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SUMMARY.

We derive the nonparametric maximum likelihood estimate (NPMLE) of the cumulative in-

cidence functions for competing risks survival data subject to interval censoring and truncation. Since the
cumulative incidence function NPMLEs give rise to an estimate of the survival distribution which can be
undefined over a potentially larger set of regions than the NPMLE of the survival function obtained ignoring
failure type, we consider an alternative pseudolikelihood estimator. The methods are then applied to data
from a cohort of injecting drug users in Thailand susceptible to infection from HIV-1 subtypes B and E.
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1. Introduction

In this article, we develop nonparametric estimation meth-
ods for competing risks survival data subject to interval cen-
soring and truncation. These methods are motivated by the
Bangkok Metropolitan Administration (BMA) injecting drug
users (IDUs) cohort, which was established in 1995 to as-
sess the feasibility of conducting a phase IIT HIV wvaccine
efficacy trial in the IDU population in Bangkok, Thailand
(Vanichseni et al., 2001, in press). The study was designed to
measure rates of successful follow-up and HIV incidence as
well as to determine related risk factors to target more effec-
tive HIV prevention strategies. The cohort consisted of 1209
HIV seronegative IDUs enrolled in two time periods in May—
November 1995 and May-December 1996 at 15 BMA drug
treatment clinics providing methadone treatment as part of
a comprehensive care program. At enrollment and approxi-
mately every 4 months thereafter, participants received HIV
prevention counseling and were assessed for HIV seroconver-
sion. As of December 1998, there were 1124 people with at
least one follow-up visit, 133 HIV seroconversions, and ap-
proximately 2400 person years of follow-up. Of the 133 peo-
ple observed to seroconvert, 27 were of subtype B and 99 of
subtype E. The remaining seven seroconversions were of un-
known subtype, which we assume would be subtype B or E if
known. Further, we assume that infection with one subtype
precludes infection with the other. Thus, for these data, times
of seroconversion are interval censored, i.e., only known to lie
in a certain time interval; individuals are subject to compet-
ing risks; and for analyses in calendar time rather than time in
study, data are also subject to left truncation due to different
enrollment times.
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In the competing risks setting, it is of interest to estimate
the cumulative incidence function, i.e., the cumulative prob-
ability of a specific failure type. The nonparametric maxi-
mum likelihood estimate (NPMLE) of the cumulative inci-
dence function for right-censored, competing risks survival
data is given in Aalen (1976) and Kalbfleisch and Prentice
(1980). In the absence of competing risks, Peto (1973) first
characterized the survival function NPMLE for interval-cen-
sored failure time data and used a constrained Newton-
Raphson algorithm for estimation. Turnbull (1976) extended
the work of Peto to allow for truncation while using a self-
consistent algorithm. Later, Frydman (1994) modified Turn-
bull’'s method to account for truncation properly. Gentleman
and Geyer (1994) gave the conditions under which Turnbull’s
estimator is indeed the NPMLE and is unique, although they
do not address truncation. Frydman (1995) extended Turn-
bull’s estimator to the special case of a Markov illness—death
process, which has a competing risks element in the structure
of the process. We extend Turnbull’s estimator to the general
setting of competing risks, allowing for any number of fail-
ure types and for each failure time to be subject to interval
censoring and truncation.

We begin by introducing some notation and stating the
problem formally. Let T be the random variable for survival
time with corresponding survival function S(t) = Pr[t < T7.
Suppose that there are J possible types or causes of failure
and, for 7 = 1,...,J, let the cumulative incidence function
for cause j be I;(t) = Pr[T < t, failure of type j]. This is the
probability of failure of type j by time ¢t when competing risks
are present. Note that X; I;(t) = 1 — S(t) for any time ¢.

Suppose we have n observations and, for the ith observation
(1 < i < n), let t; be the failure time and j; the cause of
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failure. Following Frydman (1994), let B; = (v;,u;) be the
truncation set such that we observe ¢; only if ¢; € B; and
assume that Prg(U;B;) = 1. Suppose that ¢; is only known
to be in the interval A; = [l;,r;], where A; C B;. For right-
censored observations, we use the convention that [l; is the
censoring time and r; = oo. Let §; be one if the failure type
is known and zero otherwise. The failure type is unknown
for right-censored observations and may also be unknown for
interval-censored observations. We will also assume that the
censoring and truncation mechanism for 7' and the missing
mechanism for failure type are independent of the failure time.

