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Group-randomized study designs are useful when individually randomized designs
are either not possible, or will not be able to estimate the parameters of interest.
Blocked and/or stratified (for example, pair-matched) designs have been used, and
their properties statistically evaluated by many researchers. Group-randomized trials
often have small numbers of experimental units, and strong, geographically induced
between-unit correlation, which increase the chance of obtaining a “bad”
randomization outcome. This article describes a procedure – random selection
from a list of acceptable allocations – to allocate treatment conditions in a way that
ensures balance on relevant covariates. Numerous individual- and group-level
covariates can be balanced using exact or caliper criteria. Simulation results indicate
that this method has good frequency properties, but some care may be needed not
to overly constrain the randomization. There is a trade-off between achieving good
balance through a highly constrained design, and jeopardizing the appearance of
impartiality of the investigator and potentially departing from the nominal Type I
error. Clinical Trials 2004; 1: 297–305. www.SCTjournal.com

Introduction

Group-randomized study designs are sometimes
employed in trials of health interventions instead
of individually randomized designs. Many factors
may lead to the choice of a group-randomized
design. These factors fall into the following
categories: 1) the relative lack of feasibility of
carrying out the intervention at the individual
level; and 2) the desire to obtain information on
intervention effects at the group level. Many
authors have given advice on how to weight these
factors in making the decision about the level of
randomization and hence of treatment allocation
[1–4]. Once the decision has been made to
undertake a group-randomized trial, design aspects
relating to stratification and randomization need to
be addressed. The question of whether to use a
highly stratified design (most often a pair-matched
design), a completely randomized design, or a
blocked design intermediate to these extremes,
has been the subject of a good deal of statistical
work [5–8]. This article is focused on the utility of

further restricting the randomization procedure on
the basis of relevant covariates.

Two aspects of group-randomized trials render
them especially susceptible to the ill effects of an
“unlucky” or “bad” randomization outcome, that is,
one that has clear imbalance on one or more
important variables. One aspect is that the studies
are typically small, with perhaps only 4–20 groups
to be randomized. Although the groups may
contain thousands of participants, if there is
between-group variability of characteristics, a
completely randomized (at the group level) design
can have a non-negligible probability of resulting
in substantial imbalance on one or more charac-
teristics across the trial arms. If these characteristics
are also related to the treatment outcome, this can
render interpretation of the trial results difficult.
Even if there is some adjustment for the charac-
teristics, there will be uneasiness that residual
confounding remains due to other factors that are
correlated with these characteristics.

The other feature of group-randomized trials,
which, coupled with small numbers of units, can
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cause inferential problems, is that the units are often
geographically contiguous, or nearly so. This can
occur in agricultural experiments, of course, but the
correlation patterns can be more difficult to detect
in human communities. The placement of clinics or
roads with respect to these units can alter reporting
levels of disease cases, or even the incidence of
infection (for example, in some areas, the spread of
HIV by truck drivers). The accompanying spatial
correlation of the response variables can affect
the size of a statistical test, as seen below in the
simulations.

In individually randomized trials in which
participants enter sequentially, several mechanisms
have been proposed to ensure balance on charac-
teristics of trial participants across the arms of the
trial. The most common technique is to use series
of permuted blocks within each stratum so as to
ensure balance with respect to enrolment sequence.
More complicated methods have been proposed
to balance on other covariates as well, including
minimization techniques [9] and dynamic and
adaptive allocation schemes [10,11]. All of these
devices may be placed under the rubric of con-
strained or restricted randomization designs,
although as mentioned below, these terms also
have more specific connotations. Usually sample
sizes in the individually randomized designs
to which these devices are applied are sufficiently
large so as to ensure, with high probability, that
there will be a close balance on the relevant
individual characteristics.

When close balance is desired on many variables,
however, and there is a limited number of experi-
mental units, cross-stratification on the variables
will not be possible. An alternative is to produce
composite scores that can be used to construct
strata. If relationships between baseline covariates
and the outcome variable have been studied, then a
summary propensity score [12] for each unit could
be used to pair-match them. Graham et al. [13]
used a similar strategy, first reducing dimensionality
through a principal component analysis, then
forming pairs based on the resulting factor scores
and assumed confounding effects. Morris and Hill
[14], likewise, sequentially applied selection func-
tions of numerous covariates to achieve balance.
These procedures can be a useful first step in
producing allocations that are balanced on a large
number of variables (in both univariate and multi-
variate senses). Yet there still exists the possibility of
a “bad” randomization outcome, with the unit with
higher propensity score in each pair being assigned
the treatment. Further constraints can preclude
such an event.

