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An Application of the Theory of Probabilities to the Study of
a priori Pathometry.—Part 1.

By Lieut.-Colonel Sir RonaLp Ross, K.C.B, F.R.S., RAM.CT.F.

(Received July 14, 1915.)

CONTENTS.
Secrion I "PAGE.

(i) Prefatory ...... e h e eireeseiaen et e eeteiees naerter e etaaaseasenetronan 204

Section IL
(i) Statement of the Problem..........covivviviiiiiiiiiniiiin, 208
Secrion IIL

(1) The Differential Equations ..... e tertreeraeraererretsaraeraan 208
(ii) The Variation-Elements n, m, 7, ¢, Ny, M, , E ....ooiiniinnnns 209
(iii) The Reversion-Element 7 ......ccccovvvviiiniiiniiiniineenniinenne. 210
(iv) The Happening-Element Z......c.ccovveeiruniviriinnieeioiianeaennns 210
(v) Independent and Dependent Happenings ........... e 211

Secrion IV.

(i) Independent Happenings: & or F constant ....ic......cceenne 211
(ii) The Equivariant Case: A constant: v =V ...cociiiiiiiennns 211
(111) Integrations ...cc.iiveiiusiveiiiiiniiiiieniee e serie e raesennes 212
(Av) Analysis of z and f..ooiooiiiiiiiiiiii 213
(v) Integrals of P, Z, A, F, required for certain questions ...... 215

SecrioN V.

(1) Independent Happenings : A constant : o # Vi.oveerrieenn 216
(1) Tntegrations .......cveeieeriiiiiinniiiiiiieeiii e ecrae e 217
(1) Analysis of @ .oiiviiiiiiiiiiniii 217
(iv) Analysis of fand P. Integral 103 PN 218

Srcriox VI.
{i) Independent Happenings : F constant ........cccoviinieiinnns 220

Secrion VIL
(i) Dependent Happenings. Proportional Happening: 4 = ¢z... 220

(i) Tntegrations ..o.oviieievieuiiniiiiineniiiire e sre e tesaaees 220
(i) Analysis of & oo 221
(iv) Analysis of dz/dt, and other matters .........ocoeviuivieniaiinnnns 222
(v) Analysis of fivioviiiiiniiiii 223
(vi) Further analysis of f and the constants K, I, ¢ .oeeevnennenes 225
(vil) Analysis of P ..ooviiiiiiiiiii i 227
(viii) Integrals of P, Z, F...ocoovinnninnnns reerrraeresetrrertetneeietiennen - 228
L

Prefatory—It is somewhat surprising that so little mathematical work
should have been done on the subject of epidemics, and, indeed, on the
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distribution of diseases in general ~Not only is the theme of immediate
importance to humanity, but it is one which is fundamentally connected
with numbers, while vast masses of statistics have long been awaiting proper
examination. But, more than this, many and indeed the principal problems
of epidemiology on which preventive measures largely depend, such as the
rate of infection, the frequency of outbreaks, and the loss of immunity, can
scarcely ever be resolved by any other methods than those of analysis. For
example, infectious diseases may perhaps be classified in three groups:
(1) diseases such as leprosy, tuberculosis, and (?) cancer, which fluctuate
.comparatively little from month to month, though they may slowly increase
or decrease in the course of years; (2) diseases such as measles, scarlatina,
malaria, and dysentery, which, though constantly present in many countries,
flare up in epidemics at frequent intervals; and (3) diseases such as plague
or cholera, which disappear entirely after periods of acute epidemicity.

