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The centroid method was originally derived as
2 mathematical approximation to the more difficult
principal-axes procedure when computers were not
generally available. Even though the centroid solution
yields the same complexity of variables and factors,
and also has the same variance contributions of the
factors as the principal-axes procedure, it does not
share the other important mathematical properties of
the principal-axes solution, which include uniqueness
and orthogonality. A treatment of the centroid method
in factor analysis is given in Cureton & D'Agostino
[2, Chapter 2].
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Chain Binomial Model

Let time be discrete and indexed t =0, 1, .... Let §;
be the number of individuals at risk for the event
of interest (e.g. infection or death) at the beginning
of time interval ¢, and let [, be the number that
experienced the event of interest at the beginning of
time interval f. The event has a duration of at least
one time interval. We let p, = 1 —g; = f(£,0,1,) be
the probability that an at-risk individual has a new
event at the beginning of time interval time f+ I,
with parameter @, As shown, this probability can be
a function, f(.), of t and ;. We usually start with a
closed population of n = Sg + I individuals. Then
I;41 is a binomial random variable that follows the

conditional probability mass function

Pr(lip1 = ir4118: = 8¢, pr)

St P e P
= ( ) Pr 4 ’
L+l

In many cases, S; is updated via the relationship

S =iy (D)

Sie1 =8 =1y, (2)

although other relationships are possible (see below).
The conditional expectation and variance of Iy,
respectively, are

E( 115, po) = s 1, (3)
var({i 115, pr) = St pege. (4)

Egs (1) and (2) form the classical chain binomial
model. Formal mathematical treatment of the model
involves formulation of the discrete, two-dimensional
Markov chain (S;, /;};=0.1 ... {; is the (binomial)
random variable of interest, and S; is updated
using (2). The probability of a particular chain,
{ig, i1, 02, ..., 6}, 18 given by the product of
conditional binomial probabilities from (1) as

Pr(l = i1|Sp = sg, po)Pr({2 = i2|S; = 51, p1)
X o -Pr{l, = i, |81 = 85r=1, Pr—1) (3)

r=1 ; -
e H (.51 ) p:r-!—lq;fr _IJ—E.

The conditional expected value of [, from (3) sug-
gests the deterministic system of first-order difference
equations

i1 = St Pt Stql =5t —irtl, (6)
which can be analyzed as an approximation to the

mean of the sample paths of the stochastic process
{8, 1;}i=0,1....- This system reduces to

—1

Sp = S1—1qGi—1 =5(}qu| (7)
=0

which is analyzed using methods from discrete math-
ematics (see, for example, [7] and [11]).
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The Reed-Frost Model
History

The probabilistic form of the Reed-Frost epidemic
model was introduced by the biostatistician Lowell
J. Reed and the epidemiologist Wade Hampton Frost
around 1930, as a teaching tool at Johns Hopkins Uni-
versity. It was developed as a mechanical model con-
sisting of colored balls and wooden shoots. Although
Reed and Frost never published their results, the work
is described in articles and books by others (see [1,
Chapters 14 and 18] and [2, Chapters 2 and 3]}. An
excellent description of the early Reed-Frost model
is given by Fine [6]. The deterministic version of the
Reed-Frost model has been traced back to the Rus-
sian epidemiologist P.D. En’ko, who used the model
to analyze epidemic data in the 1880s (see [5]). The
Reed-Frost version of the chain binomial and its
extensions is used to study the dynamics of epidemics
in small populations, such as families or day care cen-
ters. and to estimate transmission probabilities from
epidemic data.