Why do we randomize? Many trialists have
addressed this question. The principal reasons are:
1) to give assurance, both to the investigator and to

the general scientific community, of impartiality of
treatment assignment; 2) to avoid hidden biases in
treatment assignment; 3) to provide a convenient
means of implementing treatment assignment. Two
other reasons commonly cited are: 4) to provide a
basis for statistical inference; and 5) to improve the
chance of having a good distribution of relevant
characteristics across the treatment arms. This
fourth reason is not relevant in the context of
model-based inference [15], which is the approach
often taken by biostatisticians in the health
sciences. In addition, with modern computing,
carrying out randomization-based inference with
unbalanced designs has become feasible. The fifth
reason is relevant when the numbers of randomiz-
ation units are large, but this usually is not the case
with group-randomized trials. It is for this reason
that active control of the randomization procedure
is advocated so that it results in a plan that is at least
balanced on known and measured covariates.

There are many papers in the statistical literature
on group-randomized trials regarding whether to
match or not, and how to do analysis. There is
comparatively little information, however, about
strategies other than basic pair-matching or strati-
fication. Indeed, in two recent high-quality books
on group-randomized trials, there is little material
regarding randomization or the risks incurred in
small group-randomized studies [16,17]. This may be
because the general principles of blocking and strati-
fication are well known. Attention to those princi-
ples, however, may be insufficient when dealing
with small numbers of groups of highly variable
humans who interact in complicated networks.

Design strategies

Blocking and stratification

The most common technique for allocating treat-
ments is the use of randomly permuted blocks of
treatment assignments. This design feature ensures
treatment balance at any point in time during the
enrolment and randomization phase of a trial,
thereby minimizing bias due to secular trends. In
clinical trials practice, as opposed to the practice of
agricultural field trials, these block effects are rarely
estimated, with their existence ignored in the
analysis. Kalish and Begg [18], and more recently
Chen [19], have investigated the effect of ignoring
blocking in the context of permutation analyses, and
found the practice to have little effect on size and
power. Blocking is also used with stratification to
ensure treatment balance within levels of one
or more covariates, with separate lists of blocks used
for each combination of covariate levels. The deepest
stratification occurs in the pair-matched design, with
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strata of size 2 determined by criteria such as age,
neighborhood of residence, sibship, and so on. In
such situations, analysts often account for the
matching, especially when the within-pair correla-
tions are considered to be large enough to outweigh
the incurred loss in degrees of freedom.

Validity of designs and constrained
randomization

When venturing into the territory beyond the
conventional stratified designs (randomized blocks,
pair-matched, and so on), one runs the risk of
producing a design that technically is biased or not
valid. In the design of experiments nomenclature, a
design is biased if, across the randomization units,
there is any difference in probability of assignment to
a given treatment. This problem rarely arises in
practice. More problematic is the validity of a design:
a completely randomized design is valid if each pair
of randomization units has the same probability of
being allocated the same treatment [20]. Other
criteria exist for other designs, but the main idea is
one of whether there is independence of treatment
assignment between units. For example, Fisher [21]
describes as invalid an extreme situation where plants
of one type (one experimental condition) are
assigned positions on one side of a greenhouse and
the plants of the other type assigned to the other side
by a single coin flip. He noted there could be
confounding variables such as different lighting or air
current conditions on the two sides. What he did not
state is that even a “randomization properly carried
out” could result in the same unfortunate allocation.

If a design is not valid, it runs the risk of changing
the Type I error from its nominal value. In addition,
it may bring into question whether the investigator
has selected a design that will give an advantage
to a treatment comparison of interest. The term
constrained, or restricted, randomization has come
to refer to those designs that go beyond the basic
design constraints to specify classes of randomiza-
tion outcomes that satisfy certain balancing criteria,
while retaining validity of the design. Application
of these approaches, which involve group-theoretic
considerations of permutation groups, is not often a
trivial task, and may be impossible, even when
dealing with one simple covariate of spatial pattern
along one geographic axis [22].

