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Estimating Vaccine Efficacy 
From Secondary Attack Rates 

M. Elizabeth HALLORAN, Marie-Pierre PRIZIOSI, and Haitao CHU 

Epidemiologists have used secondary attack rates (SARs) to estimate the protective effects of vaccination since the 1930s. SARs can 
also be used to estimate the effect of vaccination on reducing infectiousness in breakthrough cases. The conventional SAR approach 
has been to pool the denominators and numerators across transmission units, then to use a confidence interval for a simple relative risk. 
We demonstrate appropriate model-based methods to estimate vaccine efficacy (VE) from SARs using generalized estimating equations 
taking correlation within transmission units into account. The model-based procedures require transformation of the parameter estimates 
to the SAR scale to obtain vaccine efficacy estimates. Appropriate confidence intervals are then based on the bootstrap, with resampling 
done by transmission unit. We show that the usual confidence intervals are too narrow. We estimated the effect of pertussis vaccination on 
person-to-person transmission. The results show that pertussis vaccination reduces the ability of a breakthrough clinical case to produce 
other clinical cases. The methods can be used in evaluating VE for susceptibility and infectiousness from SARs in other infectious 
diseases. 

KEY WORDS: Africa; Bootstrap; Clustering; Efficacy; Generalized estimating equations; Hierarchical models; Pertussis; Random 
effects models; Secondary attack rate; Vaccine. 

1. INTRODUCTION 

Vaccine efficacy (VE) measures are usually estimated as 
VE = 1 - RR, where RR is some measure of relative risk 
in the vaccinated groups compared with unvaccinated groups 
(Orenstein et al. 1985; Halloran, Struchiner, and Longini 
1997). Historically, the protective efficacy of vaccination, VEs, 
has been the main interest. The secondary attack rate (SAR), 
the proportion of susceptibles exposed to an infectious person 
who become infected, has been used to estimate protective 
effects of vaccination since the 1930's (Kendrick and Eldering 
1939). Recently, the effect of vaccination on reducing infec- 
tiousness in breakthrough cases, VEI, based on the relative 
SAR from vaccinated cases compared with that from unvacci- 
nated cases, has received more attention (Longini, Datta, and 
Halloran 1996; Golm, Halloran, and Longini 1998; Halloran 
et al. 1997). Similarly, the total effect, VET, can be estimated 
from the SAR when both the infective and susceptible are vac- 
cinated compared with the SAR when neither are vaccinated. 

Quite often one infectious person exposes several people, 
possibly within a transmission unit, such as a household. Cor- 
relation within transmission units or unmeasured heterogene- 
ity across transmission units could result from, for example, 
differences in infectivity, differences in mixing within the unit, 
or genetic variation. The conventional method of estimating 
VE from SARs fails to take the structure of the clustered 
binary data into account. Currently, "the total population in 
each household minus the excluded primary and coprimary 

cases is added together to get large vaccinated and unvacci- 
nated cohorts. Cases to be included are classified by vaccina- 
tion status, the attack rates are determined, and vaccine effi- 
cacy is calculated" (Orenstein, Bernier, and Hinman 1988). 
Confidence intervals are based on various methods, none of 
which takes into account correlation within transmission unit; 
examples include the methods of Orenstein et al. (1985); Katz, 
Baptista, Azen, and Pike (1978), used by Fine and Clarkson 
(1987); Thomas and Gart (1977), used by Storsaeter, Black- 
welder, and Hallander (1992); and Francis et al. (1955), used 
by Kim-Farley et al. (1985). 

In this article we present appropriate methods for estimating 
VE measures based on the SAR that take into account cor- 
relation within transmission units, and demonstrate estimation 
of VE for infectiousness. Controversy still surrounds whether 
pertussis vaccination reduces circulation of Bordetella per- 
tussis (Bp), the bacteria that causes pertussis, also known as 
whooping cough. (Fine and Clarkson 1982, 1987; Miller and 
Gay 1997; Trollfors et al. 1998; Rohani, Earn, and Grenfell 
2000; Taranger et al. 2001; Prdziosi et al. 2002). Interested in 
estimating the effect of pertussis vaccination on transmission, 
we analyzed data from a population-based study of pertussis in 
Niakhar, Senegal, using these methods (Prdziosi and Halloran 
2003). 

2. STUDY BACKGROUND 

The pertussis study was part of a larger demographic 
surveillance project conducted in the rural Niakhar region 
of Senegal (Garenne and Cantrelle 1998; Simondon et al. 
1997; Prdziosi et al. 2002). The community is composed of 
Sereer peasant families residing in the 30 villages within the 
Niakhar study area. Extended families, residing in compounds, 
were under active longitudinal observation beginning in March 
1983, based on annual visits, and from 1987 to 1996, based on 
weekly visits to each compound. Field workers administered 
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structured questionnaires, and experienced physicians checked 
for illnesses. 