Our goal is to find estimators for the functions I;(t), j =

1,...,J. We first consider estimators, fj (t), that maximize

the likelihood

fp o = =P [ A k) = 1)}
2L (wi=) = I(wit)} ’

i=1

1-8,;

(1)
subject to the constraints
I;(t) nonnegative, nondecreasing for each j, and
YLt <1 forallt (2)
J

In Section 2, we characterize fj (t) and give an EM algo-
rithm for its estimation. In the absence of competing risks,
our EM algorithm reduces to Turnbull's algorithm. We show
that these estimators have an unexpected and undesirable
property, namely the resulting estimator of the survival dis-
tribution, S{t) = 1 — 35 fj (t), is undefined over a potentially
larger set of regions than the NPMLE of S(¢) ignoring failure
type. Therefore, we explore a second nonparametric estimator
in Section 3 that conditions on the NPMLE of the survival
distribution ignoring failure type. In Section 4, the ideas of
Sections 2 and 3 are illustrated through a simple example
with three data points that highlights differences in the two
estimators. Finally, in Section 5, we apply these methods to
the IDU data from Thailand.

2. Nonparametric Maximum Likelihood Estimation

When failure type is the same for all individuals or differ-
ences in failure type are ignored, the NPMLE of the sur-
vival distribution, S(t), is known for failure times subject
to interval censoring and truncation. We will call S(t) the
marginal survival NPMLE. Frydman (1994) showed that char-
acterization of the marginal survival NPMLE is determined
by the set C' = UJ-,[gk,px], the union of m closed inter-
vals, where the g.’'s and pi’s are chosen as follows. First, let
L={ljui:1<i<n}and R={r;,v; : 1 <i < n} Then
order all points in the sets L and R and let [gx, p] be assigned
to the kth occurrence of an element of L followed immediately
by an element of R such that g < pg. Frydman (1994) showed
that the NPMLE of S(t) will be constant outside C' and will
decrease on some or all of the intervals within C. Further,
the likelihood is a function only of the amount S(¢) decreases
on these intervals and not of how S(t) decreases. Thus, the
NPMLE is a collection of functions determined only by the
amount of decrease on the intervals of C.

In a similar fashion, we now construct sets Cj, which char-
acterize the NPMLE of I;. For each event type j =1,...,J,

let C; = UZZl[qjk,pjk] be the union of m; closed intervals,
where the ¢;1’s and p;,’s are obtained as follows. For each j,
let N; = {¢:6; = 0orj; =j}, ie., N; is an index set for
those observations with an event of type j or who have a miss-
ing failure type. Now let L; = {l; : i€ N;}U{u; : 1 <i<n}
and Rj = {r; : i € N;} U {v; : 1 < i < n}. Order all points in
the sets L; and R; and let [g;x,pjx] be assigned to the kth
occurrence of an element of L; followed immediately by an
element of R; such that g;; < p;x. We now state two lemmas
that characterize the NPMLE of the I;(t)’s.

LEMMA 1: For 37 = 1,...,J, any cumulative incidence
function that increases outside the set C; cannot be an MLE

Oij(t).

LEMMA 2: For fized values I;(q;,—) and I;j(pjp+) (7 =
L...,J; k= 1,...,m;), the likelihood is independent of the
behavior of I;(t) within each interval (g1, pjk)-

The proof of Lemma 1 is given in the Appendix and the
proof of Lemma 2 follows directly from inspection of the like-
lihood (1). These lemmas tell us that the NPMLE of I;(t)
will be constant outside C; and will increase on some or all
of the intervals of C;. Like the marginal NPMLE of S(t), the
NPMLE of I;(t) will be a collection of functions determined
solely by the amount of increase on the intervals of C;.