Example 1: hypothetical constrained design

Suppose we have an intervention study with an
HIV incidence outcome that will take place in four
villages that have baseline HIV prevalence survey
results (or, for example, a composite socio-economic

score): 2, 4, 10, 13%. In practice, one would use more
villages, but the key problems are easier to illustrate
with this limited number. One possible allocation
strategy is to use no constraints whatsoever, selecting
at random one of the six possibilities shown in
Table 1. There is, however, a 1 in 3 chance of either
the intervention villages being those with the lowest
baseline prevalences (A: 2 and 4%), or with the
highest prevalences (F: 10 and 13%). Each of these
two extreme situations will have a mean absolute
difference of 8.5 percentage points in prevalence in
the two treatment groups, even greater than the
overall mean prevalence of 7.25%. Adjustment for
these initial differences could be made at the time
of analysis, but is not a very satisfactory solution
for reasons that are mentioned above.

A convenient way to handle this difficulty is to
specify, in advance of randomization, that only
those treatment allocations that result in exact
balance on mean prevalence will be permissible.
Imposing this constraint in this situation would
preclude any allocation being selected. If the
constraint is relaxed to require only a mean
difference of less than one percentage point, this
would mean selecting either allocation C or D in
Table 1 with equal probability. Note, however, that
those villages with 2 and 13% (and 4 and 10%) are
always linked together. This might be of concern if,
for example, the villages with 2 and 13% were
adjacent to each other, and in the far north of the
country, while those with 4 and 10% were near each
other in the far south. One could argue that there
are effectively only two experimental units in such a
situation, not four, and that the analysis should
proceed accordingly. One might further relax the
constraint to “mean difference of less than 3 per-
centage points” and add the criterion of geographic

Table 1 All possible allocations in a hypothetical trial of two

conditions (intervention, control) and four experimental units

(villages)

Villages

Mean differenceAllocation Intervention Control

A 2 4 10 13 28.5
B 2 10 4 13 22.5
C 2 13 4 10 0.5
D 4 10 2 13 20.5
E 4 13 2 10 2.5
F 10 13 2 4 8.5

The baseline HIV prevalence (%) labels each village; overall
balance is measured by the mean difference in prevalence

between intervention and control villages. Example: In allocation

A, the villages with HIV prevalences of 2 and 4% are assigned

to the intervention arm, and the villages with 10 and 13% are
control villages; the mean difference is [(2þ 4) 2 (10þ 13)]/

2 ¼ 28.5.
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balance defined as “one intervention unit in the
north, and one in the south”. This would lead to
randomly selecting from allocation B or E in Table 1,
but this still is subject to the criticism that there
are really only two effective units of randomization.
However, if geography were not a factor, then just
using the criterion of less than three percentage
points’ difference would permit selection from B, C,
D or E. This would achieve good balance, retain four
randomization units, and reduce the basis for
outside accusations of having rigged the randomiz-
ation. We say reduce, not eliminate, for a critic
might note that the units with 2 and 4% prevalences
(or 10 and 13%) never have the chance to be in
the same treatment arm. This is less serious an
accusation; indeed, we often design studies
expressly to achieve this result. For example, in this
simple case, there is another obvious way to achieve
this design result: pair-match the units with pre-
valences (2%, 4%) and (10%, 13%) and randomize
within each pair. Then, if the pairing were ignored
at the time of analysis [5], the two situations would
be indistinguishable. As the second example (below)
indicates, however, such an alternative may not
always be evident.

Covariate-based constrained
randomization

General approach

We focus on those designs that seek to achieve global
and simultaneous balance, or near-balance, on one
or more covariates, or functions of covariates, that
could be related to the outcome(s) of the trial. There
is a trade-off involved in this approach: we do not
want to constrain the design to such a high degree
that the investigator is open to accusations of
manipulation in favor of his or her hypothesis. The
next section addresses this trade-off.

