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A statistical modal is presented for the analysis of infectious disease data
from family studies in the community. The model panitions the sources of
infection into those from within the househald and those from the community at
large. The parameters reflecting these sources of infection are estimated as
functions of the riak factors. This new model is used to overcome problems
assaciated with the Tack of independence of observations in infectious diseaze
data and negative confounding due to the association of unmeasured exposures
and Immunity. An example of how this new statistical model is used to provide a
clearer and less confounded description of risk factor effects is presented for
data from influgnza A(H3N2) epidemic seasons in the Tecumseh Respiratory
liness Study. The risk factors examined are age and pre-epidemic season
antibody level as measured by the hemaggluiination-inhibition test, while the
outcome is the infection rate. A atandard analysis of the data indicates that the
efficacy of protective antibodies is 70% in children and only 47% in adults.
However, such an efficacy measurement is negatively confounded by past
exposure which iz age dependent. By means of the model, the true, uncon-
founded, efficacy of protective antibodies is shown to be 90% in both adults and

chlldren.

antibodies; biometry; disease outbreaks; orthomyxoviridae; vaccings

A major goal of infectious disease epide-
miclogy is to assess the impact of important
risk factors on the probability of infection
for persons. Such risk factors generally af-
feet the probability that an infectious agent
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will be successfully transmitted to suascep-
tible persons. However, the usual method
of regressing infection or illness attack
rates against the levels of various meagured
risk factors, e.g., contingency tables, log-
linear models, and logistic regression, ¢an
only provide indirect and sometimes am-
biguous information about the relation be-
tween trangmisgion probabilities and risk
factors. This problem arises because each
time a perzon is infected, the rick of infec-
tion for those persons eloae to him or her
increazes directly due to potential trang-
miseion of the infactious agent. In addition,
the use of standard statistical methoda
leads to markedly biased point estimates of
absolute or relative risks because current

246



846

risk factors for exposure to infection are
often correlated with past such exposures
and, thus, with acquired immunity. Since
the risk factora associated with past expo-
sure ¢an never be fully specified and en-
tered into the analysis, the confounding
gffect of these past exposures on the rela-
tion between present risk factors and dis-
eage outcome can not be controlled for via
stratification, log-linear models, or logistic
regression.

In this paper, a statistical procedurs is
used to help resolve some of these difficul-
ties by relating risk factors directly to the
two major sources of infection: 1) those
within the household and 2) those from the
community at large. The model used in this
paper is an extension of the probabilistic
made] developed by Longini and Koopman
(1) and Longini et al. (2). In that model,
housshold and eommunity sourees of infec-
tion are represented by the two parameters
defined as the household secondary attack
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rate and the corumunity probability of in-
fection, respectively. This model haa been
used to meagure and compare the transmis-
gibility of different types and subtypes of
influenza in the household and the com-
munity, both in Tecumseh, Michigan and
Seattle, Waghington (2, 3), In addition, the
model has been applied to the analysis of
data from rhinovirus (4), rotavirus (5}, and
dengue fever (6) epidemics. The modeled
estimator for secondary attack rate has
been shown to be robust under a number
of common simulated field copditions (7).
The extension presented here of that model
consists of specifying the secondary attack
rate and community probability of infec-
tion in the basic model of Longini et al.
{1, 2) at different levels of risk factors.
Techmnical detaila can be found in Haber et
al. (8). In this paper, the basic technique is
introduced as a new tool for assessing the
impact of risk factors on infection trans-
mission.

THE MODEL
Probability model

The model centers on the probability that a particular pattern of infection occurs in a
houszehold during the course of an epidemic, given an initial pattern of risk for the
persons in the household. The model is formulated for a single risk factor which can he
categorized into r =1, 2, ..., R levels of risk. This formulation can be generalized to
multiple risk factors whose joint exposure define specific risk categories. Define @, as the
probability that a suaceptible person, at the rth nsk factor level, escapes being infected
by a single infected household member during the latter's entire infectious period. Further,
let B, be the probability that the suseeptible person, at the rth risk factor level, escapes
being infected from community sources during the course of the epidemic period. Now
conaider a household with s initial susceptibles whose risk levels are 71, 15, ..., ;. Then
index the s susceptibles in & household by i=1, 2, .. ., 5. In order to describe the pattern
of infection in a household, define the Indicator variable x;, where x; = 1 if the ith
household member is infected and x; = 0 if not infected. Then k = Y%, 1 is the total
number of persons infected in 2 household. In order to derive the probability of a
particular pattern of infection (x,, ..., x,) given a4 particular pattern of risk (r, ..., r,),
for a household with s initial susceptibles, the following assumptions are made:

1) The infection escape parameters &, and B, are independent of the household size
unless household size is specified as a risk factor.