Surveillance for pertussis focused on children under age 
15 years. A suspected case of pertussis was defined as 

cough of 8 days duration or longer. All suspected cases and 
their coresidents living in the same compound were followed 
actively by a physician. The study was conducted in accor- 
dance with the Helsinki Declaration of 1975 (revised 1983) 
(Pr6ziosi et al. 1997). The usual demographic data, including 
age, gender, hut, compound, hamlet, and village, were known 
for each individual in the area. Pertussis vaccination status 
and dates of vaccination were also known. For each suspected 
case, the date of symptom onset, duration of cough, type of 
cough, a wide range of symptoms, results of each biologic 
diagnostic test done, and physician diagnosis were recorded. 
This analysis focuses on the calendar year 1993, an epidemic 
year that produced a large number of cases and extensive 
exposure to pertussis. The availability of biologic diagnostic 
tools was excellent. Biologic samples were collected from all 
consenting suspected cases. 

3. METHODS FOR THE SECONDARY 
ATTACK RATE 

3.1 Case Definition 

In this article a case of pertussis is defined as requiring 
clinically, at least 21 days of cough with paroxysms and bio- 
logically, either Bp isolated from a nasopharyngeal aspirate 
(bacterio+) or significant increase or decrease in pertussis 
toxin or filamentous hemagglutinin antibodies as measured 
by enzyme-linked immunosorbent assay (sero+), or presence 
of a bacterio+ case within 28 days in the same compound 
(epilink+) (Pr6ziosi and Halloran 2003). This case definition 
is similar to that of the World Health Organization (WHO) 
(1991), but differs slightly in two respects. First, it requires 21 
days of cough with some paroxysms, rather than 21 days of 
continuous paroxysmal cough, the latter being overly specific 
as stated in a recent WHO meeting (WHO 2001). Second, it 
allows significant decreases as well as increases in antibodies 
to accept a positive serology, as detailed elsewhere (Simon- 
don, Iteman, Pr6ziosi, Yam, and Guiso 1998). Indeed, it has 
been shown in this setting that the serology result could be 
different between vaccinated and unvaccinated people due to 
different kinetics of antibody response in these groups. 

3.2 Setting Up the Secondary Attack Rate Analysis 

We chose the compound as the transmission unit within 
which it was assumed that susceptibles were exposed to infec- 
tion by the first case in the unit. The compound is the "home," 
that is, the residential unit where individuals make privileged 
contacts and where random mixing is a reasonable assumption. 
Indeed, for these reasons, the compound is the transmission 
unit of choice in African rural settings such as here (Garenne, 
Leroy, Beau, and Sene 1993; Aaby, Samb, Anderson, and 
Simondon 1996). The first case in a transmission unit is called 
the index or primary case. A potentially infectious contact, or 
exposure, was defined as a susceptible living in the same com- 
pound during the infectious period of the index case. Exposed 
susceptibles were children with no history of pertussis living 

in a compound with an index case. Onset of pertussis symp- 
toms was assumed to be the onset of infectiousness; thus the 
latent period equals the incubation period. Coprimaries were 
those cases with onset of cough less than 7 days after that of 
the index case, assumed to be too soon after the index case to 
have been infected by the index case. To allow for uncertainty 
in duration of infectiousness, a secondary case was defined as 
a case with onset of cough 7 or more days after that of the 
index case and less than a variable cutoff, specifically no cut- 
off 56, 42, or 28 days. 

Generally, when estimating protective efficacy, VEs, from 
SARs, coprimaries are simply ignored in the analysis, enter- 
ing as neither susceptibles nor infectives (Orenstein et al. 
1988; Fine, Clarkson, and Miller 1988). However, the par- 
ticular interest here was in the effect of vaccine status on 
infectiousness of the index case. Because primaries and copri- 
maries often had different vaccine status, compounds with 

coprimaries were excluded from the analysis. 

3.3 Notation 

Let n be the number of compounds with a unique index case 
and mi be the number of susceptibles in the ith compound. Let 

yj be the binary (0, 1) pertussis outcome of the jth susceptible 
exposed to the index case in the ith compound for any given 
case definition. Let xij = (xij1 . ... , xijp)' denote a p x 1 vector 
of explanatory variables associated with y1i. In particular, let 

xi., denote the vaccine status of the index case in compound 
i, and xij2 denote the vaccine status of the jth exposed sus- 

ceptible individual in compound i. Complete pertussis vacci- 
nation requires at least three doses of vaccine. In this analysis 
we consider unvaccinated and fully vaccinated children, with 

xi., = 0 for an unvaccinated case and xi. = 1 for a fully vacci- 
nated index case. Similarly, xij2 is 0 or 1 for the unvaccinated 
and fully vaccinated susceptibles. 

