es-
gmate of the potential indirect effects of in-
tervention. Transmission patterns that differ
greatly among communities can also mask
the indirect effects of intervention. Matching
by rransmission characteristics is an oprion
wo consider (Hayes et al. 1993). In selecting
communities, some thoughr is required
about the transmission patterns and sources
of exposure to infeciion in a population.
These transmission patterns will greatly in-
fluence the magnitude of the indirect effects,

Analysis needs to be by unit of observa-
tion. For population-level studies, the unic
of observation and level of analysis is the
population, not the individual, so sample
size calculations must be done accordingly.
That is, if a study takes place in two popu-
lations each with 10,000 people and the
comparison is how population A compares
to population B, then the sample size is rwo,
not 20,000,

ESTIMATION AND INFERENCE

For estimation of incidence rate ratios or
hazard rate ratios, Poisson regression or
stratified survival analysis is used most
often, Special to infections disease epidemi-
ology is the possibility of using the depend-
ent happening relation (1) ro incorporate in-
formation on people who are infected in any
given time interval to model the shape of the
baseline hazard (Longini and Halloran
1996). The proportional hazards model
(Cox 1972) is often used to estimare the re-
gression parameters when time-ro-event data
are available. In the proportional hazards
model, the baseline hazard rate need nor be
estimated, buc just the ratio of the two haz-
ard rates, For example, in malaria, with the
high variability of mosquito densities as the
seasons change, it is possible to estimare
the hazard rate ratio of two covariate groups
without having to estimate the acrual sea-

sonal variation in transmission. However, if
using the proportional hazards model, it is
important to check whether the assumption
of proportionality holds. These methods of
analysis are discussed in detail elsewhere
{Coxand Ozkes 1984, Andersen eral. 1993).

In the discussion of the incidence rate
ratio as the ratio of two dependent happen-
ing expressions, we made some strong as-
sumptions without making them explicit.
By writing the expressions as we did, there
is an implicit assumption that within each of
the covariate groups, everyone is the same.
Thar is, each covariate group is assumed ho-
mogeneous with respect to the contact rate,
transmission probability, and the prevalence
of infection in their contacts. However, it is
likely there will be unmeasured heterogene-
ities within study groups. Then, even if the
effect of the risk facror in question does not
change over time, the effect may appear to
change, Some people may be exposed to in-
tection more than orhers. Some may be more
susceptible to infection than others. Those
people with the higher susceptibility or
higher exposure tend to develop the disease
first. The estimnated relative risk will change
with time. If the estimated relative risk
changes with time, the question is whether it
ig a true time-varying effect or an artifact of
the unmeasured heterogeneities. If the effect
is truly changing over time, then madels for
time-varying effects should be used (Schoen-
feld 1982, Durham er al. 1998). If it is pos-
sible to measure the heterogeneities, then
the analysis can be stratfied accordingly. I
is generally not possible to measure all hete-
rogeneities, however. If the effect seems to
vary because of unmeasured heterogenei-
ties, frailty models can be tried. These are
random effects models for time-to-event
dara (Vaopel et al. 1979, Longini and Hal-
loran 1996).

Logistic regression is often used to ana-
lyze data obtained on whether an event oc-
curs becanse the outcome data are binary,
not time dependent. The model allows in-
corporation of covariates, In a cohort study,
the estimares of the logistic regression pa-
rameters can be transformed to obtain an es-
timate of the incidence proportion ratio. Lo-
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gistic regression can also be used to analyze
some case-control dara,

Lirdle standard software exists for esti-
mating transmission probabilities or the mo-
dels that are variants of transmission units
within communities. Conventional second-
ary attack rate ratios can be estimated using
logistic regression or generalized estimating
equations (Liang and Zeger 1986), for which
software is available, Generalized estimar-
ing equations take into account clustering
within households in the variance estimates.

In this chapter we have primarily dis-
cussed questions of estimation. Inference as
a general topic goes beyond the scope of this
chapter. The epidemiologist is well advised
to include a biostatistician in the study team
early in the design stage. Statistical inference
has to-do with predicring what might be ex-
pected of further observations or further
studies, and quanrifying degrees of certainty
or uncerrainty abourt the results we have ob-
rained. The design of epidemiologic studies
needs to include clear statements abour the
degree of cerrainty desired in the results.
These have important consequences for sam-
ple size and power required in the studies.

There are different approaches to statisti-
calinference, including the frequentist, likeli-
hood, and Bayesian approaches. They differ
in their emphasis on use of prior informa-
tion, whether testing or estimatior is more
important, whether decision or inference is
central, and in their sensirivity to the sam-
pling procedure (Oakes 1990). Because of
their emphasis on estimation and inference,
rather than on testing and decision making,
likelihood and Bayesian approaches to in-
ference are more natural than frequenrist
approaches for epidemiologic studies. Baye-
sian approaches are being used increasingly
as the complex compurational methods they
require become more feasible. The Bayesian
approach allows integrarion of information
from different sources in a natural way, and
thus 18 particularly useful for observational
studies. In epidemiology, inference using
confidence intervals is preferred over using
p-values. The usual confidence intervals de-
pend on a normal approximarion. Bootstrap
confidence intervals do not require a normal

approximation (Efron and Tibshirani 1993)
and should be considered for use in the
analysis, Clayron and Hills (1993} provide a
readable book on statistical models in epi-
demiology.

SUMMARY

Because of the fundamental role of trans-
mission of the infecrions agent and depend-
ent happenings, epidemiologic meagures of
interest in infectious disease epidemiology
include the transmission probability, the
contact rate, infectiousness, the basic repro-
ductive number, R, as well as direct and in-
direct effect measures. The key dependent
happening relation is that the incidence rate
is a funetion of the contacr rate, the trans-
mission probability, and the prevalence of
infectives i the population, The dependent
happening relation helps distinguish risk
factors for susceptibility from risk facrors
for exposure to infection. Measures such as
the transmission probability thar condition
on conract between infectives and suscepri-
bles are called conditional parameters. Mea-
sures of disease frequency thar do not, such
as incidence rate and incidence proportion,
are uncondirional meastres. Association and
cansal effects differ under most circum-
stances. Study designs in infecrious disease
epidemiology include several that enable es-
timation of the transmission probability
ratio. These generally include information
on contacts between individvals or within
small transmission units. In estimation of in-
direct and overall effects of an intervention,
program, the unit of analysis is the popula-
tion. The dynamics of infection and trans-
mission units within a population need to be
taken into account when designing and in-
terpreting studies in infectious dissase epi-
demiology.

Dr. Halloran was partially supparted in writing this
chapter by NIH grants RO1-AI32042 and ROI-
Al40848,
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