Constraining criteria

The acceptability criteria that limit the possible
allocations can be of varying levels of specificity.
For continuous covariates, a simple caliper-type
criterion should be sufficient: one could specify that
the group means for each trial arm be within a
quarter standard deviation of each other, or within
+10%, say. Covariates that are dichotomous at
the individual level (for example, gender), could be
balanced within +10 percentage points. Group-
level covariates, such as geographic location, or
presence of a clinic in the community, could be
balanced either exactly or with some specified
maximum range for the difference. For example, if

the design were pair-matched, it might be required
that to make a pair, both groups should have a
clinic, or should not have a clinic. Alternatively,
the constraint could be global, only requiring that
each trial arm have the same number of clinics, or
+ one clinic difference between them. Techniques
that weight sets of covariates, such as factor analysis
or the use of propensity scores as mentioned above,
also could be employed.

Overly constrained designs

A design that has constrained the randomization on
the basis of one or more covariate values may yield a
set of potential allocations that has a pair of units
always in the same treatment arm, as in the most
highly restricted designs in Example 1. Alternatively,
it may be that a given pair of units is never in the
same arm, which might not seem fair to a critic if
the basic stratification structure of the design does
not preclude it. A quick check on these possible
extreme situations can be done by counting the
number of times any given pair of randomization
units (or units in different blocks) receives the same
treatment allocation. The results may be stored, for
example, in the lower triangle of a 2m � 2m matrix,
where m is the number of units in each treatment
arm. When the problem is too large to enumerate,
and the “loop” method mentioned above is used,
this matrix could be constructed when a suitably
large number of acceptable designs is reached.
Examination of the matrix for under- or over-
represented pairs would then reveal any potential
causes for concern in the design.

Proposed randomization algorithm

1. Form a list of all the possible allocations. For a
pair-matched design, this will have 2m entries,
where m is the number of pairs; for a completely
randomized (at the group level) design, there will

be
2m
m

� �
entries, where 2m is the total number

of groups.

2. Making a pass through all of these entries, select
those allocations that meet the specified criteria.
These criteria could mean achieving some level
of balance on a given set of covariates.

3. Make a matrix whose elements are the number of
times, from among those allocations identified in
step 2, each pair is together.

4. Accept the constrained list of possibilities and go
to step 5; or relax or tighten criteria and go to step
2; or change the stratification and go to step 1.

5. Randomly select one allocation from among the
ones that have been selected as being acceptable
in step 2.
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An alternative approach is to put a loop in the
computer program executing the algorithm,
randomly generating plans until an acceptable one
is found. This may be necessary when the total
number of possible allocations is too great to
enumerate in a feasible amount of time. Step 3
may be omitted if the proportion of potential
allocations that is acceptable is high, that is, the
constraints are not very stringent. To avoid accusa-
tions of having rigged the outcome, it may be best
to ensure, at step 3, that no two units are always
together in the same arm, or always separated
(except for pair-matched strata).

Example 2: Baltimore drug intervention study

A recent example of covariate-based constrained
randomization utilizing the proposed randomiz-
ation algorithm is afforded by a study undertaken
as part of the Aid First Initiative in Baltimore, MD.
In order to assess the impact of family and com-
munity network mobilization efforts, this trial
intervenes at the census tract level. The primary
outcome measure is the incidence rate of admission
to treatment facilities for drug dependence. From
among all Baltimore City census tracts, 20 had been
identified as being of particular concern. Census
data provided the following relevant covariates
for each tract: total population, family income, %
vacant houses, % males employed, % high school
education, % receiving Public Assistance, % 15–64
years of age, % African-American. One more
criterion was geographic balance: the investigators
would not have been satisfied if, for example, the
randomization resulted in all intervention units
being in Baltimore’s west side, with the control
units in the east side.

The initial constraints considered for the rando-
mization scheme were:

1. Perfect balance on geographic areas that had
received prior city-level special attention or not;
five of each type must be in each of the control
and intervention groups.

2. Balance to within 10% on the eight census data
covariates. Specifically, for each covariate, if for
a given allocation pattern the mean of the
intervention group divided by the mean of the
control group was greater than 1.1 or less than
1/1.1, that pattern would not be considered for
potential selection.

3. Approximate geographic balance. The city was
divided into quadrants each containing five of
the 20 study tracts; the criterion was that each
quadrant should have at least two intervention
units.