Let N,, be the total number of susceptibles in the n com- 
pounds with vaccine status s exposed to index cases with vac- 
cine status v, and avs be the total number of cases in the 

N,,s susceptibles. In this article, V, S E {0, 3}. The subscript 
"0" denotes unvaccinated, and "3" indicates three doses of 
vaccine. Additional levels of vaccination are possible, such 
as V, S E { 1, 2} for partially vaccinated people, but are not 
considered here. The "." subscript represents collapsing over 
strata. The number of cases and susceptibles in each grouping 
of interest is 

n mi 

avs = Y =Y Iv=v 
-s=sYij, i=1 j=l 

n mi 

Nvs = ,Iv=,,Is=s, i=l j=l 

n mi 

i=1 j=1 

n 

N = 
mi i=l 

n mi 

a.s 
= Y Is=syij, 

i=1 j=1 

n mi 

NS =1 EIs=s, 
i=i=1 

n mi 

av. 
= EE I ,v=Yj, 

i=1 j=1 

n mi 

i=1 j=1 
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Let SARVS denote the secondary attack rate from an index case 
with vaccine status v to a susceptible with vaccine status s. 
Pooling across compounds, the two standard SARs not strati- 
fied by the vaccine status of the index case used in estimating 
protective VEs (Orenstein et al. 1988) are SAR., = 

a.s/Ns, 
s = 0, 3. If not stratified by vaccine status of the susceptible, 

SARV. 
= a,./N,., v = 0, 3. The nonparametric estimates of the 

four SARs stratified by vaccine status of index cases and sus- 
ceptibles are SARvs = avs/N,,, v, s = 0, 3. 

3.4 Data 

A total of 518 of the 1,800 compounds (29%) were detected 
as having potential cases of pertussis in 1993. Pertussis was 
confirmed in 189 (36%) of those compounds, representing 232 
primary and coprimary cases and 1,217 susceptibles. Among 
these, compounds with coprimary cases [n = 33 (17%)], com- 

pounds with no susceptibles [n = 5 (3%)], and compounds 
with a partially vaccinated primary case [n = 42 (22%)] were 
excluded. Thus 109 of the 189 of the qualifying compounds 
(58%) were eligible for analysis. They represented 109 pri- 
mary cases and 790 susceptibles, of whom 152 (19%) were 

partially vaccinated and 638 (81%) were either unvaccinated 
or completely vaccinated. Only the latter group of 638 was 
considered in the analysis presented here. The effect of par- 
tial vaccination has been discussed elsewhere (Pr6ziosi and 
Halloran 2003). The result of at least one biological confirma- 
tion criterion was available in more than 97% of the suspected 
cases meeting the clinical definition used in this study. 

Table 1 gives the data from Niakhar, along with the non- 

parametric SAR estimates for this case definition and the 
four different cutoffs. The number of exposed susceptibles per 
compound ranged from 1 to 32 (interquartile range, 2-8), with 
a median of 5 and a mean of 5.85. Using no cutoff, there were 
154 secondary cases in 638 susceptibles exposed to the 109 
unique index cases, for an overall SAR of .24. This article 

presents VE results using no cutoff; the full analysis included 
estimating VE using the four different cutoffs. 

4. ESTIMATING VACCINE EFFICACY 

4.1 Vaccine Efficacy Based on Nonparametric 
Secondary Attack Rate 

The conventional pooled, nonparametric estimator of pro- 
tective VE, the effect of vaccination on susceptibility, VEs, 
not stratified by vaccine status of the index cases, is (Orenstein 
et al. 1988) 

SAR.3 VE.3/. = 1 - 
SAR. SAR0 (1 

The analogous pooled estimator of VEI, not stratified by the 
vaccination status of the susceptibles, and the vaccine effect 
if both index case and susceptible are vaccinated, VET, are 
(Halloran et al. 1997) 

SAR3. VEI3/o 
= 1 

- , 
g/. SAR o 

SAR33 VET =1 
SA33. (2) 
SARo ( 

These are the three main vaccine effects of interest. However, 
the protective effect of vaccination might be different if the 
index case were vaccinated than if he or she were unvacci- 
nated. Similarly, the effect of vaccination of the index cases on 
transmission might be different in susceptibles who are vac- 
cinated than those who are unvaccinated; that is, the vaccine 
status in either the index case or the susceptible could modify 
the VE. The stratified measures of VEs and 