To what are these differences due? Why, indeed, should epidemics occur
at all, and why should not all infectious diseases belong to the first group
and always remain at an almost flat rate ? Behind these phenomena there
must be causes which are of profound importance to mankind and which
probably can be ascertained only by those principles of careful computation
which have yielded such brilliant results in astronomy, physies, and
mechanics. Are the epidemics in the second class of diseases due (1) to a
sudden and simultaneous increase of infectivity in the causative agents living
in affected persons; or (2) to changes of environment which favour their
dissemination from person to person; or (3) merely to the increase of suscep-
tible material in a locality due to the gradual loss of acquired immunity in
the population there; or to similar or other causes? And why should
diseases of the third class disappear, as they undoubtedly do, and diseases
of the first class remain so persistently ?—all questions which immediately
and obviously present themselves for examination.

The whole subject is capable of study by two distinct methods which are
used in other branches of science, which are complementary of each other,
and which should converge towards the same results—the a posteriori and the
a priori methods. In the former we commence with observed statistics,
endeavour to fit analytical laws. to them, and so work backwards to the
underlying cause (as done in much statistical work of the day); and in the
latter we assume a knowledge of the causes, construct our differential
.equations on that supposition, follow up the logical consequences, and finally
test the calculated results by comparing them with the observed statistics.

Apparently the first a posteriori work of importance on epidemics was a
.communication by Dr. William Farr in 1866 (1), in which he maintained, in

R 2
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connection with an epidemic of cattle plague, that the course of the epidemic
would follow a curve of which the third difference of the logarithm was a.
negative constant. In 1873-74, Dr. G. H. Evans (2) endeavoured to extend
this law to other epidemics, but ended by expressing disappointment with his
results. Quite recently, however, Dr. J. Brownlee has continued the work
in a series of excellent papers (3-8). In the first of these he said that
Dr. Farr’s curve is the normal curve of probability, but, after studying a.
number of epidemics, found that Pearson’s Type IV fitted better, and he
concluded (p. 567) that “an epidemic is an organic phenomenon, the course
of which seems to depend on the acquisition by an organism of a high grade
of infectivity at the point where the epidemic starts, this infectivity being
lost from that period till the end of the epidemic at a rate approaching to the
terms of a geometrical progression.” He admitted, however (p. 517), that
“other factors, which are not clear, seem to come into play”; but added,
“that the epidemic ends because of the lack of susceptible persons has no
evidence in its favour, either from the form of the curve or from the facts”
(see also pp. 500 and 501). It is obvious from the mere examination of
many curves of epidemics that they are often remarkably symmetrical bell-
shaped curves, which, however, frequently tend to fall somewhat more slowly
than they rose ; and in a later paper (4) Brownlee emphasises this feature of
symmetry, and says (p. 2) that “ the deduction from this phenomenon is direct
and complete, namely, that the want of persons liable to infection is not the
cause of the decay of the epidemic. On no law of infection which I have
been able to devise would such a cause permit of epidemic symmetry. The
fall must in all such cases be much more rapid than the rise, though, on the
contrary, when asymmetry is markedly present the opposite holds.” In still
later papers (6, 7) he gives much evidence to show that measles and smallpox
have distinet periods of recrudescence.

So far as I can ascertain, @ priori researches on epidemiology were first
commenced by myself since 1899 in connection with malaria. In 1904 I read
a paper (9) concerned with the random migration of mosquitoes, a subject of
vital importance in the theory of malaria, which was subsequently dealt with,
at my suggestion, by Prof. K. Pearson, whose researches were then employed
by Brownlee (5). Subsequently I endeavoured to find the malaria equations
by a priori reasoning (10), and in the second edition of my book (11) extended
this method to a preliminary general “Theory of Happenings,” employing
chiefly the Finite Calculus (which is useful for malaria). Quite recently
I published a very brief note (13) recording further advances; and Brownlee
added another (7), showing how he arrived at some of his results.