There are 184 ,756 possible combinations of 20
units chosen 10 at a time, half of which are unique.
All combinations were enumerated [23] in the GAUSS
System matrix manipulation language [24], and each
was checked for whether the above criteria were
satisfied. Only 46 allocations (23 unique) met the
specified criteria. Using these, a 20 � 20 matrix was
formed whose elements contained the number of
times each pair of randomization units was desig-
nated for inclusion in the same arm of the trial. There
were four pairs of units that never were together in
the same arm of a trial under any of the 23 unique
allocation patterns: (1,17); (1,12); (12,14); (14,17),
where the numbers in parentheses refer to the
randomization unit numbers. Inspection of the
census tract data indicated that unit 12 had the
highest percentage of vacant houses and unit 1 had
the second highest; thus, it was difficult for both to be
allocated to the same arm. Similarly, unit 17 had the
highest percentage receiving public assistance, and
unit 14 had the second highest. Given these data
configurations, we decided to relax the balance
criteria for these variables, allowing +25% imbalance
between the treatment arm means for each of these,
instead of the 10% criterion employed for the other
variables. Running the allocation counting program
again, we ended up with 148 combinations that met
the new criteria, which afforded 22 opportunities for
the pair (1,17) to be in the same arm, 22 for (1,12), six
for (12,14), and 10 for (14,17). Clearly, this is not
optimal, but we considered these opportunities to be
of sufficient number considering the desire to avoid
an unreasonable balance on the variables of interest.
At the minimum, we could not be accused of setting
up a randomization scheme that gave no opportunity
for these pairs to arise, which would have meant a
complete dependence between the units: knowing
that unit 1 was in one arm would have given certain
knowledge that units 12 and 17 were in the other, for
example. As it turned out, the allocation that was
randomly selected from among the 148 potential
ones was very well balanced, every variable coming
within 10% balance between the two arms. Still, as
per the results of the following simulations, it might
be the case that the nominal size of the final trial test
is altered, if there is substantial correlation between
the outcomes of the units involved.

Simulations using the Baltimore
study structure

Rationale

It is clear that the imposition of a set of global,
covariate-based constraints can render a design for
which a randomization-based justification for the
standard ANOVA no longer holds. Less clear is the
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effect this may have on the frequentist properties of
the design. In general, one may expect the greatest
problems when two situations coincide: the design
produces great unevenness in the opportunities
units have to be in the same or different arms of a
trial, and outcomes among some set(s) of units are
highly correlated. The simulations serve to give a
rough idea of what may be the consequences of
highly restricting a design, followed by an analysis
that is conditional on the actual selected allocation.
To investigate these, we carried out a series of
simulations based on the final set of restrictions
used in the Baltimore study of Example 2 that
resulted in only 148 possible allocations from
which to choose. The results are not meant to
furnish a precise guide for practitioners, but to give
a qualitative idea of the consequences of such
designs. In those situations where investigators feel
the need for a highly constrained design, it may be
useful for them to construct their own simulations
that more closely match their particular
circumstances.

Analysts, however, have the option to carry out
randomization-based inference that uses the
restricted design structure. In the Baltimore study,
this would mean basing it on the 148 potential
allocations. The advantage of such an approach
is that we would expect the corresponding rando-
mization test to have approximately the nominal
test size regardless of the correlation structure.
Drawbacks include the small number of allocations
in this instance, making the randomization distri-
bution perhaps too discrete, and the high com-
putational complexity for the calculation of
confidence intervals, as described by Tukey [25].
Whether the analysis uses the randomization
distribution or treats the actual allocation as an
ancillary statistic, the trial will have benefited from
the balance on important baseline covariates.

Setup

For simplicity, for each simulation we generate 20
Gaussian outcomes for the census tracts (units).
Many actual trials have binomial or Poisson
responses at the individual level, but their mean at
the group level will be approximately Gaussian if
the group is sufficiently large and/or the risks are
not too near zero or one, or rates are not too low.
We construct the standard t-test statistic comparing
the two groups of 10 tracts based on a pooled
variance estimate, and take as our simulation
outcome the estimated size of the test under various
conditions. Three factors are modified: the type
of units that may be correlated, the number of
units that may be correlated, and the degree of
correlation. In group-randomized trials, spatial

correlation of the responses often is introduced via
geographic proximity or other social or geographic
features of the involved communities. These
correlations, however, will in general not be
known, or not feasible to model. Group-randomized
trials with hundreds of groups might permit some
spatial modeling of the correlation structure, but
even then it will be difficult due to the complexity of
human networks of disease transmission. The
simulation setup corresponds to this situation of
effective ignorance, assigning a fraction of the
groups to have correlated variates generated, but
not accounting for this correlation at the analysis
stage. This is the most common type of analysis,
assuming a random effects structure with an effect
level for each group, but independence across
groups.