VE/ 
are 

SAR03 
VEso3/00oo 

- 
SARo, 

SAR33 
VES33/30 - 1 - 

SAR3, (3) SAR o 
3/ 1- SAR ' 

SAR33 
VE3303 - SAR3 

SAR03 

A commonly used confidence interval (CI) is obtained from 
the expression for the confidence interval of log relative risk 
(Katz et al. 1978). For example, from Table 1, SAR30 = 
9/67 = .13 and SAR00 = 73/198 = .37, so VE30/00 

= 1- 
(9/67)/(73/198) = .64, 95% CI [.31, .81]. However, neither 
the simple pooled SAR estimator nor the confidence interval 
takes into account the structure of the correlated binary data. 

Table 1. Number of Exposed Susceptibles, Secondary Cases, and SAR by Vaccination Status of the Index 
Case and the Exposed Susceptible Children and Cutoff for Counting Secondary Cases 

Exposed susceptibles and secondary cases 

Vaccinated Unvaccinated Combined 

Index case Cases/exposed SAR Cases/exposed SAR Cases/exposed SAR 

Vaccinated 
cutoff: none 11/127 .09 9/67 .13 20/194 .10 

56 days 10/127 .08 6/67 .09 16/194 .08 
42 days 10/127 .08 5/67 .07 15/194 .08 
28 days 3/127 .02 3/67 .04 6/194 .03 

Unvaccinated 
cutoff: none 61/246 .25 73/198 .37 134/444 .30 

56 days 55/246 .22 67/198 .34 122/444 .27 
42 days 52/246 .21 66/198 .33 118/444 .27 
28 days 41/246 .17 52/198 .26 93/444 .21 

Combined 
cutoff: none 72/373 .19 82/265 .31 154/638 .24 

56 days 65/373 .17 73/265 .28 138/638 .22 
42 days 62/373 .17 71/265 .27 133/638 .21 
28 days 44/373 .11 55/265 .21 99/638 .16 
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4.2 Vaccine Efficacy Based on the Logistic Model 

To take correlation within compounds into account, we con- 
sider a marginal model and a random-effects model. The para- 
metric form in both cases is the logistic model, with the SAR 
as the usual probability, p, of an event. Another advantage 
of the model-based approach is that additional covariates can 
be easily included, for example, age and gender either of the 
index case as compound-level environmental variables or of 
the susceptibles as individual variables. In the following com- 

parison, we borrow heavily from the excellent exposition of 
Diggle, Liang, and Zeger (1994, pp. 131-135). In marginal 
models, inference about population averages is the focus. If 
there is heterogeneity across compounds in the baseline trans- 
mission, then the estimated baseline coefficients represent an 

average over the heterogeneities. The correlation structure is 
some function of the marginal mean and possibly additional 

parameters. In the random-effects model, a slightly different 
baseline transmission is estimated for each compound, with 
the degree of heterogeneity estimated in the variance of the 
random effect. The vaccine effects in each compound are inter- 

preted in relation to that compound's baseline transmission. In 
this application, our primary scientific question is about the 

population average, or marginal, VE measures, so the marginal 
model is our model of choice. Nonetheless, we present exam- 
ples of both marginal and random-effects models to illustrate 
differences in interpretation and results. The coefficients for 
the marginal and random-effects models are indicated by P3 
and P*. 

4.3 The Marginal Model 

The marginal model for the logit of the SARij of the jth 
person in the ith household is 

logit(SARij) = o + + fxi-.+ x2Xij2, (4) 

where 
xi.1 

denotes the vaccine status of the index case in com- 
pound i and xij2 denotes the vaccine status of the jth exposed 
susceptible in compound i. The vaccine status of the index 
case, xi.1, enters the analysis as a compound-level environ- 
mental variable. Because we are interested in VE estimates on 
the SAR scale, we transform the parameters from the logis- 
tic model to the probability scale. The stratified SARs from 
model (4) are 

exp/o3 SAR exp' 1 + exp 0', 

exp (0o +12) 031 + exp (o30+ 2)' 
(5) 

exp (o0 + 1) 
SAR 1 +exp(30o+c 1)' SAR33 = exp (1o +3 +/32) 

1 +exp (0o + 1 + 2) 

Parameter estimates from the foregoing model provide esti- 
mates for the stratified VES00/03 and VES30/33, the stratified 

VEI00/30 and VEI03/33, and VET. Plugging the expressions for 
the SARs into (1) and (2), the expressions for the VE mea- 
sures are 

VESo3/00 = 
1 - exp(1P2) 