The present paper is a much more advanced and general development of
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the work commenced in Section 66 (14) of the second edition of my book
(11, p. 676). It deals merely with the curves which are theoretically
obtained when we suppose that the infectivity-ratio remains constant or
proportional to the number of individuals already affected, while, simultane-
ously, some of these are constantly “reverting,” or losing immunity, and
while both the affected and the unaffected groups are subject to special rates
of birth, death, immigration, and emigration—as defined in the following
section. This thesis does not consider progressive decline of the infectivity ;
yet we shall see in Section VII, that, contrary to what Dr. Brownlee
supposed, it does often yield curves which are bell-shaped, nearly symme=
trical, or, when otherwise, decline more slowly than they rose—that is, yields
curves of the type frequently found in epidemics and does so without
demanding any other cause for the decline than the exhaustion of susceptible
material.

The thesis is stated in terms which are certainly academical, but into
which it has been resolved only after very careful thought. It has not only
been dealt with in considerable detail, but some of the more immediate
consequences have been followed out—because I think that it must first be
examined and used as a standard before we can proceed to discuss variations
due to changes in the infectivity. As will be seen, the mathematics presents
few difficulties ; but, owing to the nature of the subject, I have thought it
wise to labour the proofs somewhat more than some readers will require.

Beyond this point I have not endeavoured to go, because the application

of the equations to numbers of known epidemics (which will ultimately be
‘required) can be made only at great length. The paper is therefore purely
theoretical ; but it is one which I think will be needed for future studies.
In stating the results I do not at all wish to contest the conclusions of
Drs. Farr and Brownlee, which may quite possibly be ultimately found
capable of being superimposed upon mine.

Dr. Farr's communication (1) is not republished in his collected works
(“ Vital Statistics,” edited by N. A. Humphreys, London, 1885), but has recently
been recovered with some difficulty by Dr. Brownlee. If is interesting to
note that he seems to have attributed the decline of epidemics partly to the
attenuation of infectivity, but also partly to “the fact that the individuals
left are less susceptible of attack, either by the constitution or hygienic
conditions, than those destroyed.” The descriptions of his methods furnished
by himself and by Evans are, however, almost unintelligible ; but it is evident
from “ the calculated series by law ” which he gives, that the third difference
(not the second, as Brownlee said) of the logarithms of the series is a negative
constant.
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Some of Brownlee’s equations are also difficult to interpret in terms of the
numbers of individuals affected. T have therefore thought it best to proceed
in this paper entirely on the basis of my own previous work.

Part II (which is not yet finished) will contain Sections VIII (Hypo-
thetical Epidemics), IX (Hypometric Happening), X (Parameter Analysis),
XTI (Variable Happening), and XII (Discussion).

IL

The problem before us is as follows. Suppose that we have a population
of living things numbering P individuals, of whom a number Z are affected
by something (such as a disease), and the remainder A are not so affected ;
suppose that a proportion %.d¢ of the non-affected become affected in every
element of time d¢, and that, conversely, a proportion ».d¢ of the affected
become unaffected, that is, revert in every element of time to the non-affected
group; and, lastly, suppose that both the groups, the affected and the non-
affected, are subject also to possibly different birth-rates, death-rates, and
immigration and emigration rates in an element of time; then what will be
the number of affected individuals, of new cases, and of the total population
living at any time ¢ ? :

For the solution of this and the subsidiary problems I have ventured to
suggest the name “Theory of Happenings.” It covers many cases which
occur not only in pathometry but in the analysis of questions connected with
statistics, demography, public' health, the theory of evolution, and even
commerce, politics, and statesmanship. The name pathometry (pathos, a
happening) was previously suggested by myself in antithesis to nosometry
(nosos, a disease) for the quantitative study of parasitic invasions in the
individual.