In the highly constrained Baltimore study design,
the pairs of units that had the highest probabilities
of being in the same treatment arm are: (12,17): 144
out of 148 potential allocations; (1,10): 126; (3,12):
120; (1,14): 120; (10,14): 118; (3,17): 58. Thus,
(1, 10, 14) are often grouped together, as are (3,12,17).
In the first set of simulations, trivariate Gaussian
responses for one or both of these sets were
generated, with uniform correlation among all
members of a triplet. The next set of simulations
focused on pairs that had the lowest probabilities of
occurring together: (12,14): 6; (14,17): 10; (1,12): 22;
(1,17): 22; (8,15): 26; (9,15): 26; (9,20): 26. These
were put in the sets: (1,12,14,17) and (8,9,15,20).
Note, however, that not all pairs within these sets
have a low chance of occurring together – for
example, 8 and 9 are in the same arm in 112 of the
148 allocations. Finally, a set of simulations was run
involving correlations among units that can occur
together with 50% chance, that is, in 74 of the 148
allocations. Among these were the pairs: (1,20);
(2,18); (9,16); (10,11). These were put into the sets:
(1,2,18,20) and (9,10,11,16).

Correlation was introduced by generating a
multivariate Gaussian response (proc rndmn, Gary
King, GAUSS language algorithm, 1999) for the
given sets of 3 or 4 units, with correlation coefficient
equal to 0, 0.25, 0.5, or 0.75; or, where possible, 0,
20.25, or 20.5 (actually, 20.499999, due to the
need to have a positive definite covariance matrix).
A nominal test size of 0.05 was used for testing the
null hypothesis of equality of means for the
Gaussian outcomes in each of the two arms. Each
configuration was simulated one million times.

Results

In the absence of correlation, we expect the
rejection level to be 0.05. As can be seen in Table 2,
the more extreme the correlation, the greater the
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departure from this nominal level, although none of
the examples are particularly worrisome in this
regard. The greatest difference from 0.05 occurred
when the two sets of the triplets that had a high
chance of being in the same arm were highly
correlated (r ¼ 0.75 within each set); the rejection
level was 0.088. Conversely, when units with a low
chance of ending up in the same arm were positively
correlated, the rejection level fell below the nominal
level, that is, the test became more conservative.
These results were reversed for the case of negative
correlation. Correlation among units that had a
50% chance of being in the same arm (were in the
same arm for 74 of the 148 possible allocations), had
negligible effect.

Discussion

Some statisticians will prefer not to constrain a
design beyond basic blocking and stratification
maneuvers. But when faced with a multimillion
dollar study and only a handful of communities to be
randomized, there is much pressure to achieve as
much statistical power as possible. There is a limit to
the variance reduction that can be achieved by
blocking and stratification in these situations, com-
monly seen in group-randomized trials. Freedman
et al. [7] considered the possibility of further
restricting a pair-matched design by requiring a

continuous covariate to be higher in the intervention
group for about half the pairs, and lower in the other
pairs. In their simulations, substantial gains in
efficiency of such an approach were possible when
the covariate was strongly related to the outcome.
They could have added another requirement, for
example, that of marginal balance on the covariate
across the trial arms. In the end, however, they did
not use any restrictions other than the original
pairing, citing the desire for a method that was
“easily understood by non-statisticians”. We note
that there are other ways to make a randomization
“understood”, or politically acceptable. After highly,
constraining a sexual health intervention trial in
Tanzania based on the method described here, Hayes
and colleagues publicly randomized the trial using
a lottery-like table tennis ball selection mechanism,
with very satisfactory results (R. Hayes et al., personal
communication and unpublished manuscript).