1 + exp(3o + 32)' 

VE33/3 S33/30 
1 - exp(1P2) 

1 + exp( 0o + 1 1+ 2)' 

1 - exp(13,) 
1 + exp(o 0 + 31)' 

1 - exp(ol) 
33/3 - 1 + 

exp(go + 1, + 
v2)' 

1 - exp(l, +0 2) 
VET = 1 + exp(go + 01 + 12) 

To obtain estimates of the unstratified 
VEI3./0. 

and VE.3/.0, we 
can fit additional submodels, such as logit(SARij) = 10, + P'l xiI.1 
and logit(SARij) = 01" + 9'2xij2, and transform back to get 

1 - exp( ') VE 1exp( ) 

1 - exp(p' ) 
VE.3/.0 1 + 

exp(q k 

(7) 

Alternatively, we could use the parameter estimates from the 
full model (4) and substitute the respective means of xi., and 

xij2. We present results for VE13./0. and VEs.3/.0 for the two 
submodels. 

We estimated the marginal model taking into account cor- 
relation of transmission within compound using generalized 
estimating equations (GEEs) (Liang and Zeger 1986). The 
analysis was done using the "repeated" option in PROC GEN- 
MOD in SAS version 8.2 (SAS Institute, Inc., 1999), assum- 
ing an exchangeable working correlation matrix. 

We obtained appropriate confidence intervals on the trans- 
formed scale using the bootstrap (Efron and Tibshirani 1993). 
Bootstrap samples were selected using the compound as the 
sampling unit. We estimated the GEE logistic regression coef- 
ficients for each bootstrap sample, then transformed them to 
the probability scale to get the VE estimates for that boot- 
strap sample. Three different bootstrap confidence intervals 
were computed: the percentile, the bias-corrected (BC), and 
the bias-corrected and accelerated (BCa) intervals. Confidence 
intervals were based on 2,000 bootstrap samples (Efron and 
Tibshirani 1993, p. 275). Each of the three types of boot- 
strap CIs are based on the same collection of 2,000 boot- 
strap estimates, just the upper and lower limits are determined 
differently. The bias correction is derived simply from the 
proportion of the bootstrap estimates lower than the point esti- 
mate of the data. Estimating the acceleration constant requires 
jackknifing the data. Bootstrap confidence intervals sampling 
on compounds were also computed for the VE estimators 
based on the nonparametric SARs described in the previ- 
ous section (Kolczak and Halloran 1995). We computed ana- 
lytic confidence intervals for the GEE estimates of VE on the 
transformed scale using the multivariate delta method (Agresti 
1990; Dunson and Halloran 1996). 

4.4 The Random-Effects Model 

The random-effects model for the logit of the SARij of 
the jth person in the ith household is logit(SARi Ui) 

= (130 + 
Ui) + p1Xi.1 + 2*oij2. The simplest model assumes the random 
effect Ui , N(0, oU2). If we were to remain on the logistic 
scale, then the parameter 13* would be interpreted as the log- 
odds of transmission from an unvaccinated index case to an 
unvaccinated susceptible for a typical compound with random 
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effect Ui = 0. The parameter Pf3 would be the log-odds ratio of 
transmission occurring when the index case is vaccinated com- 
pared to when it is unvaccinated within any given compound. 
The parameter /3* would be the log-odds ratio of transmission 
occurring when a susceptible in the compound is vaccinated 
compared with a susceptible in that same compound who is 
unvaccinated. 

But we are interested in transforming to the SAR scale to 
obtain the different VE estimates. We obtained the compound- 
specific SARijs by incorporating the random effect into the 
expression. For example, the compound-specific SAR00i from 
an unvaccinated index case to an unvaccinated susceptible 
is SAR0ooi Ui = exp(P3* + Ui)/[1 + exp(f! + U,)]. The marginal 
SAR00 is the estimated expectation of the SAR00 obtained by 
numerical integration over the estimated distribution of the 
random effects. The VEi estimates for each compound are 
obtained from expressions analogous to (6). The marginal VE 
estimates are the estimated expectations obtained by numer- 
ical integration over the estimated distribution of the ran- 
dom effects. To obtain estimates of the unstratified VEI3./0. 
and VES.3/.0, we fit random-effects submodels similar to those 
described earlier. 