111

(i) Let ndt, mdt, idt, edt denote respectively the nativity, mortality, immi-
gration, and emigration rates of the non-affected part of the population in the
element of time d¢; and Nd¢, Md¢, Idt, Edi denote the similar rates among
the affected part. Then, as argued in my- previous writings and as will be
easily seen, the problem before us may be put in the form of the following
system of differential equations :—

dP = (n—m+i—e)dt . A+(N—=M+I1—E)dt . Z, (1)

dA = (n—m+it—e—h)dt . A+(N+7r)dt . Z, (2)
dZ = hdt . A+(—M+I—-E—r)dt . Z 3)

Here dP consists only of the variation-elements n, m, i, ¢, N, M, I, E, with
their proper signs, while dA and dZ contain also the happening-element h
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and the reversion-element . Obviously dP = dA+dZ, as it should do, the
elements % and » disappearing in the summation because they denote only
change of condition and not of being. The number of the non-affected who
become affected in the element of time is Zdf. A, and, of course, this number
pass over from group A to group Z—as shown in equations 2 and 3.
Similarly rdt.Z is the number of the affected who revert in the element of
time and therefore pass over from group Z to group A. The equations are
not quite symmetrical, since N, which should appear in equation 3, appears in
equation 2—because the progeny of the affected group, namely Ndt.Z, will
generally be born not affected—an important fact which modifies almost all
the results. ‘

(ii) The variation-elements =, m, ¢, ¢, and N, M, I, E, may sometimes be
functions of time, especially if the considered events extend over long
periods ; but it will quite suffice at present to take them as being constants.
It we have sufficient data regarding them, we can generally calculate them by
the methods of Section VIII for whatever small unit of time we adopt;
otherwise they must be conjectured or assumed to begin with, and be then
ascertained by a comparison of the integrated equations with known facts.
It is convenient to write

V= n—m4i—e,

V=N-M+I-E (4)

In some kinds of happening which have no marked effect on the birth-rates,
death-rates, and immigrations—-such for instance as mild maladies, enlistments
in civil professions, conversions to religious or political parties, entries into
unlimited societies or trades-unions, etc.—we may have n =N, m=M, i=1,
¢=E, and, consequently, v="V. In other cases, quite possibly we may still
have »=7V, though the individual items may be different. Generally in
marriages N >n; in accidents M >m; in vaccinations M<m; in total-
abstainers N >7 and M <m; in military enlistments and in many diseases
N<n and M>m; while in certain alarming epidemics, especially cholera,
plague, and malaria, we find in addition that I< ¢ and E >¢—so that in these
cases, which are particularly our present subject of study, we generally have
»>V. In fatal accidents M =1 and N, I,and E all =0. When considering
happenings among the same individuals, we also put N, I and E at zero,
though M may be anything; and in other special cases we omit various
elements. If the surrounding population is not affected, I=0; and if the
atfected individuals cannot move, E=0: so that it will be seen that the
equations can be made to cover a wide field. The theory will sometimes also
apply to inanimate objects—as for instance in commerce, where the variation-
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elements may be taken to mean manufacture, waste, exportation and
importation, though the original equations may have to be somewhat
modified. ‘

(iii) The reversion-element may also at present be taken as a constant and
be calculated for the same unit of time as is used for the other elements. In
the case of independent happenings (to be defined presently) »d¢ means merely
the proportion of affected individuals which become, in element of time,
capable of being re-affected—as by divorce in marriage, and by discharge in
certain employments. In dependent happenings, however, it implies also the
loss of capacity for affecting others. Thus in infectious diseases (which are
dependent happenings) it implies loss both of immunity and of infectivity—
not recovery from sickness, which is merely an episode of affectedness from
disease. In some diseases, such probably as leprosy and organic diseases,
7 is zero or nearly zero; in others with long-continued immunity, such as
many zymotic diseases, it is low; and in others again, with comparatively
quick loss of immunity and infectivity, such possibly as nasal catarrh or
dengue, it must be larger. In many diseases, however, it is quite unknown
at present and must in fact be calculated from the integrated equations
(which, it is hoped, will prove of use for this very purpose). In the case of
slight accidents it is unity ; in fatal accidents it is zero; and in snake-bite or
heat-stroke, where recovery is quick if it oceurs, it is high, though at the same
time the death-rate M is also high. In controversial parties due to rational
divergence of opinion it should be high; in ordinary party-politics it is, in
fact, very low.