2) Every infected person is equally infectious to other persons regardless of that
infected person’s rizk factor level. (Of course, the susceptibility and degree of contact
with infectives varies for susceptibles according to their risk factor level, r.)

3) Household members mix at random within the household.
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4) The event that a person is infected from the community is independent of the
number of susceptible and infected persons in his or her household.
5) Following infection, a person becomes immune for the remainder of the epidemic

period.
Cliven the above five assumptions, the probability of interest is given by
H B. for k=10,
Bl - ) Il B.G:, for R=1,...,5—1, (1)
P(h,---,x.sl"u-v-:n)" b izzmd
1= Py, e |, oo for B=g
| LA B0 OE TR
where J1, ..., jr are the indices of the k& infected persons and 1, denotes the array (1,...,

1 of order k. The derivation of equation 1 is given in the Appendix. There are E* posaible
risk factor patterns and 2° possible infection patterns for each risk factor pattern, yielding
2 % R* probabilities from equation 1. For example, suppose k = 2 and s = 2, then there
are 22 X 2% = 16 probabilities. Eight of the possible outcomes are listed below:

FP0,0]1,2=58,B=PFP(0,0}2,1),
P(1,0]1,2=B(1|1)By@Q=(1—B.)8:Q: = P(0,1]2,1),
P(0,1]1,2)m P(1]| 28,8 =(1=DB:} 8,160 = F(1,0]2,1)
P(1,1|1,2)=1—-P(0,0]1,2)—-P(1,0]1,2)—P(0,2|1,2)
=1—B,B:— {1 =B1)B:8: — (1 —B;}B, @, =P{1,1]2,1).
The model given by equation 1 reduces to the model of Longini et al. (1, 2) when the risk

factors are on 2 household level. In general, the 2R model parameters (By, Ba, ..., Bg,
Q., @, ..., Qx) are estimated by fitting the probability model given by equation 1 to

houzehold level infection data as described below.

Data and parameter estimation

The data are taken from family studies
in the community where the antibody level
of all persons in households can be ascer-
tained hoth before and after the epidemic
period. The initial antibody level is used to
ascertain the susceptibility of each person
and the paired sera are used to identify
those persons who were infected during the
course of the epidemic. In addition, the
levels of the risk factors of interest are
determined for each person. The likelihood
function for model 1 ia devived as the prod-
uct of the probabilities of the observed out-
comes for all the households in the sample.
Numerical methods are used to calculate
the mazimum likelihood estimates for the
parameters. Hypothesis testing iz carried
out in a standard fashion (see Haber ot al.
(8) for details).

In the case when the risk factors are
measiired on the household level, the prob-
ability model given in equation 1 can be
transformed into a log-linear model (8).
Then, the parameters B, and . c¢an be
estimated using the weighted least squares
method for log-linear models (2).

Risk-specific secondary attack rate ond
community probability of infection

The parameter 1 — &, is the probability
that a single infected household member
will infect another susceptible household
member who is at the rth level of the risk
factor, Thus, following Longini et al. (2)
and Haber et al. (8), the risk-specific
secondary attack rate is given by SAR, =
{1 — ) % 100. The parameter 1 — B. is
the probability that a susceptible person,
at the rth level of the risk factor, will be
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infected from a community source during
the courze of the epidemic period. The risk-
specific community probability of infection
will be given by CPI, = 1 — B,. The Enaxi-
mur likelihood estimates Qr and H, are
used to provide estimates of SAR, and CP],
along with their standard errors. The hy-
pothesis tests on the parametars B, and Q-
can be uzed to test hypotheses concerning
the risk ratios of the CPL’s and SAR,’s.
For example, the null hypothesis Hy: Q1 —
@. = 0 is the same as the null hypothesis
Ho: SAR1 - SARQ =0 or SAR]_/SARQ = 1.
If several hypotheses are tested simultane-
ously, then the overall significance level
can be controlled for using multiple-
comparizon technigues, e.g., the Bonferroni
inequality.

ANALYSIS OF INFLUENZA DATA

To illustrate the methoda described
above, an analysis of household and com-
munity transmission dynamics of influenza
A(H3N2) in Tecumseh, Michigan is given.
The impact of two important risk factors
{age and pre-season antibody level) on the
transmission parameters is assessed.

The data

The data are taken from the Tecumseh
Study of Respiratory Illmess (10, 11). In
thiz study, a 10 per cent cross-sectional
(random) sample of housecholds from
Tecumseh’s population were kept on report
for the periods of 1265-1971 (11) and 1976-
1981 (12). Data on personal and household
level risk factors were ¢ollected for all par-
ticipating household members. Blood spec-
imens were collected every #ix months on a
staggered basis, so that, In any month,
approximately one-sixth of the population
on rteport had blood obtained. The
hemagglutination-inhibition antibody test
was performed on the blood samples.