We can now rewrite likelihood (1) based on the lemmas
and develop an EM algorithm for maximization. Let ¢;x =
Lipjx+) = Li(gik~), @ ={¢jr:7=1,.... ik =1,...,m;},
and o ;i be an indicator variable that is one if [q]-k,pjk] C Ay
and i € N; and is zero otherwise, i.e., a;;x indicates whether
it is possible that the ith observation had a failure of type
j in the kth interval of C. Let 8;;x = 1 if [g;x,pj6] € B;
and be zero otherwise. Then, from the lemmas, it follows that
maximizing likelihood (1) subject to (2) is equivalent to max-
imizing

YR ijkbik
i=1 E]’ ZZI:JI Bijkdir

subject to the constraints ¢;, > 0 for all j, k and

m;

DD dw =1

7 k=1

To attain this goal, we use an EM algorithm as follows.

To compute the expectation step of the EM algorithm, first
we define an indicator variable T, = 1 if ¢; € [g;x, ;4] and
Ji = j and Z;; = 0 otherwise, i.e., Z;;, indicates whether the
ith observation has an event of type j in the interval [g;x, p;x]-
Note that we may not know Z;;, e.g., for §; = 0, we do not
even know j;. Let the expected value of Z,;, be denoted by
ik (@). Then, under ¢,

ik Bjk
s *
D 2oty @ik Bk

Because of truncation, the ith observation can be thought
of as representing a group of unknown size where all observa-
tions in that group are unobserved because their failure time
lies outside of B;. Turnbull refers to these observations as the
ith observation’s ghosts. Let G;;; be the number in the group
corresponding to the ith observation having failure type j in

Kijk(@) = (3)
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[gjk: Pjk), the kth interval of C;. Let the expected value of
Gijx be denoted by v;;1(¢). Then

(1 = Bijr)dj
Y el Buke bk

This follows because the expected number of ghosts for the
tth observation is Pr(B;)/Pr(B;) and the probability of one of
these ghosts failing in the kth interval of C; is (1 — B;x) ¢/
Pr(By), where Pr(B;) = &, Zzzl Bijkdjr and Pr(Bf) =1 —
Pr(B;).

In the maximization step, we treat expected values as ob-
served. The overall proportion of failures of type 7 in the kth
interval of C; is

vijk(@) = (4)

i {pin (@) +vie(9) } .
> Z]-/ E:f;/l {Nz‘j'k’ (¢) + Vij’k’(¢)}

The EM algorithm iterates between equations (3), (4), and

k(@) = (5)

(5) after selecting initial estimates ¢'§(}? > 0 such that

IR

J k=1

(0)), updates ¢ by (bﬁ) =

wjk(qﬁ(o)), and repeats until convergence. The resulting self-
consistent estimate of ¢, which is a solution of the simulta-
neous equations ¢;, = () (J = 1,..., Sk =1,...,my),
reduces exactly to Turnbull’s (1976) estimate when J = 1.
In other words, this a generalization of Turnbull’s self-consis-
tency algorithm to the competing risks setting.

We note that the EM algorithm is not guaranteed to con-
verge to the MLE. However, we determine that we have at-
tained a maximum by checking the Kuhn—Tucker conditions
as described in Gentleman and Geyer (1994). (See Fletcher
(1987) for general methods to assess uniqueness of a maximum
in constrained optimization problems and Hudgens (2000) for
the specific details related to this problem.) Further, when
there is no truncation, we verify the uniqueness of the es-
timated masses following their same methods since the log
likelihood is concave. When there is truncation, the log likeli-
hood is not concave so that the Kuhn-Tucker conditions only
ensure that we are at a local maximum. If the estimate is not
unique, it may be that some of the masses are not identifi-
able. For example, it is possible that, for some j # j' and
some k € {1,...,m;} and k" € {1,...,m;/}, the terms ¢,
and ¢,/ appear in the likelihood only in sum. This occurs
if Qg = Q450K and ﬁijk = IBz'j/k' for all 7, in which case,
only ¢ + ¢;4 is identifiable. Inspection of L] a;;, and
71 Bijk for different j and k can be helpful in determin-
ing possible unidentifiable parameters. Another method for
finding unidentifiable parameters is to look for estimates that
vary for different initial starting values of the EM.