(iv) The most important element is the happening-element, h. We should
clearly understand that in most cases the happening, whatever it is, does not
select only the non-affected, but tends to fall on both groups alike. Tf,
however, it chances to fall upon individuals who are already affected,
it merely re-affects them and does not cause them to pass from.one group to
another. Really the total number of individuals to whom the happening
oceurs in element of time is 2dt. P, that is, 2dt . (A+Z). But the individuals
numbering Adt. Z do not count because they are already affected, and there-
fore do not appear in the equations. On the other hand, the actual number
of new cases (which we may denote by Fdf) is hdt. A; and this quantity
does appear in the equations 2 and 3. Or we may obtain F independently
from the proportion o R

‘il \
Wi PP ®)
so that, again, F = 2A = 1 (P—Z). This is an important subfunction in all
cases.
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(v) Different kinds of happenings may be separated into two classes,
namely (a) those in which the frequency of the happening is independent of
the number of individuals already affected ; and (b) those in which the
frequency of the happening depends upon this quantity. To class () belong
such happenings as many kinds of accidents and non-infectious diseases due
to causes which operate, so to speak, from outside; and to class (b) belong
infectious diseases, membership of socxetles and sects with propagandas,
trade-unions, political parties, ete., due to propagation from within, that is,
from individual to individual. In the former case, # or F will be constants;
in the latter case they will be functions of Z. '

To proceed now to the integration of equations 1, 2, and 3—we may
observe that the solutions, though they belong to the same class of functions,
differ specifically in different cases. The integrals are easy to obtain by
ordinary methods* ; but the most elegant and useful method is to put all
the cases into similar forms which can be brought by substitutions into the
same immediately-integrable differential equation of the simplest type. We
will first take a rapid survey of each solution as it is obtained.

IV.

(i) Independent Happenings—Here h or F is supposed to be constant.
If % is constant, the happening falls on the same proportion, idz, of the
population in every element of time.

Putting P—Z for A, using v and V for the variation-elements as in 4,
and setting 2 = ZP, eqﬁations 1 and 3 become

dP[dt = vP—(v—V)zP, (6)
daP[dt = hP(1—z)+(V—=N—r)zP, M
dzP [dt = xdP [dt + Pdz [ dt. o
Eliminating dxP/dt and dP[dt from these, we find that P cancels out also,
so0 that we have

dzfdt = h—(h+v—V+N+r)o+(v—V)a? (8)

This has one integral form if » = V, and another if » == V.

(ii) The Equivariant Case—Here the happening is such that it does not
affect the sum of the variation-elements of the affected group—though, as
already mentioned, the separate variation-elements may be different; that
is, the total population is not altered. An example is conversion to some
philosophical creed without propagandism. Another example is the

* The equations are familiar in connection with many statistical, chemical, and physical
problems.
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happening of slight accidents—in which, however, r is generally unity ; and
a third example is the happening of a certain standard of wealth, which, we
assume, tends to diminish the birth-rate, death-rate, and immigration and.
emigration of the affected, each by an equal decrement, simultaneously. In
this last case, however, as the children of the affected will tend to be born.
affected, we should remove N from equation 2 to equation 3, and omit it
from equations 7 and 8. In all these cases v = V.
(iii) To integrate equation 8, however, write it in the form

» defdt = K(L—2), )
where K =/%4+N+7 and L=74/K. Observe that the tangential, da/dt,
vanishes when 2 = L and becomes negative when #>L. Put y = L—z; so

that # = L—y. Then
defdt = —dy[dt = Ky,

1)y . dy = —Kdt. (10)
Integrating both sides of this,
log ¥ = —Ki+ constant.
If 3, is the value of y at the beginning of the happening,

log %o = constant,

and Yy = yoe‘K‘_ (11)
Therefore (L—2) = (L—ag)e~ ¥,
and 2 = L—(L—uap)e ¥, (12)

This gives the proportion, #, of the total population who are affected at the
time ¢, this proportion being z, when ¢=0.