We used two methods to estimate the random-effects model. 
The first is a Bayesian hierarchical model (Carlin and Louis 

2000); the second is a nonlinear mixed model (Davidian 
and Giltinan 1995). In the Bayesian hierarchical model, the 

compound specific random effects were assumed to be Ui ~ 

N(0, 1/7), with a hyperprior of r - gamma(.0001, .0001). 
Vague priors of N(0, 106) were assumed for the /3*s, 
i = 0, 1, 2. Computation was done using Markov chain 
Monte Carlo (MCMC) methods in WinBUGS (Spiegelhalter, 

Thomas, and Best 2000). Burn-in consisted of 1,000 iterations, 
with 5,000 iterations used for posterior summaries. Conver- 
gence was assessed using the Gelman and Rubin convergence 
statistic (Gelman and Rubin 1992; Brooks and Gelman 1998). 
For each iteration, we computed the SAR and VE measures 
for each compound. The population mean VE measures were 
computed by averaging over the compounds at each iteration. 
The 95% posterior credible intervals for the VE measures are 
available directly on the transformed scale from the approxi- 
mation to the posterior distribution from the MCMC chains. 

The nonlinear mixed model was fit using PROC NLMIXED 
Wolfinger 1999) in SAS version 8.2 (SAS Institute Inc., 1999). 
The Ui were assumed to be iid N(0, 0o2). PROC NLMIXED 
maximizes an approximation to the likelihood integrated over 
the random effects directly (Pinheiro and Bates 1995) and 
produces empirical Bayes estimates of the random effects 
(Wolfinger 1999). We used the adaptive Gaussian quadrature 
approximation and dual quasi-Newton algorithm optimization 
techniques in PROC NLMIXED. Confidence intervals on the 
transformed SAR scale were obtained using the bootstrap as 
described earlier. The marginal VE estimates were calculated 
for each bootstrap sample using numerical integration over the 
estimated random-effects distribution. 

5. RESULTS 

5.1 Baseline Secondary Attack Rates 

Estimates of the baseline SAR00 for each model are shown 
in Figure 1. Horizontal lines represent point estimates of the 
nonparametric pooled SAR00, the marginal GEE model, and 
the estimated expected SARoo on the transformed scale for the 
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Figure 1. Baseline SARoo for Each Model, Represented by Horizontal Lines. Compound-level baseline SARoo 's for the random-effects nonlinear 
mixed model (NLMIXED) are also plotted. The posterior mean and 95% posterior CI are plotted for each Bayesian compound-level SARoo,. The 
indexes of the compounds are in order of increasing mean from the MCMC chain. - nonparametric; ....... GEE; - - - - - Gibbs sampler, 
mean; - - - Gibbs sampler; - - NLMIXED, mean; -- - NLMIXED; * Gibbs sampler; , NLMIXED. 
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Figure 2. Histograms of 2,000 Bootstrap Estimates of (a-c) VE for Infectiousness, VEi, Stratified and Unstratified; (d-f) VE for Susceptibility; 
VEs, Stratified and Unstratified; and (g) Total VE, VET, Based on the GEE Logistic Regression Parameters. The dotted line in each histogram 
indicates the estimate for the actual dataset. 

two random-effects models. Included for comparison are hori- 
zontal lines for the estimate of the nonlinear mixed model and 
the mean from the Bayesian MCMC chain of the SAR00i when 

Ui = 0. The nonparametric estimate of SAR00 is the highest. 
The estimated expectations of the conditional baselines for the 
random-effects models are similar to the baseline SAR00 from 
the marginal model. 

Figure 1 shows the SARoos for each of the 109 compounds 
for the random-effects models, the point estimates of the 

SAR00i for the nonlinear mixed model, and the mean SAR00i 
and 95% posterior CI from the MCMC chain for the Bayesian 
model. The individual estimated SARo00s range from about .1 
to .7, although 51 of the 109 compounds had no secondary 
cases. The estimated variance of the random effect is 1.2102 
for the full NLMIXED model and 1.2722 for the Bayesian 
model. The distribution of the Ui estimates is slightly right- 
skewed. The upper 17 SARo00s increase more rapidly than 
the others, suggesting a slight departure from normality. No 
explanatory variables were found to be associated with the 
increase. If one wanted to pursue the random-effects approach, 
one might consider modeling the data as arising from two 
populations with different random-effects distributions. 

5.2 Vaccine Effects 

Figure 2 shows the point estimates and histograms of 2,000 
bootstrap estimates of the VEI, VEs, and VET parameters 
based on the GEE model. The higher values of the VE, and 

VET produce more skewed histograms of estimates than does 
the VEs. Although there is little evidence of effect modifica- 
tion in the stratified VE1 and VEs estimates, we present them 
for completeness. Because all of the 

VEt 
bootstrap estimates 

are well above 0, the lower limits of the 95% CIs will also be 
well above 0. 