Once we have ¢, the NPMLE of I is

i.e., computes pijk(d)(o)) and vy, (P

0 ift<Qj1

dij1+ dj2 4+ Pk fpjr <t <gjry1 6)
1<k <mj — 1)

if t > Pmj-

Ii(t) =

dj1 + by + -+ by,

Fort e [q]k,pjk] I (t) is undefined if qﬁjk > 0 and [g;x,pjx] €
C; and equals ¢]1 + ¢]2 4+ 4 gbjk 1 otherwise. Note that, if
Pjm,; = 00 and ¢jm; > 0, then I;(t) is undefined for t > Qjm,;-
No formal discussion of asyrnptotic properties of (6) will be
undertaken here. Based on previous work of nonparametric
estimation in the presence of interval censoring (e.g., Groene-
boom and Wellner, 1992; Yu, Li, and Wong, 1998), if the
support of the censoring mechanism is discrete and finite (as
in the case of the BMA data we consider here), the estima-
tion of the cumulative incidence functions becomes a finite
dimensional estimation problem and we expect the NPMLE
to have the usual n!/? convergence rate. If the random vari-
ables dictating the censoring are treated as continuous, the
rate of convergence of the NPMLE will likely not be nl/?
and derivation of the limiting distribution will not be trivial.
Likewise, we expect the bootstrap confidence intervals based
on resampling data sets of size n to be valid in the discrete set-
ting and possibly misleading in the continuous case (Wellner
and Zhan, 1997). To account for undefined regions that may
arise from the bootstrap samples in cases where bootstrap-
ping is valid, we employ the following method. In computing
the upper (lower) boundary of the 95% confidence intervals,
for each bootstrap sample, we consider the estimate within
the class of NPMLEs that places all of an interval’s mass at
the left-hand (right-hand) endpoint of the undefined region.
This method may result in conservative (i.e., too wide) confi-
dence intervals; however, we expect the bias to be negligible
asymptotically.
3. Pseudolikelihood Estimate
When employing the NPMLE method, once we have esti-
mated the I; (¢ ) s, we can estimate the survival distribution by
St)=1- %, I (t) Note, however, that S(t) is defined only
for ¢ where each I (t) is defined, i.e., $(t) may be undefined
within all or part of U;C};. Recall the margmal NPMLE, § (t),
is undefined only within C, where C' C U;C;. Thus, it is pos-
sible that S(t) is undefined on a larger region than ,3(¢). (For
an example, see the next section which explores a data set
having three observations.) In this section, we give estimators

I;(t) such that
1- Z Ii(

We do this by first calculatmg the NPMLE of the survival
distribution, S (t), ignoring failure type, and then impose the
condition in equation (7). We will refer to this method and
resulting estimator as the pseudolikelihood method and pseu-
dolikelihood estimate (PLE), respectively.

Note that an equivalent form of (1) is given by

= 5(t) )

1 g (rit) = L, ()1 S i) = Sra)) ™
IT™ S = Sart) - @

i=1
Thus, maximizing (1) subject to the constraint (7) is equiva-
lent to maximizing
n

[Tz -

=1

L (L)% (9)

By constraining the PLEs of the cumulative incidence func-
tions by (7), I;(t) must be constant outside C for each j. This
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follows since the cumulative incidence functions are monoton-
ically increasing and must sum to 1 — S”(t), which is constant
outside C'. Whereas each cumulative incidence function esti-
mate fj (t) using the NPMLE approach is undefined on differ-
ent regions, the PLEs will be undefined only on C for all types
of failure. Thus, we let Wi = I;j(pr+) — Ij(gp—), ¥ = {¥jx :
i=1,...,J;k=1,...,m}, and ¥ = S(qx—) — S(pr+). Also
let afjk be an indicator variable that is one if [gx,px] C A;,
6; = 1, and j; = j and is zero otherwise. Following reasoning
similar to the previous section, (9) is equivalent to

m
c 3
TpIpITN

iER 3 k=1

(10)

where R = {i | §; = 1}. The goal is to maximize (10) subject
to the constraints that ¥;, > 0 for all j,k and X; 9, = 9.
Again, we use an EM algorithm to attain this goal.