To find P, put v—V = 0 in equation 6, and we obtain at once a differential
equation of the same form as equation 9: so-that

P = Pyett, | 13)

where P, is the total population at the beginning of the happening, when ¢ = 0.
This is an important function which expresses the natural increase of the
whole population due only to the natural variation-elements, v. Of course v
is small when the increase of population is not very rapid. When v = 0, the
population remains constant, the births, deaths, immigrations and emigrations.
annulling each other.

To find Z we have Z = zP.

In III (iv), we defined F to be the number of new cases and showed that.
F'=h(P-Z). If f=TF/P, we have, when z, = 0,

/= M1l—u) = h(1 =L+ LeX), (14)
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The functions for Z and = give what may be called respectively the actual
and proportional curves of ajfected individuals; and those for F and f give
respectively the actual and proportional curves of new cases.

To find ¢ for any assigned value of x, we have

K#¢ = log (L —a)—log (L—z) = 23025851 logi,[(L—u)/(L—x)]. (15)

The following equations are required for analysing the curves z and fi—

dz)d? = —KA(L—z), : - (16)
dffdt = —hK(L—z)(1—2z), an
@2ffd2 = WKL —e)(L+1—22), (18)

(iv) In order to analyse the curve z (of affected individuals) we first observe
that as %, N, » are always positive, K and L are also always positive and L is
always less than unity, while e~¥¢ diminishes and finally vanishes as ¢ increases.
Hence when ¢ is very large, « reaches the limit L (equation 12) and never
exceeds it. Its tangential (equation 9) begins at the value KL (=%) when
xp = 0, always remains positive, and gradually diminishes to zero when z = L
and ¢ = w. Its second tangential (equation 16) is always negative. Hence
as ¢ increases from zero to infinity, x also increases, but with a diminishing
increment, until it approximates to the asymptote L; and it is always convex
to the axis of ¢.

On the other hand the curve f/ (equation 14, of new cases) begins.at its
greatest value % (when z, = 0) and constantly diminishes, its tangential
(equation 17) being always negative. Its second tangential is always
positive, since } (L+1) is greater than L ; and the curve is, therefore, convex
to the axis of ¢, and, when ¢ is large, approaches its final value % (1—L), that
is (N +7)L, which is always less than 2. Let this constant be denoted by /.

It may have been thought that, at least in the case of constant happenings,
the whole population would become affected; but it has been shown that
this is not the case, because 2 cannot exceed L, which is a proper fraction.
What is it then that limits the value of 2? Equation 8 may be written
(when » = V)

defdt = M1—z)—(N+7r)e = f—(N+7)z, (19)

and da/d¢ vanishes when f = (N+7)z. When it vanishes, z = L and f=1/;
that is, the proportion of affected individuals comes to a limit when the
proportion of new cases exactly balances the proportion of recoveries and
births (it being assumed by supposition that the progeny of the affected are
born not affected). If, however, N and » are zero (and only then), L =1,
and the whole population does become affected in time. It should also be
observed that /=% (1—L)=~hAy [P, where Ar is the final number of
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non-affected individuals when = = L and # is very large; that is to say, even
after the limit of # has been nearly approached, the happening continues and
constantly affects the same proportion of the non-affected population as
before—but now A also comes to a limit, namely P (1—L).

The easiest way to assess the increase of = as a function of ¢ is to give to
X the successive values 1,2 3,4...10,100,1000 .... Then it is clear from
equation 12 that, if z, = 0, z will have the corresponding values 0, 3L, 2L,
2L, ... 0091, 0-99L, 0-999L, and ¢ will have the values

2:302... logio (1, 2, 3, ... 10, 100,1000 ...).