The influenza epidemic was defined each
year using virus isolation and illness inei-
dence information (10-12). Each epidemie
period was bracketed by pre- and post-
epidemic season bleedings. The pre-season
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antibody titer level was used to establizh
the suzceptibility of each person. Suscepti-
ble persons were considered to have been
infected during the course of the epidemic
period if there was a “significant” rise in
antibody fiter when comparing pre- and
post-season titers. In addition, 8 person was
considered to have been infected if virus
was isolated from that person.

Data were combined from two influenza
A(H3N?2) epidemics which oceurred during
the 1977-1978 and 1980-1981 epidemic
seagons in Tecumseh. Table 1 shows the
epidemic infection attack rates for persons
with different pre-season titer levels (1:x)
to influenza A(H3N2). Persons with pre-
season titer levels x < 8 had considerably
higher attack rates than those with levels
8 = x = 64, while those with levels x = 128
were not infected at all. Thus, pre-epidemic
hemagglutination inhibition titer level was
categorized into three risk groups according
to pre-season autibody level: x < 8, low
antibody level or no antibody (highly sus-
ceptible); 8 = x = 64, higher antibody level
(less susceptible); x = 128, high antibody
level (immune). Table 2 shows the attack
rates for persons in different age groups.
Clearly, attack rates decrease with increas-
ing age. [n order to ensure sufficient num-

TABLE 1

Infaations rates by pre-seusor antibody titer: influenza
ACHIND) epidemic seasons 1977-1978 and 1980-1981
combined, in Tecumaeh, Michigan

Pra-seosnn

antibody titer (1:%) No. observed Fraction infected
=&t a3 (0.234
a 267 0.139
16 153 0.059
32 137 0.083
G4k a7 0.046
=128 26 o]
Tatal 1,506 0.171

t Persone with pre-season antibody titer = < 8 were
pategorized ag having a low level of antibody.

+ Persons with pre-sesson antibody titer § = x =
64 wers categorized ss having a higher level of anti-
body, and these persons with pre-season antibody titer
x = 128 were considered ta be immune,
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TABLE 2

Infaction rates by age groups: influenza A(HINZ)
epidemic seesons 1977-1978 and 1950-1981
combined, in Tecumseh, Michigan

Fraction
Age zToup Mo with pra-  Fraction
(years) ohserved SeAZON infected
titer <B
Preschaol {0-3) 147 0.887 0.270
School (4=1T7) 361 0.490 0.227
Adult (184) 593 0.537 0.139
Total 1,508 0.556 0.171

bers of persons in each risk category, age
was categorized into two risk groups: 0-17
years (children), 18+ years (adults). The
fraction of each age group that had low pre-
season antibody levels is also shown in
table 2. Over 80 per cent of preschool chil-
dren had little or no antibody to influenza
A(HAN2) hefore the epidemics, while
around 50 per cent of the older persons had
little or no antibody. The overall trend is
for persons to have increasing antibody lev-
els with increasing age due to past exposure
to various strains of influenza A(HIN2).
However, thiz increase may not be com-
pletely smooth because some protection is
lost with age and the hemagglutination-
inhibition test used to classify levels of
antibody is maost gpecific to certain current
gtrains of influenza A(H3IN2).

A standard method of organizing these
data iz in the form of a 2 x 2 % 2 table (13).
The data in table 3 are organized in such a
fashion by three factors: infected vs. not
infected, child vs. adult, and low va. higher
pre-geason titer. From an examination of
the attack rates, both young age and low
pre-season antibody level increase the risk
of infection. The relative effect of each
particular factor is greater in the presence
of the other factor. The joint effecta are
significantly preater than multiplicative
(p =0 0.0001). Both the point estimates of
the risk ratios and the statistical tests used
in table 3 may be misleading since persons
are cluastered into households and there is
transmission of infection within these
households, Thug, there is lack of inde-
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pendence in the response variable (infected
or not infected) on the household level and
the sampling structure of the table is not
multinomial. The eatimated variance for
the estimator of the attack rate will be
lower than the actual gample variance, re-
sulting in increased probabilities of Type I
errors during hypothesis testing (14). The
probability model 1 ig formulated on a
household level, Thus, the household level
gampling structure is incorporated directly
into the analysis.

A major problem in interprebing the re-
gults from an analysis ke that presented
in table 3 is that the association of current
exposure with past expozure will create a
strong source of negative confounding. Per-
sons with higher pre-season antibody levels
have higher levels because they had a
higher probability of encountering influ-
enza infection during their normal activi-
ties than other peraons. Those “usual activ-
ities” are unlikely to have changed and,
thus, persons with higher pre-season anti-
body levels ave likely to be more exposed to
infection than persons with low pre-season
antibody levels. If this source of negative
confounding had been greater in adulis
than in children, as seems likely to be the
case, such confounding could have created
the greater than multiplicative relations
seen in table 3.