Define an indicator variable J;;x = 1 if t; € [gg,py) and
Ji = j and J;;x = 0 otherwise, i.e., J;;; indicates whether
the 7th observation has an event of type j in the interval
[qx, px]. Let the expected value of J;;; under ¥ be denoted
by p;jx (1) such that

c i
. aU}ngk
= . —
Z]" k=1 O 5k

Treating the expected values as observed, the proportion of
failures of type j in the kth interval is

_ - Y erbir(®)
ﬂ]k(w) - wk ZieR Z]/ Hljlk(1/))

Hijk (%) (11)

(12)

such that ¥; ij(':,b) = zlk
The EM algorithm iterates between equations (11) and
(12) after selecting initial estimates 1/1](2) forj=1,...,J and
0 - 0 .
k = 1,...,m such that 5,9} = o, where ) > 0 if
¥ > 0 and 111)(.2) = 0 if ¢4 = 0. Once we have 7]), we can
compute the PLE fj (t) in a fashion similar to (6). As in the
NPMLE case, we verify that we have reached a maximum via

standard techniques for constrained optimization similar to
the methods outlined in Gentleman and Geyer (1994).

4. Example

In this section, we consider a simple example to illustrate
the potential different behaviors of the NPMLE and PLE.
Consider the following data set of n = 3 observations without
truncation:

t 41 61' Ji
1 11,3 1 1 (13)
2 (2, 5] 1 2
3 4,5 1 2

From the data, we see that C1 = [1,3] and Cy = [4,5].
Thus, to get the NPMLE, we maximize ¢11¢21¢21, subject
to constraints ¢11 + ¢21 = 1, ¢11 > 0, and ¢21 > 0, where
o111 =1 (3+) - 11(17) and ¢921 = ]2(5+) - 12(4—). Following
Gentleman and Geyer (1994), we use the Kuhn-Tucker con-
ditions to find that the unique constrained maximum occurs

-1
~1

Data Marginal Survival NPMLE
o
f e
P s I
-
0 1 2 3 4 5 8 e 1 2 3 4 5 6
NPMLE PLE
=} o
3 o —
g e ] g ......
¢ 1 2 3 4 5 6 0 1 2 3 4 5 6
Figure 1. Example data given in Section 4. In all four pan-

els, the horizontal axis is time in arbitrary units. Top left
panel: graphical representation of data where the dotted and
solid lines denote censoring intervals for failure types 1 and 2,
respectively. Top right panel: marginal NPMLE of the survival
distribution, S(t). Bottom left panel: NPMLE of the cumula-
tive incidence functions. The dotted and solid lines give I} (¢)
and I5(t), respectively. Bottom right panel: Cumulative inci-
dence function estimates using the pseudolikelihood method.
The dotted and solid lines give I () and Ix(t), respectively.

at ¢11 = 1/3 and ¢21 = 2/3. Starting at ¢‘§?) = ¢§?)

the EM converges to these values.

The set C' consists of two regions, [2,3] and [4,5]. The
marginal NPMLE for the survival distribution is 7,51 =1/2
and 1y = 1/2. For the pseudolikelihood method, we let ¥;; =
I;(34) = I;(2—) and ¥j2 = I;(5+) — I;(4—) for § = 1,2. The
goal is to maximize 11 (W21 + ¥22)¥22 subject to the con-
straints ¥ij + Yok = Y = 1/2 for k = 1,2 and ¢ > 0
for j,k = 1,2. The unique constrained maximum occurs at
’l/~)11 = ’lZ)QQ =1/2 and 2,512 = 1,[)21 = 0. Starting at 1;"](.(;) =1/4
for all 7, k, the EM converges to these values. See Figure 1 for
a graphical representation of this example.

There are two differences in the estimators illustrated by
this simple example. First, the length of regions on which each
estimator is undefined can be different. For example, here S(t)
is undefined on C; U Co = [1,3] U [4, 5] whereas S(¢) is only
undefined on the smaller region C = [2,3] U [4,5]. Second,
even in the regions where both estimators are defined, they
will not necessarily be equal. For example, see the regions [3, 4]
and [5,00). Estimators S and S may also be defined over a
different number of regions, although that is not the case in
this example.

The motivation behind the pseudolikelihood method is to
find an estimator of I;(t) such that the resulting estimate of
the survival distribution is defined over the same regions as

=1/2,
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Figure 2. NPMLE and PLE of the subtype-specific cumulative incidence functions for time from enrollment to serocon-
version in the BMA cohort. Ninety-five percent bootstrap confidence intervals (CI) for NPMLE and PLE are given by dotted

lines.