An important point is reached when ¢ = 10, for then
1.. _
t_K2502... = 7 (say). . (20)

At this point z has increased to 9/10ths of its ultimate value L—that is,
most of the change of which it is capable has been effected, and it increases
only slightly afterwards, namely only by 009 and 0009 when ¢ = 27, and
= 37, and so on. On the other hand, # reaches half its ultimate value very "
quickly when ¢ = 17 nearly.

However large # may be, e % never quite vanishes, and therefore # never
quite reaches L. It is convenient, then, to find the value of ¢ when the
_number of affected individuals reaches the limit less one individual—that is,
when Z = LP—1. This is obtained at once from equation 15, since
L/(L—2z) = LP/(LP—Z); and the required value is

t = 7logLP = 7' (say). (21)
For example, if . = § and P = 2,000,000 and remains nearly constant, the
number of affected individuals is 900,000 when ¢ = 7, and is 999,999 when
¢ = 6.

The ratio «/¢ is the tangent of the radius-vector from the origin to the
point (z, £). If 2 = 0 the value of this tangent is A, that is, duy/dZ, when
¢ = 0; and is 9L/10, that is, 0-390864, when ¢ = 7 ; so that, as the curve of
2 increases from zero to nine-tenths of its ultimate value, it lies wholly
within the angle formed by these vectors. And the magnitude of this
‘angle depends only upon %, and not upon the other elements, N and #.

The constants L, /, and T may be written in detail,

1 I 1 _ 2302...

= —_ = 22
L 1+ (N +7r)h 1+ (N+7)~Y T T RN+ (22)

From these equations it will be easily seen that if % increases while N and »
remain constant, I and / will increase and = will diminish; but if 2 remains
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constant while N or » or both increase, L and r will diminish and 7 will
increase—just as may be expected. If » =1 and N 0, [ > L, since
I = (N+7r)L; that is, as all the cases recover as soon as they occur, the total
number of cases will not exceed the new cases during unit of time—as
happens with slight accidents such as mosquito bites, where there is nothing
in one happening to prevent a second or third occurrence of it. If
N+r=0,L=1,1=0,and r=%, and if h=N+»,L=14, I =14, and
T =1151...

(v) It remains to examine some questions which require for their solution
the integrals of P, Z, A, and F—all easily obtained.

From equation 13 we have at once

JPdt = [Pertdt = P v+ constant,
t

j Pdt = (P—Py)/. (23)
0

To find the integrals of Z, A, and F, we integrate both sides of equation 7
as there written, or as written in the form dz/dt =hP—(K—V)Z, and
obtain

= [Fdt+(V—=N—r)|Zdt, (24)

or = hfPdt—(K—V)|Zdt; (25)
whence j ziy =g g 2ot (26)
J.Aclt-—(l J)P s e @)

where J = 2[/(K—V) and 1—J = —(V=N+7). And, of course,
t t
j Fdt = hJ Adt.
0 0

The same equations can be readily obtained by direct integration from
equations 12, 13, ete.

The concrete interpretation of these definite integrals of P, Z, and A, is
that they express the total number of #me-units lived during the period ¢ by
the whole population, by the affected population, and by the non-affected
population respectively.

For example, suppose that a population P, has doubled itself in 1000
time-units, then, since 1000v = log 2, v = 000069315, and the total number
of time-units lived by all the individuals together is Po(2—1)/v—that is,
14427 Py time-units.

It should be observed that if » is very small, equation 23 takes an
indeterminate form, the value of which is the value of Py (e”*—1)/v when



216 Lieut.-Colonel Sir R. Ross.

v = O—namely, ¢P,. That is, when the population remains nearly constant,
the total number of time-units lived during ¢ is ¢Py, as we should expect.

The same integrals divided by ¢ will give the mean numbers of the total,
the affected, and the non-affected populations respectively during the period ¢.
Thus, if the happening is such that it does not affect the normal rate of
increase or decrease of population, then the mean population will be
(P—Py)/log P [Py—as we should expect.