The standard analysis on the attack rates
presented above can not be used to distin-
guish between the effects of extrahousehold
and intrahougehold sources of infection on
the risk of infection, but the probability
model given by equation 1 can be used fo
separate these two sources of risk. In addi-
tion, the secondary attack rate is less sub-
ject to the source of negative confounding
described above.

The fitked probability model

The probability model was fitted to the
pooled data from the two influenza
A(H3N2) epidemnic seasons. First, the
model wasg used to examine the crude effect
of the pre-season antibody level on the
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TABLE 3

Infection attack rates by pre-season antibody titer level stratified by age group: influenza A(H3NZ) epidemic
seasons 189771978 and 19801981 combined, in Tecumseh, Mickigan

lofection status
Fre-season antihody titer (1ix) Attack ratef Risk ratio}
Mo. infected iﬁ?e- ::2; Total
Children (0-17 years)
Low level {x = 8) 100 200 300 0,333 3.330%
Higher level (3 < z = 64) 20 130 200 0.100
Total 120 380 GO0 0.240
Adultz (18- years)
Low level (z < 8) o4 440 536 0.179 1.884*
Higher level (8 5 & = 64) _42 402 444 0.095
Tatal 138 B42 2305 0.141 "
*p = 0001,

t Attack rate = no. infected,/no. at riak.
I Risk ratio = ratio of the attack rates.

§ The total of 1,480 persons does not include the 26 “immune” persons.
T'he risk ratios across levels of aga or across levels of pre-sesson antibedy titer are different (p < 0.0001)

uging the chi-square test for lack of interaction.

community probability of infection and
secondary attack rate, when the data were
collapzed across age. Then, the crude effect
of age on the community probability of
infection and secondary attack rate was
examined, when the data were collapsed
across pre-season antibody level. Finally,
the joint effects of pre-season antibody
level and age on the community probability
of infection and secondary attack rate were
exarained.

The fit of the probability model to the
pooled data stratified on pre-season anti-
hody titer level is shown in table 4. For
example, from table 4, there were 63 house-
holds with a single susceptible at the low
pre-season titer level and no suaceptibles
at the higher level. That susceptible person
was not infected in 45 of such households,
and he or she was infected in the other 18
householda, There were 70 householda with
asingle susceptible at the higher pre-seaszon
titer level and no susceptible at the low
level. In this case, the person was not in-
fected in 65 of the households but he or she
wag infected in five of the households. The
estimated parameters are given at the bot-
tom of the table. The expected frequencies
are found by evaluating equation 1 at the
parameter estimates. There is no pattern

of deviations in table 4 that would suggest
that the model does not describe the
underlying process amd the chi-square
goodness-of-fit statistic is nonsigoificant
(p = 0.235).

The CPI, is estimated to be 0.164 *
0.015, indicating that a person with a low
level of pre-seagon antibody had about a 16
per ¢cent chance of being infected from the
community during the epidemic period. In
contrast, CPl, was estimated to be 0.092 &
(.013, indicating that a person with a higher
level of pre-season antibody had ahout a 9
per cent chance of heing infected from the
community. The risk ratio, when low to
higher levels of pre-season antibody were
compared, i.e., RR = CP1,/CPl,, was esti-
mated to be 1.783 (p = 0.0003), indicating
that a person with a low level of antibody
was nearly twice as likely to be infected
from the community a3 a person with a
higher level.

The SAR, is estimated to be 26.0 + 3.0,
indicating that a person with a low level of
pre-season antibody had about & 26 per cent
chance of being infected by another house-
hold member during the ¢ourse of the lat-
ter's infectious period, while SAR, was es-
timated to he 2.1 + 2.6 for higher titers.
The estimated risk ratio for secondary at-
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tack rates, when low to higher levels of pre-
season ﬂptibody were compared, was found
to be ER = 12.4 (p < 0.0001), indicating
that higher levels of antibody are quite
protective given exposure to a single in-
fected persomn.

As pointed out above, age is & secomd
important rigk factor. The probability
model was fitted to the pooled influenza
A(H3IN2) data stratified on age, with level
1 for children (ages 0-17 years) and level 2
for adults (age 18+ vears). The estimated
CPI= for children and adults were 0.175 £
0.023 and 0.113 *+ 0.012, respectively. When
the risk of infection from the community
for children to that for adults was com-
pared, this yields an estimated risk ratio of
1.549 (p = 0.01). The estimated secondary
attack rates were 22.2 per cent and 11.1 per
cent for children and adults, respectively.
Thug, the risk ratio was estimated to he 2.0
(not gignificant).