S(t), namely outside C. The pseudolikelihood method ensures
not only that the estimated survival function is defined over
these regions but also that it is equal to the marginal NPMLE
of the survival function, ie., S(t) = 1 - &; fj(t) for all ¢
outside C. A different estimator arises if we only assume that
the estimate of I;(t) is defined and constant outside C' but
is not necessarily subject to (7). For example, suppose we
observe the same data as {13} except that j3 = 1. If we let
Y1 = Ij(3+) —I]'(Q—') and wjg = Ij(5+) —Ij(4—) forj=1,2
and maximize ¥y (21 + ¥22)¢¥12 with the only constraint
being ;4 ¥j;. = 1, then the constrained maximum occurs at

P11 = 2. = Y12 = 1/3, where v2. = 4921 + 922, i.e., P21 and
122 are not identifiable. In general, this estimator introduces
additional parameters that are not identifiable without the
constraints of the pseudolikelihood method and thus will not
be considered further. Note that the parameters in both the
NPMLE and PLE are identifiable for the data set given in
(13) with the change j3 = 1.

5. Application

In this section, we apply the above methods to the BMA
cohort study, which is described in the Introduction and in
more detail elsewhere (Vanichseni et al., 2001, in press). It
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Figure 3. NPMLE and 95% bootstrap confidence intervals

(CI) of the subtype-specific cumulative incidence functions
for calendar time of seroconversion conditional on survival
beyond day 0.

is unknown if subtypes B and E differ with regard to infec-
tiousness or transmissibility in the Bangkok IDU population.
A first step in addressing this issue is to compare the cumu-
lative incidence of subtypes E and B in the cohort.

We first calculate the cumulative incidence of subtypes
B and E infection as a function of time since study enroll-
ment. This would be the appropriate analysis if all partic-
ipants had been enrolled simultaneously; it is also valid if
the hazard of infection by each HIV subtype is roughly con-
stant. It is also a natural first analysis for these data, even if
the more appropriate time scale for analysis is calendar time.
The NPMLE and PLE of the cumulative incidence functions
for subtypes B and E are given in Figure 2. Since the en-
rollment date, last seronegative, and first seropositive tests
are measured in days, the support of the censoring mecha-
nism is discrete and finite. Therefore, confidence intervals for
the NPMLE and PLE were obtained using the bootstrap per-
centile method from 500 replacement samples of size n = 1124
from {(A4;,0;,J;):i1=1,...,n}.

The largest right-censored observation occurs at 1297 days
after enrollment, which is greater than the right-hand end-
point of all interval-censored observations. Thus, for either
method, estimates of S(t), Ip(t), and I (t) are undefined
beyond 1297. Furthermore, Ig{oo) — I5(1297) and I (o0) —
I£(1297) are not identifiable for either method (i.e., we can-
not estimate the ultimate proportion infected with B or E).
Otherwise, the NPMLE masses (,‘b and the PLE masses 1[: are
unique for this data set. Excluding the region [1297. oc), we
compare the number and length of undefined regions for the
two estimators in this example. These regions are denoted by
the absence of vertical lines in the estimators in Figure 2. The
NPMLEs of I;;(t) and Ig(t) are both undefined on five dis-
tinct regions, so S(t) is undefined on 10 regions. The PLEs
f[;(t) and f;;(t) are undefined in six and seven regions, re-

spectively, and S(t) is undefined in eight regions. Looking at
the overall length of the undefined regions, the NPMLEs of
Ig(t), Ix(t), and S(t) are undefined for 21, 13, and 34 days,
respectively, while the corresponding PLEs are undefined for
22, 26, and 28 days.