Formulation

In this case, S; is the number of susceptible persons at
the beginning of time interval ¢, and /; 1s the number
of persons who were newly infected at the beginning
of time interval r. An infected person is infectious
for exactly one time interval and then is removed;
that is, becomes immune. Thus, a person infected at
the beginning of time interval r will be infectious
to others until the beginning of time interval ¢+ 1.
We let R; be the number of removed persons at the
beginning of time interval ¢, and then, by definition,

i
Roi =R+ =Ro+ > _Ir (8)
r=0

Since the population is closed, we have Sy +1; +
R, = n for all 1. We let p = 1 — g be the probability
that any two specified people make sufficient contact
in order to transmit the infection, if one is susceptible
and the other infected, during one time interval. We
note that p is a form of the secondary attack rate.
We assume random mixing. Then, if during time
interval ¢ there are I, infectives, the probability that
a susceptible will escape being infected over the
time interval is ¢'*, and the probability that they will

become a new case at the beginning of time interval
t+1is | —q'r. Thus g, = ¢*, and substituting into
(1) yields

Pr(fepy = 4118t =50, [t = i)

r+

- (Eé-fl) (l - qi;}i'r_|_|qf[f5r—f;_[]‘ 5 = £;+]. (9)

The epidemic process starts with Iy > 0, and termi-
nates at stopping time T, where

T = inf{r : 5;I; = 0}. (10
t=0

The possible chains for a population of size 4 with
one initial infective - that is, Sp =3, Ip =1 - are
shown in Table 1.

The probability of no epidemic is defined as the
probability that there will be no further cases beyond
the initial cases. This probability is

Pr(I = 0|So = s0, po) = g"™. (11)

For example, if §p=10, Ip =1, and p = 0.05,
then the probability of no further cases beyond
the initial case is 0.599. From (3). the conditional
expected number of new cases in time interval ¢
is E(l;1118, pe) = se(1 — g'"). On the average, the
epidemic process will not progress very far if the
expected number of cases in the first generation is
less than or equal to one; that is, E(/1|s0, po) =
sl — g'") < 1. In many cases, ip = 1, so that there
will be few secondary cases if sgp < 1. Then, for
example, if So = 10. Iy =1, there will be few sec-
ondary cases if p < 0.1.

From (7), the deterministic counterpart of the
Reed-Frost model is

—l .

s = sog&1=0", (12)

Table 1 Possible individual chains when Sg =3, g =1

Chain Probability Final size
{Tgafis Eay o ir} Rr
{} e 1
(1.1} 3pg* 2
(11,1 6pg* 3
1,2 3,5)2(]’3 3
{1, 1,1,1) 6pq 4
(1:1,2) 3pig? 4
(1,2, 1} 3pPg(l +q) 4
(1.3 P’ 4
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which has been thoroughly analyzed (see, for exam-
ple [7) and [11])-

In some cases, the distribution of the total number
of cases, Rt 18 the random variable of interest. We let
7 be the random variable for the total number of cases
in addition to the initial cases, so that Ry =J +Ip.
If we let Sop =k and fo =1, then the probability of
interest is

Pr(J = jlSo =k Io=1)=mj. (13)

where }:szo mjji = 1. Then, based on probability
arguments (see, for example, [1]), we have the recur-
give expression

mjj; = (i) rnf‘,'jc}(“._”('k"ﬁ. J<k, (14)

and
k—1
mige = 1 — Z m; jk - (13)
=0

The Reed-Frost model has several extensions and
special cases. If itis hypothesized that the probability
that a susceptible becomes infected does not depend
on the number of infectives that he or she is exposed

to, then
1 if 1’; = O,
= 16)
o {0, if I, = 0. ue.

This model is known as the Greenwood model [8].

Longini & Koopman [12] modified the Reed-Frost
model for the common case in which there is a con-
stant source of infection from outside the population
that does not depend on the number of infected per-
sons in the population. We let a; =1 — b be the
probability that a susceptible person is infected dur-
ing interval t due to contacts with infected persons
outside the population, where

a >, ifrr= I

a;:D, iff} T_.

and T is a stopping time. Then pr=1— beghr. 1f
we let B = H?:{J by, then B is the probability that
a person escapes infection from sources outside of
the population over the entire period [0, T]. We then
define CPI = 1 — B as the community probability of
infection. Longini & Koopman derive the probability

mass function
Ik g OB . )
mije = (J) m,‘_),-J,-B”‘ Dgitdb=d - j <k (17)

Usually, i = 0 for this model. This model reduces
to (14) when B = L.