The association between age and pre-
season antibody level, as well as the need
to deseribe how the effects of these two
factors interact, requires stratification of
the low and higher pre-season antibody
level by age group, as is done in table 3.
This is carried out using the model 1 and
by specifying the community probability of
infection and secondary attack rate at four
levels of risk defined by joint exposure to
each of the dichotomous variables: age and
pre-season antibody level. The parameters
are expressed as SAR; and CPIL;, where
index i indicates age level and j indicates
pre-season antibody level. When the model
is fitted to the data, the fit is adequate as
indicated by there being no discernible pat-
tern of deviations, no dramatic differences
in observed and expected frequencies in any
category, and a nonsignificant chi-aquare
goodness-of-fit statistic (p = 0.361). The
estimated secondary attack rates and com-
munity probability of infections and their
standard deviations for each of the four
exposure categories are presented in table
B. For example, the estimated secondary
attack rate for a child with low pre-season
antibody level is SKRH = 36.6 £ 6.2, while

851

it is SKRH = 3.4 =+ 4.7 for a child with
higher pre-season antibody level. Thus, the
risk ratio, when low to high levels of pre-
season antibody for -:‘:ﬁl}hildren are com ared,
is estimated to be RR = SAR,/8AR,;; =
10.8 (p =< 0.01).

An important observation from table 5 is
that the relative effect of protective anti-
body is much greater when measurad by the
secondary attack rates than by the com-
munity probability of infections. In chil-
dren, the effect of protective antibody on
the community probability of indections ig
9.5-fold, while it is 10.8-fold on the second-
ary attack rates. Similarly, in adults, the
effect of protective antibody on the com-
munity probability of infections is 1.5-fold,
while the effect of protective antibody on
the secondary attack rates is 11.4-fold. An-
other important cbservation is that, while
there is a differsnce between the relative
effect of antibody on the ¢community prob-
ability of infections of adults and children
(1.472 vs. 2.457, p = 0.054), there is almost
no difference batween the relative effect of
protective antibody on the secondary at-
tack rates of children and that of adults
{11.4 vs. 10.8). A final observation, from
table 5, is that given the same category of
protective antibody, children have a higher
community probability of infeetion and
secondary attack rate than adults. How-
ever, these differences are statistically sig-
nificant (p < 0.05) only at the low level of
pre-season antibody.

DISCUSSION

Infectious disease data, such as those
presented above, have two important char-
acteristics that should be taken into ac-
eount in analysis. The first is that the data
are frequently sampled in ¢lusters, auch as
households, schools, or other groups. This
characteristic is incorporated directly nto
the probability model 1 since the model is
formulated for the pattern of infection in
householda. A second is that the responses,
i.e., infected or not infected, are correlated
within the clusters due to the infection
procesa (i.e., the probability that a person
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TABLE 5

Comparizon of CPL; and SAR; from the influenza A(HINZ) epidemic seasons 1977-1978 and 1980-1981
combined, in Tecumseh, Michigan, stratified by age group and pre-seeson antibody titert

Pro-genson antibody titer (1:x)

A,
e (j=1)Low level (z =< 8) {j=12) Higher lovel (8 =z = B4)
(i = 1) Children CFI 0.291 # 0.032 0.094 = 0.028
(0-17 yoars) 8 266 + 6.2 4 +47
(iw?) Adults  CFI 0.181 + 0.018 0.059 + 0.015
(18+ years)  SAR 18.9 £ 4.4 1.6 £ 37
Risk ratios for CPla: i
H,: CPL/CPLa = 1 KR = 2.457™
Hg H GPI:;/CPI% =1 E..-l-:‘l' = 1472
Hy: CPL,/CPIn =1 . RR = L.783 .
H,: CPL/CPLy =1 BR = 1056
Interaction:  Hs: CPICPLy/CPI,CPL, =1 RR/RR’ = 1670 (p=0.054)
Rigk rarios for SARs:
H,: SARy/SARn = 1 AR = 10.8*
H,: 8AR,/SARn=1 RR = 11.4%
Hy: SARL/SAR; =1 B = 20
Hy: 3AR,/SARy = 1 Bh =21
Interaction:  Ho: SAR;SAR:/SARLSAR, =1 HR/RR’ = 0.95
n < 0.05.
* 5 001

t Abbreviations: CPI, community probebility of infection; AR, secondary attack rate; RR, risk ratio.
Qverall goodnese-of-fit x* (23 degraes of freedom) = 24.794, p = 0.361.

eacapes being infected in a cluster denends
on the infection status of the other persons
in the cluster). The probability model also
incorporates this characteristic directly
into the analysis via the term for the escape
probability B, @%. Both of these character-
jstics violate the basic statistical agsump-
tions lying behind the standard contin-
gency table approach, such as that used in
table 3, or behind other techniques, such as
logigtic regression.