Because HIV incidence may vary over time, it is necessary
to calculate the survival and cumulative incidence functions
over calendar time. Since the enrollment time varies within
the cohort, this results in left-truncated data. It is known
that the NPMLE of the survival distribution is inconsistent
and can severely underestimate the true survival probabil-
ity in the presence of left truncation and interval censoring
(Pan and Chappell, 1999). This is due to a small number of
people being at risk at the early times of a study. For exam-
ple, the marginal survival NPMLE for the BMA cohort data
with truncation drops 0.17 on day 0 (i.e., May 30, 1995), re-
sulting in an underestimate of the survival curve. Similarly,
the NPMLE of the cumulative incidence function for subtype
B increases 0.17 on day 0. To compensate, we conditioned
on survival beyond day 0. Figure 3 gives the NPMLE of the
cumulative incidence functions for subtypes B and E over cal-
endar time, both conditional on not seroconverting on day 0.
The plot (not shown) of the PLEs of Ig(t) and Iz (t) over cal-
endar time is similar to that in Figure 3 when conditioning on
survival beyond day 0. Confidence intervals for the NPMLE
were obtained using 500 replacement bootstrap samples of
size n = 1124. The PLEs of the cumulative incidence func-
tions and marginal survival NPMLE are defined everywhere.
The NPMLE of I;(¢t) and I (t) are undefined on one and two
regions, having total length 15 and 2 days, respectively, while
S(t) is undefined on three intervals of length 17 days.

Figure 2 suggests that the cumulative incidence for subtype
E is considerably higher than that for subtype B. However,
locking at Figure 3, we see that, although the incidence of
subtype E is higher throughout, the difference is not very pro-
nounced until late 1996. The cause of this difference is under
investigation using subtype-specific transmission probability
models (Hudgens et al., unpublished manuscript).

6. Discussion

In this work, we characterized the NPMLE of cumulative in-
cidence functions for competing risks survival data subject
to interval censoring and truncation. Further, we developed
an EM algorithm that, coupled with the Kuhn—Tucker condi-
tions, provides a numerical algorithm for estimation. We con-
sidered a pseudolikelihood estimate as an alternative to the
NPMLE to avoid introducing additional undefined regions to
the survival function estimate. For the BMA example with-
out truncation, the desired effect was achieved, namely, S has
fewer undefined regions of shorter total length than S. How-
ever, there is a trade-off in that the PLEs of the cumulative
incidence functions have more undefined regions of greater to-
tal length than the corresponding NPMLEs. When truncation
is included, the results differ in that the nonparametric max-
imum likelihood methods result in estimators of the survival
and cumulative incidence functions that are undefined over
more regions of greater total length than the corresponding
estimates from the pseudolikelihood method. Further research
is needed to investigate the theoretical properties, such as con-
sistency, rates of convergence, and asymptotic distributions,
of the two proposed estimators.
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RESUME

Nous fournissons une estimation non-paramétrique du max-
imum de vraisemblance (NPMLE) de fonctions d’incidence
cumulées pour des données de survie sujettes & des risques
compétitifs et des censures par intervalle et des troncations.
Puisque les estimations NPMLE de la fonction d’incidence cu-
mulée produisent une estimation de la fonction de survie, qui
peut étre indéfinie sur des régions potentiellement plus larges
que Vestimation NPMLE de la fonction de survie obtenue en
ignorant le type de défaillance, nous considérons un estima-
teur alternatif de pseudo-vraisemblance. Ces méthodes sont
alors appliquées a des données provenant d’une cohorte d’
utilisateurs de drogues par injection en Thailande, suscepti-
bles d’étre infectés par les sous-types B et E du VIH.
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APPENDIX

LEMMA 1. For j =1,...,J, any cumulative incidence func-
tion that increases outside the set C; cannot be an MLE of

Ij(t).

Proof. Suppose we have an estimator fj (t) satisfying the
constraints given in (2). Further suppose there exists at least
one j such that I ;(t) is not constant outside C;. We will now
show that I i(t) cannot be the MLE, thus proving the lemma.

Construct another estimator I;(t) as follows. For k= 1,. . .,
m; —1, choose 751, € (pjk, ¢jr+1) such that r;i is greater than
all elements of R; and less than all elements of L; that are in
the interval. Then let I;(¢) be constant outside C; such that,
fork=1,...,m; — 1,

Lipjx+) = Lilgjes1—) = Li(rjx) = I(rj).

Letting I;(t) = fj (t) for all t € Cj, it is easy to see that [;(t)
also satisfies the constraints given in (2). Further, likelihood
(1) is greater at I;(t) than I;(t) since, for any t € {R;},

Ii(t+) < I(t+), (14)
and for any ¢t € {L;},
L) > I;(t-), (15)

with at least one strict inequality holding in (14) or (15) since
I;(t) is not constant outside C;. Therefore, I;(t) is not an
MLE.
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