Another extension of the Reed-Frost model is for
infectious diseases that do not confer immunity fol-
lowing infection. In this case, there is no removed
state, so that S; + I, = n. Then, since Sipp=n—
1,41, the model is a discrete, one-dimensional Markov
chain {/;};=0,1,.. The transition probabilities for this
process are

Pr(fi ) = eptlly =1Lr)

_ (.*1 — f:) 1 = q{,}f,_lq!,{n-i,—f,ﬂ}.

{11

[p+ ] = 0. (18)

In this case, the disease in question can become
“endemic”’. An interesting analytic question involves
the study of the mean stopping time for the endemic
process. From (6), the deterministic counterpart of
this model is

frp1 = (n—ir)(1 —g"); (19)

which is a form of the discrete logistic function.
The stochastic behavior of (18) has been analyzed
by Longini [10], and the dynamics of (19) have been
analyzed by Cooke et al. [4].

There are many other extensions of the Reed-Frost
model depending on the particular infectious disease
being analyzed, but a further key extension is to allow
the infectious period to extend over several lime
intervals. In this case p; = f(r,8,10.[1,....It), and
{S¢, [¢}i=0.1.... is not a Markov chain. Special meth-
ods are used to analyze this model [14].

Inference

Data are usually in the form of observed chains,
{ig, i1, ..., ir}, for one or more populations, or final
sizes, Ry, for more than one population. With respect
to the former data form, suppose that we have N
populations and let {ixo, ik1s - it} be the observed
chain for the kth population. Then, from (5), the
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likelihood function for estimating p =1 —¢ is

N r—1
- s T
Lip)= H H (fk:il ) (1— ffi“ )*xrfqukr'[u. k1)
k=1 t=0

(20)
For final value data, let @ be the observed fre-
quencies of the m;ji, from (17); i=1....1, k=
l,....K,and j = 1,..., k Thenthe likelihood func-
tion for estimating p and B is

I K &

Lip.B)=[[IT 11 mi% (21)

i=1k=1j=0

The logarithms of (20) and (21) are maximized using
standard scoring routines (see, for example, Bailey
[1], Becker [2], and Longini et al. [12, 13]) (see
Optimization and Nonlinear Equations) or the cor-
responding generalized linear model (see Becker
[2] and Haber et al. [9]). Extensions involve mak-
ing both p and the CPI functions of covariates, such
as age, level of susceptibility, or vaccination sta-
tus (see Vaccine Studies). Bailey [1, Section 14.3]
gives an example in which (20) is used to estimate
p =0.789 £ 0.015 (estimate 1 standard error) for
the household spread of measles among children. In
the case of the household spread of influenza, Longini
et al. [13] use (21) to estimate p =0.260 £ 0.030
for persons with no prior immunity and p=0.021 =+
0.026 for persons with some prior immunity. In addi-
tion, they estimate CPI = 0.164 £ 0.015 and CPI =
0.092 + 0.013 for persons with no and some prior
immunity, respectively.

Life Tables

The chain binomial model forms the statistical under-
pinnings of the life table (sec Chiang [3, Chapter
10]). In this case, p; simply depends on the time
interval. Then S; is the random variable of interest,
which is formulated in terms of the interval survival
probabilities ¢, = 1 — p;. Many important life table
indices are functions of ¢;. For example, the prob-
ability that an individual who starts in the cohort
at time zero, is still alive at the end of time inter-
val r, denoted gor. is qor = [[1—p¢s- The expected
number alive at the beginning of time interval r + 1
is E(S,41) = sogo,. This model is a discrete, one-
dimensional Markov chain {S};=0,1,...- From (1) we

see that the chain binomial model for 5; is simply
Pr(Si1 = se+118c = st)