An alternative parameterization of the
parameters could be B = exp(8U) and @ =
exp{yU7), where U is column vector of in-
dividual level risk identifiers and/or meas-
ured characteristics and § and ¥ are row
vectors of coefficients for the effectas of
community and household exposure to in-
fection, respectively. Such a parameteriza-
tion could be more efficient in terms of
estimation, but it does impose an extra
assumption on how the measured risk fac-
tors relate to the escape probabilities. The

above formulation could also be quite useful
if I = u were a continuous scalar variable,
or a mixture of categorical and continuous
variables.

"There are additional and perhaps more
compelling reasons beyond those cited
above to use equation 1 for the analysis of
infectious disease data rather than the
standard analyses presented in table 3.
Equation 1 is used to separate the effects
of risk factors into those effects due to
transmission of infection from the com-
munity and those due to transmission from
a single infected household member. Such
a separation gives the model two important
advantages: it allows for better character-
ization of the effects of risk factors on the
transmission of infectious agents, and it
allows for control of a common source of
confounding in infectious disease data.

With respect to the first advantage, if
different agents were ranked by infectious-
ness in the household and the community,
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the rankings would probably be quite dif-
ferent. Influenza and rhinoviruses, for ex-
ample, sweep rapidly through communities,
but have surprisingly low household sec-
ondary attack rates (2, 12, 15, 16). Shigella,
on the other hand, does not aweep through
communities in as complete and rapid a
fashion as influenza and rhinoviruses (17),
but the secondary attack rate is commonly
high for shigella (18). By describing the
relations of the effects of risk factors on
the community probability of infections
and secondary attack rates, the transmia-
gion model could be used to characterize
modes of infectinug agent transmission and
to devise effective intervention strategies.
With respect to the second advantage
of the transmission model, an important
gource of confounding in epidemiologic
gtudies of infectious dizeases is the associ-
ation between current exposure levels and
past exposure levels. The normal activities
of perzons are often determined by current
stable factors. Since past exposure levels
are strongly related to current immunity
and antibody levels, this association of cur-
Tent and past exposures ean markedly di-
minish the perceived effect of risk factors
when using a standard analysis to measure
such effect. The relations of the community
probability of infections estimated using
equation 1 are as subject to thiz kind of
bias a5 are the attack rates when using the
standard approach. However, the second-
ary attack rates are used to standardize
exposure to a eingle person in the house-
hold. Sinee such exposure is constant
across different risk groups, association of
past and current esposures cannot con-
found the relations between risk factors
and the secondary attack rate. Conse-
quently, the secondary attack ratez show a
markedly greater relative effect of protec-
tion from higher levels of pre-season anti-
body. The relative effects of pre-season an-
tibody on the secondary attack rates are
nearly identical for children and adults.
This is logical given that the secondary
attack rates standardize to unity the prob-
ability of exposure to infected household
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members for adults and children. This
equality between relative effects of pre-
season antibody on children and those on
adults when the evaluation of the effects
using the secondary attack rates supports
the notion that the inequality of relative
effects, when the community probability of
infections or the attack rates are used, is
due to differential biases between the two
age groups.

The secondary attack rates are higher for
children than for adults within both cate-
gories of pre-geason antibody level. This
cannot be ezplained by differences between
exposure frequencies in children and that
in adults because the secondary attack rate
standardizes the exposure frequency. One
posgible explanation is that there is resid-
ual effect within the pre-seasom antibody
level categories, and children have lower
levels than adults within categories. How-
ever, no evidence was found to support this
explanation when the data were examined
more closely. The most likely explanation
ta that adults derive sorne added protection
from unmeasured non-hemagglutination
immunity such as cellular immunity.

Antibody efficacy can be assessed by us-
ing a formula similar to that used for vac-
cine efficacy for any of the three following
indices: the attack rate, community proba-
bility of infection, or secondary attack rate.
Then

antibody efficacy (index)

= (1 — T“dex*) X 100
index;
1
= (1 - ﬁu) 100,

where 1 = low pre-season antibody titer
level (x <= 8) and 2 = higher pre-season
antibody level (8 = x = 64). The crude
antibody efficacy and the antibody effica-
cies for children and adults are given in
table 6. Note that the antihody efficacy is
underestimated using the attack rate or the
community probability of infection as the
index. The confounding effect of exposure
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TAEBLE 6
Compartson of estimated antibody efficacy® using
different indices computed from the influenzg
A(H3N2) epidemic seasons 1977-1978 and 1980-1981
combined, in Tecumseh, M ichigant