Figure 3 shows the different point estimates and confidence 
intervals for VEs, 

VEt, 
and VET. Table 2 contains selected 

results. We present all three bootstrap CIs only for the GEE 
model to illustrate the behavior at the different efficacies. The 
qualitative behavior is the same for all models for which we 
did the bootstrap. To simplify the presentation, we show just 
the BC interval in most cases, because it lies between the 
percentile and the BCa intervals (Fig. 3). 

The point estimates for 
VEt 

and VET obtained from the 
nonparametric SAR and from the GEE are nearly identical. 
The estimates from the two random-effects models, particu- 
larly for VE, and VET, are higher than either the GEE or SAR 
estimates. 

The bootstrap CIs for the nonparametric VE estimates are 
wider than the simple CIs based on the log-relative risk. In par- 
ticular, the bootstrap CIs for VE, and, to a lesser extent, VET 
are wider. For example, the BC bootstrap 95% CI of VEI3./0. is 
1.94 wider than the simple 95% CI. The difference is less pro- 
nounced with CIs of VEs, with the ratio of the lengths being 
between 1.2 and 1.3. Thus the conventionally used CI substan- 
tially underrepresents the variability in the data. The greater 
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Figure 3. Comparison of Different Estimators and Confidence Intervals for VE for Susceptibility, VEs, stratified and unstratified; VE for infec- 
tiousness, VE,, stratified and unstratified; and total VE, VET. o- o- o SAR, binomial distribution; A- A- A SAR, BC Cl; + - + - + GEE, multi- 
variate delta method; x - x - x GEE, percentile Cl; ,o- o - o GEE, BC CI; V - V - V GEE, BCa C/; O- EO - O Bayesian hierarchical model; 
* - * - * NLMIXED, BC CI. 

sensitivity of the variability of the 
VEI 

and VET estimators 
to compound-level effects might result from the vaccine sta- 
tus of the index case being a compound-level environmental 
variable. The nonparametric estimate of VES33/30 is unstable 
because the total number of secondary cases was only 20, 
compared with 134 cases for VES03/00, so both the simple and 
the BC bootstrap CIs are quite wide. 

The bootstrap CIs of the GEE estimates of VE, are also 
wider than those based on the simple CI for the nonpara- 
metric VE estimates, but not as wide as the bootstrap CIs of 
the nonparametric VE estimates. For example, the GEE per- 
centile, BC, and BCa bootstrap 95% CIs for VE13./0. are 1.63, 
1.74, and 1.83 wider than the simple SAR 95% CI. Thus the 
parametric model in the GEE helps stabilize the estimation 
compared with the nonparametric approach. 

At the higher VE, and VET,, the three bootstrap CIs for the 
GEE estimates differ more from one another than at the lower 

VEs, due to the skewness at higher efficacies. The consistent 

decrease of the lower CI limits moving from percentile, to BC, 
and to BCa for 

VEt 
and VET result from the bias correction 

and the acceleration constant moving in the same direction; 
thus the BCa intervals are well behaved. The BCa intervals for 
the other estimators were also well behaved. 

The multivariate delta method CIs on the GEE estimates 
are symmetric and similar in length to the percentile bootstrap 
CIs. However, the normality assumption of the 

VEt 
and VET 

estimators is clearly violated, so we do not recommend using 
the multivariate delta method. Also, CIs based on the multi- 
variate delta method could theoretically exceed 1, which could 
cause difficulty because VE is bounded at 1. 

6. DISCUSSION 

Because the scientific questions of interest are the popula- 
tion average vaccine effects, the GEE approach to estimate the 

marginal effects of vaccination while taking into account the 
clustered binary structure of the data is appropriate. The GEE 

Table 2. Pertussis VE Estimates From the Niakhar Region, Senegal, 1993 

VE x 100% (95% confidence interval) 

VE for susceptibility VE for infectiousness 

Estimator VES3/00 VE3330 VE3/0 VE30/ VE30100 V 3303 VE3.0. VET 

SAR (BC*) 33(8, 55) 36(-62, 88) 38(16,57) 64(15,89) 65(9,90) 66(28,88) 77(45,94) 
SAR (simple) 33(11,49) 36(-48,72) 38(18,53) 64(31,81) 65(36,81) 66(47,78) 77(58,87) GEE (BC) 31(7,52) 37(9,60) 33(9,53) 63(25,85) 67(29,87) 67(32, 86) 77(52,92) 
NLMIXED (BC) 35(5,57) 43(7,66) 40(11,61) 71(32,90) 74(32,91) 74(36,91) 83(54,94) 
Bayes median 35(10,52) 43(13, 62) 39(15,56) 71(42,87) 75(46,89) 74(47, 88) 83(61,93) 

*BC, bias-corrected bootstrap confidence interval. 
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approach also produces estimates similar to the conventional 
nonparametric estimators. Besides the usual measure of pro- 
tective efficacy, VEs, we have demonstrated estimation of VE, 
and VET from SARs. In particular, when estimating VEI, a 
relatively new aspect of evaluating vaccines, the CIs were con- 
siderably wider when the correlated data structure was taken 
into account. If by design, each transmission unit has only 
one exposed susceptible, then the assumption of independence 
of susceptibles is valid, and the pooled nonparametric SAR 
approach with log-relative risk CI is appropriate. 