The example of the randomization performed for
the Baltimore Aid First Initiative raises the question:
at what point of restriction might the objectivity
of the investigator be called into question? After all,
using the original constraint criteria, only 0.025%
of the total number of potential randomization
results were deemed balanced enough to be selected.
However, there were still 46 possible allocations,
which is as many as found in small, less-restricted
group-randomized trials, for example, one with
10 units in a pair-matched design. Yet when the

Table 2 Proportions of simulated group-randomized trials with rejection of the null hypothesis of no difference between

two treatment arms by varying levels of correlation

Units to be correlated Proportion rejected

Units with high probability of being in the same arm
r: 0.00 0.25 0.50 0.75

(1,10,14) 0.051 0.057 0.063 0.069
(1,10,14) & (3,12,17) 0.052 0.063 0.075 0.088

r: 0.00 20.25 20.50
(1,10,14) 0.051 0.045 0.039
(1,10,14) & (3,12,17) 0.052 0.040 0.028

Units with low probability of being in the same arm
r: 0.00 0.25 0.50 0.75

(1,12,14,17) 0.051 0.048 0.044 0.041
(1,12,14,17) & (8,9,15,20) 0.051 0.046 0.041 0.035

r: 0.00 20.25
(1,12,14,17) 0.051 0.055
(1,12,14,17) & (8,9,15,20) 0.051 0.057

Units with average probability of being in the same arm
r: 0.00 0.25 0.50 0.75

(1,2,18,20) 0.051 0.050 0.049 0.049
(1,2,18,20) & (9,10,11,16) 0.051 0.050 0.049 0.048

r: 0.00 20.25
(1,2,18,20) 0.051 0.052
(1,2,18,20) & (9,10,11,16) 0.051 0.053

Note: constraints on the covariance matrix determinant eliminated r ¼ 2 0.50 and/or 20.75 from some simulations.

Nominal test size is 0.05, all data are generated under the null hypothesis. Within each specified set of unit identifiers,

multivariate Gaussian responses are simulated with the given correlation amongst all set members.
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number of possibilities becomes very small, say 2 or
4, there may be more suspicion that the investigator
has manipulated the design to his or her advantage.
The main drawback of the original constraint
scenario was not that there were too few randomiz-
ation outcomes, but that some pairs of units could
not have received the same treatment.

An algorithm has been presented for imple-
menting and checking covariate-based constrained
randomization. It is not difficult to implement and
assure the desired degree of balance on relevant
covariates. When the number of experimental units
is sufficiently large and/or the number of covariates
is small, the standard techniques of blocking and
stratification may be sufficient. However, even in
such cases it may be wise first to enumerate or
simulate the proposed scheme, and identify the
probability of obtaining a “bad” randomization.
This was done in a group-randomized trial of
pneumococcal vaccine with 38 geographically
defined units, with eligible population size as the
primary covariate of interest [26]. Many group-
randomized trials, however, will have smaller
numbers of units, and more covariates for which
an imbalance at the start of the trial could prove an
embarrassment and complicate inference at the
trial’s conclusion.

The simulations presented here indicate that
when units with highly correlated outcomes have a
high probability of all being included in the same
trial arm, the actual Type I error can be inflated.
Investigators can take steps to diminish this
possibility. If they are aware that certain units are
likely to have correlated responses, they can specify
in the design that there should be balance among
them as to treatment assignment. This was done in
the Baltimore drug intervention study example by
specifying near-balance by geographic quadrant.
They can also relax the criteria for balance, thereby
reducing assignment linkage between units.
Another factor in favor of the investigator is that
units would tend to have a higher probability of
joint inclusion only if they were balanced on
covariates related to the outcome – but this balance
would mitigate against highly positively correlated
outcomes. Perhaps the more likely scenario is that
units with positive correlation of their outcomes
would be separated into different treatment arms
more often than would be the case for other units.
This would tend to lower the Type I error below the
nominal level, and decrease power slightly as well,
although we might still expect substantial gains in
power due to the assurance of balance on important
covariates [7].

Although the focus of this manuscript is group-
randomized trials, a highly constrained design
could be of use in other situations with small
numbers of experimental units whose covariates are

all known before randomization. Consider a study
that divides a classroom of 20 students into two
experimental conditions, with data on the students’
relevant covariates (age, weight, etc., depending on
the intervention and response variables). After
forming whatever strata will be accounted for at
the time of analyses for variance reduction, such a
study might benefit by adding further constraints
on the remaining baseline covariates.
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