Fucimated antibody
eificacy: seratification Crude
Index by age antibody
Children Adults efficacy
(0-17 years)  (18+ yenzs)
AR 70.0 46.9 58.8
CF1 59.3 211 56.1
SAR 90.7 912 1.4

* Antibody efficacy (Index) = (1 — (Index,/Tndex;))
x% 100, where 1 = low pre-season antibody fiter (x <
8) and 2 = higher pre-seascn antibody titer (B = x =
64),

+ Abbreviations: AR, attack rate; CPI, community
probability of infection; SAR, secondary attack rate.

intensity is readily apparent, as it was when
considering risk ratios. The underegtimate
is most severe for adults. When the socond-
ary attack rate is used a3 the index, the
antibody efficacy is estimated to be 91 per
cent in both children and adults.

The probability model can be used to
evaluate the effect of intervention measures
on transmission parameters. For example,
in vaccine field trials, the risk factor assign-
ment would be r =1 for unvaccinated per-
gons and r = 2 for vaccinated persons.
Vaecine efficacy could be measured using
the attack rate, community prohability of
infection, or secondary attack rate, as an
index, where,

vaccine efficacy (index)

= (1 - ——m‘i“ﬂ) x 100

index;
=11 —1—' * 100
RRa: '
The usual measure of vaccine afficacy is
provided by the attack rate, ie., index =
attack rate. However, this index can be
positively biased as a measure of vaccine
efficacy in communitywide vaccine trials

since the attack rate in unvaccinated per-
sons may be artificially reduced due to herd
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immunity effects resulting from vaceina-
tion. The ahove formula actually measures
vaccine effectiveness when the attack rate
is used since it constitutes a mixture of
vaccine efficacy, i.e., direct protection of
the vaccinated, and herd immunity in com-
wmupitywide vaceine trials. The index based
on the community probability of infection
would be better than the one based on the
attack rate for measuring vaccine effective-
ness because the former controls for the
confounding effect of household transmis-
sion of infection. When the socondary at-
tack rate s used as the index, the above
formula provides a true measure of vaccine
efficacy because the secondary attack rate
measures the probability of infection given
exposure to a single infected perzon.

The probability model could be used to
measure the efficacy and effectiveness of
other intervention measures such as use of
interferon, virucidal nasal tissues, o gen-
eral improvements in the host environ-
ment. The index based on the secondary
attack rates has been recently used by Lon-
gini and Monto (19) to evaluate the efficacy
of virucidal nagal tissues in interrupting
the transmission of influenzavirus in the
household. The efficacy of the tissue use
was estimated to be 38 per cent when using
the index based on the secondary attack
rate and controlling for tissue usage level
(19).

Analysis using the probability model pre-
sented here could facilitate the use of
observational studies for decisions on the
selection of ntigen mixing strategies in the
design of molecularly engineered vaccines.
Influenzaviruses and rotaviruses have mul-
tiple antigens which could be included in
vaccines. Those antigens to which antibod-
ies have a greater than additive effect in
protecting the host could be profitahly com-
bined in a vaccine. From observational
studies such as those discussed here, anti-
bodies to different antigens could be ana-
lyzed just as age and pre-season antibody
level were analyzed in table 5. The relations
hetween the secondary attack rates and the
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levels of various tyvpes of antibody could be
used to determine what mix of antigens
should go into vaccines, as outlined by
K.oopman (20).

Although the probability modsl is used
to extract information from the data in an
efficient manner, difficulties may oceur due
to lack of sufficient data leading to sparse
cells. In the analysis of the influenza
A(H3N2) data above, there were few chil-
dren with high levels of pre-season anti-
body. Because of this difficulty, it was nec-
essary to combine the data from the two
influenza A(H3N2) seasons 1977-1978 and
1980-1981 in order to stratify on both age
and pre-seazon antibody levels. This was
done after verifying that the community
probability of infections and secondary at-
tack rates from the two seasons were not
gignificantly different. Because of the above
described sparseness, it was necegsary to
pool outcomes in order to compute an over-
all goodness-of-fit chi-square statistic for
the fit of the model to data. Examples of
such pooling can be found in table 4, where
cells with small expected frequencies were
added together.

A number of extenaions to the probabil-
ity model are planned. The first involves
the analysis of sequential data over time.
Such data usually consigt of illness onset
dates and dnration in small groups such as
families or large groups such as schoaols and
communities. Although a mumber of models
have been developed to estimate a single
infections eontact parameter within the
group (21-25), there has been little progress
in the development of methods for relating
risk factors directly to the infectious con-
tact parameter when analvzing sequential
(ugually symptom) data. On a small group
level, such a model could be used to esti-
mate @. and B, based on the sequential
data. However, such a model requires
additional parameters describing the dis-
tribution of the length of the latent and
infectious periods (25). Such information is
naot required for the model presented in this
paper. The basic model for relating risk

factors to the infectious contact rate ix
being developed for larger population
groups (n = 30).