AYi Sl S — I+ .
= ( ) g Pl T Stz s (22)
Sr+1

From (5), the probability of a particular chain {sg, 51,
§3, ..., 57) 18

Pr(S; = 51150 = 80)Pr(S7 = 52181 = 51)

% o+ Pr(Sy = 5plSp—1 = Sp-1)

r=1
H ( 5t )qu p}‘l_sl-ﬂ. (23)
0

1l

Se4-1

For an observed chain {sg, 51,52, ..., 3rhs (23) is the
likelihood function for estimating {qo. g1, ---,4r).
The maximum likelihood estimators are

gt = Sr+1/5¢, (24)
while the approximate variances, for large So, are
var(g,) 7 piq:/E(S7). (25)

In addition, the ¢, are unique, unbiased estimates
of the g;, and cov(gr, qr) =0, # L. Estimators of
most of the life table functions are based on the
estimators gr.
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Chalmers, Thomas Clark

Born: December 17, 1917, in Forest Hills, New
York.

Died: December 27, 1995, in Hanover, New
Hampshire.

Thomas C. Chalmers, M.D., a leader in the design,
conduct, and evaluation of clinical trials, was born in
Forest Hills, New York, where his father was a physi-
cian in private practice. Following a tradition set by
his father and grandfather, he graduated in 1943 from
Columbia University College of Physicians and Sur-
geons. After additional training in medical research
in New York and at the Thorndike Memorial Labo-
ratories of Boston City Hospital, he entered private
practice in Cambridge, Massachusetts, in 1947. He
soon became concerned over the lack of knowledge
on the efficacy of accepted medical therapies. Having
learned about randomization from Sir Austin Brad-
ford Hill, he applied this principle to a study of the
treatment of infectious hepatitis among American sol-
diers in Japan during the Korean War. This study, a

2 x 2 randomized factorial study of diet and bed rest
(see Factorial Designs in Clinical Trials), designed
in 1951, included estimates of the required number
of patients and an evaluation of ineligible patients,
withdrawals, and compliance.

Deciding to devote his career (o research and
education, he was Chief of Medical Services at the
Lemuel Shattuck Hospital in Boston (1955-1968),
Assistant Director for Research and Education
for the Veterans' Administration in Washington
(1968-1970), Director of the Clinical Center at
the National Institutes of Health in Bethesda
(1970-1973), and President and Dean of the Mount
Sinai Medical Center and School of Medicine in New
York City (1973-1983).

Dr Chalmers returned to Boston in 1983. Over the
next 10 years he was on the faculty of the Harvard
School of Public Health and Tufts University School
of Medicine, was appointed a Distinguished Professor
at the Boston Veterans' Administration Medical Cen-
ter, and was a member and Chairman of the Board of
Trustees of the Dartmouth Hitchcock Medical Center.
In 1992, at age 75, he co-founded Meta-Works. Inc.,
a meta-analysis consulting company and moved to
Lebanon, New Hampshire. He continued to teach in
both Boston and New York and was actively involved
in numerous meta-analytic studies.

Throughout his career he was a fervent advocate of
randomized controlled trials in all areas of medicine
and the education of students and physicians in the
skills needed to evaluate these trials. His belief in
the ethical need for randomization [6] (see Ethics
of Randomized Trials) led to his recommendation
to “begin randomization with the first patient” [1]. A
corollary was the belief that developing trends should
not be known by investigators during the conduct of
the trial. but should be monitored by an independent
policy advisory committee (see Data and Safety
Monitoring Boards). In subsequent years he was
a member (and frequently chairman) of Policy or
Data Safety and Monitoring Boards for numerous
multicenter clinical trials,

Dr Chalmers moved to Mount Sinai in 1973
because he wanted to influence the education of med-
ical students, and to make both students and faculty
aware of the need for properly conducted clinical tri-
als. He became concerned that clinical trials were
being conducted with insufficient sample sizes and in
a review published in the New England Journal of