The nonparametric pooled SAR log-relative risk confidence 
intervals are easy to use for an exploratory analysis of the data. 
However, the GEE estimates are computed easily in SAS from 
PROC GENMOD. The main trick is in obtaining the boot- 
strap confidence intervals. The compounds in each bootstrap 
sample need to be renumbered so that PROC GENMOD will 
think that each compound is unique, even though it may be 
in the sample more than once. The bootstrap can also be used 
with the pooled nonparametric SAR approach. If there are suf- 
ficient data, then the bootstrap CIs are similar for both the 
GEE parametrics and the nonparametric estimates. However, 
with sparse data, the parametric model produces substantially 
narrower intervals. 

Our focus here has been on appropriate inference within 
the limits of the conventional SAR analysis (Fine et al. 1988; 
Orenstein et al. 1988), which makes several assumptions 
(Halloran 2001). They include (1) the transmission units are 
independent, (2) the incubation and latent periods are fixed, 
(3) the infectious period is fixed, and (4) coprimaries are irrel- 
evant. 

Assuming independent transmission units implies the asym- 
metric assumption that the index case and coprimaries get 
infected from outside the unit, while the susceptibles are 
exposed only within the unit. Other models that do not assume 
independence (Longini and Koopman 1982; Longini, Koop- 
man, Haber, and Cotsonis 1988; Rampey, Longini, Haber, and 
Monto 1992; Longini et al. 1996) require more assumptions 
about the community mixing structure that may not be valid. 
Although SAR estimates are sensitive to the mixing assump- 
tions, ratio estimators such as VE are more robust to changes 
in model specification (Longini Halloran, Haber, and Chen 
1993). 

Because times of infection and onset and termination of 
infectiousness are not observed, estimation of the distribution 
of the latent, incubation, and infectious periods is a challenge 
(Bailey 1975; O'Neill, Balding, Becker, Eerola, and Mollison 
2001). The conventional SAR analysis makes use of informa- 
tion from other sources to determine the lengths of the periods 
(Kendrick and Eldering 1939). We recommend exploring dif- 
ferent cutoff times as a sensitivity analysis of how the SARs 
and vaccine effects vary with the assumption of the infectious 
period. The VE ratio estimators are less sensitive to the choice 
of cutoff then the SARs. The VE1 estimates tended to be 
higher with a shorter cutoff time. For example, at 28 days cut- 
off, the GEE estimate of VE,3/0 = 85, 95% BCa CI [46, 95] 
(Prdziosi and Halloran 2003), higher than that presented here 
for no cutoff. Estimates based on no cutoff are likely the 
more conservative. Later cases would be less likely to have 
been infected by the index case, so they dilute the effect 
estimates. 

Ignoring coprimaries in the SAR analysis carries with it 
the strong assumption that the probability of being infected is 
independent of the number of infectious contacts, so we do 
not recommend this. Here we removed compounds that had 
coprimaries. Chu, Pr6ziosi, and Halloran (2001) developed a 
method to include transmission units with coprimaries with 
differing vaccine status. Reanalysis of these data including 
compounds with coprimaries changed neither the point esti- 
mates nor the confidence intervals substantially. 

Here we emphasized estimation of 
VEt 

and VET, relatively 
new measures for evaluating vaccination. The properties of 
VEI require further research. The people who become infected 
and expose other people are not a random sample of the pop- 
ulation; thus there is a potential for selection bias (Halloran 
and Struchiner 1995). Also, studies designed to estimate VE, 
will need larger samples sizes than studies to estimate VEs. 

Does the analysis provide convincing evidence that per- 
tussis vaccination reduces transmission of Bp? The outcomes 
are based on clinical disease, not infection. The results are 
most consistent with the interpretation that in fact vaccination 
reduces transmission of infection. Further answers to ques- 
tions of how pertussis vaccination affects transmission require 
studies designed to look at infection, rather than disease. In 
this article we have presented methods to improve estimation 
of VE from the conventional SARs. Much challenging statis- 
tical research remains to be done. 

[Received November 2001. Revised November 2002.] 
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