The probability model presented here
provides a useful tool for relating risk fac-
tors to sources of infection in family studies
using serclogic data. Valuable epidemio-
logic insights can he gained from such stud-
ies even though the exact timing of infec-
tiott i3 not available. It is hoped that the
usefulness of such large scale serologic
studies such as the Tecumseh Study of
Respiratory Illness will be recognized, and
that these studies will be funded despite
their cost.
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APPENDIX
Derivation of the probability moedel

Equstion 1 in the texi iz derived here based on the five gssumpCions given in the text. For a household with
5 susceptibles, the conditionsl probability of an infection array (m, - .., £.) with k = T = infectives, given 8

risk factor array (ri, .-, Fa) 18 calculated by partitioning the sample space into three sets of putcomes
corresponding to the cazes where k=0,1 < k=sand k=4, as described below:

Seb1: = .-- = x. = 0, Le, nO Persons are infacted, (& = 0). The probability of this event ia simply the
probability that all & susceptible persehs escape being infected from comrpunity sources, or simply

d
PO, ...,00m, .o ) = I Be- {Al}

1=
gt 2; =z, = 1 far at least one i=1,,..,sbut not all & = 1 (0= k=s) Let &% and .+, denote groups of
porsona for whom =, = 0 and x = 1, respectively. The event that x, = 0 for all i S # 18 denated by E,
and the event that x =2 1 for all & & 5, ig denoted by F. Then, =Y R PN AR P(EN F).
Let (3 be the event that none of the persona in 5%, became infected by a person trom .. Then P(E M
M=PFENFONG@+FPENFN 3),-where & is the complement of &. Obviously, E M F is the empty
get, hecause (7 implies that at least One Person in S, was infected. by 2 person in oy, while the E iz the

everit that none of the memhers of .7, were infected. This yielda

P{EHFJ=P(EI"‘IFI‘"IG)=P(E|FI"\G)P(FH 3D (AR)

Now, F N G is the event that all the members of 5, became infected either from the community oF
from other membera of # 1. Then, P(F 1 ) is the probability thac all the members in a group of &
persons with risk levels | | i € 5°,] became infected. The probability P(F N () ia found recursively
from set 3, below, for a household with f susceptibles (k < #). The probability P(E|F N G} is the
probability that all the 4 = k members of 5 escaped infection from the community as well as from the
& members of .57, It 1a given by

piEIFNG = 11 B.&% (A3

[T
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Set3: #. = ... = x, = 1. The probahility that all 5 houzehold members are infected (& = s) is found by
summing over the 2 = 1 other probabilities (for which ¥ % = ) from sets 1 and 2 above and then
subtracting that sum from 1.

Plr, ...ord=1=% Plx, ..., %y eu 2l (A4)
Ay e, Bl DA TS

A special case of equation 1 seems to have been firzt noted by Bailey (21, equation 14.7, p. 248) for the Reed-
Frost model, The derivation waa extended for fixed length infections periods by Ludwig (26) and Longini and
Koopman (1) and for variable length infections periods by Ball (27).

Ar example

To illustrate the recursive nature of equation 1, consider the following example: Supposs that s =3, R =2
and the ohjective is to find the probability of the infection array (1, 1, 0) given che rizk factor array (1, 2, 2).
From equations AZ-A3,

P(1,1,0]1, 2,'2) = P{1, 111, DB Q. (AS)

Thus, the term P(1, 1|1, 2) must be found recursively from the case where £ = 2, vsing equation A4, which
yields

P(1,1(1,2)m1=P(0, 011, 2}~ P(1,0]1,2) — P 1]1, 2). {A86)
From equations A1-A3,
E(0, 0|1, 2) = BB, (A7)
P(L, 011, 2) = P(1|1)B:84s, (AB)
P{0, 111, 2) = P{1|2)B. Q.. (A9)

The terms P(1|1) and P(1|2) in equations A8 and A9 are found recursively from the case where 5 = 1, uzing
equation A4, which vieldz

P(lf1)=1—-P(0[1) and P(1]|2) =1~ P(0]|2} (A1D}
From equation A1,
P{O|1) =B, and P{0{2) = B.. (A11)
Substituting equations AG-A1l inte squation A5 vields the final probability as
P(1,1,0]1,2 %) =[L— BBy ~ (1 = By)Bafe = (1 ~ By)5,Q,]B: Q8.