When multiplied by the appropriate constants, these integrals will-also
give the total number of the variation-events, births, deaths, immigrations and

1
emigrations. Thus the total progeny of the non-affected will number nj Adt,
0

t
and the total deaths among the affected will number Mj Zdt. The sum of
0
t
the natural variation-events in the whole population is (n—m+i——e)J- Pdt,
0

12
that is, P—P,.  Similarly o*j Zdt gives the total reversions: and the integrals
: 0

multiplied by % give the total number of time-units lived in which the
happenings have occurred-—which is the same as the number of individuals

(2

to which the happenings have occurred. Thus % j Adt is the total number of
0

happenings (not necessarily for the first time) among the non-affected—that

]
is the total number of new cases, .[ Fdt.
0

It is now easy to interpret equations 24, 25, 26, 27. Since V—N-—r
=I-E—M~—7, equation 24 means that Z, the total number of affected
individuals remaining alive at the time ¢, is equal to the sum of all the new
cases plus the affected immigrations and less the affected emigrations, deaths,
and recoveries. Also as K—V =#+r+M+E—I, equation 25 means that
the same quantity Z is equal to the total happenings plus the affected
immigrations, less the affected emigrations, deaths, and recoveries, and also
less the happenings among the affected—which, as stated in III (iv), do not
count.

V.

() Independent Happenings: the General Case: v # V.—The method of
working employed for the equivariant case has been given at some length
because it will serve also for the other ‘cases. We now proceed to integrate
the general equation 8, namely ‘

defdt = h—(h+v—V +N+7r)z+(v—V)22



Study of a priori Pathometry. 217

Write this in the form o
defdt = K(L—z)(L' —z), (28)
where K = »—V and L and L’ are the two roots of the quadratic in . Let

L=a—Band I = «+f, where « = (h+N+7r+K)/2K and B2 = «>—1[K.
These roots are always real because

(h+ N7+ KP—4hK = (h—KP+2(h+ KN +7)+(N+7)?,

of which the left side is positive when K is negative, and the right side is
positive when K is positive. And the roots are both positive when v>V.
Obgerve that dz[dt vanishes when 2 = L or L/, if this ever occurs.

(ii) Put.

y=T-2)[(L—2), z=L+I/=L)/(y—=1). (29)
de _ L'—=L dy _ 9 <L—L’>2.
Then @ = (g—1F dt Ky(L—z)* = Ky y—1
dy[dt = K(L’—L).% Y = Yo=Y, (30)
as in equation 11. Therefore, as I'—L = 28,
L'—-JJ L —Zy 2KBt
T—z L—m € (1)
‘ =T — 2B(L—x) :
or z =L (L’—xo)ezx‘”—(L—xo)’
- L{l e }When 2y = 0. NED)

The first tangential of this is given in equation 28 ; the second tangential
is
A fdt? = —2K?*(a—z)(L—z)(L/ —z). (33)
(iii) The analysis of z, the proportional curve of ajfected individuals, depends
upon whether K, that is v—V, is positive or negative. If it is positive, we
are generally concerned with cases of Injurious Happenings; because, as
explained in Section IIT (ii), the nativity, mortality, immigration and
emigration are likely to be respectively less, greater, less, and greater among
the affected in such cases- than among the non-affected. Non-infective
diseases should be examples in point. On the other hand, if v—V is
negative, we shall be generally concerned with cases of Beneficial Happen-
ings, which improve the natural variation elements of the affected—such for
example as conversions to total abstinence are said to be (if they do not
diminish 7 and increase ¢ in places where they prevail, such as the Prohibition
States in America.) '
It K is positive, 2% in equations 31 and 32 increases indefinitely with ¢
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(since B is the positive value of the radicle in the roots L and I); so that
« approaches the limit L, that is, «—3; and never exceeds it, and therefore
never reaches the greater root L, that is, «+ 8.  Therefore dz/dt is always
positive for values of x between zero and L; and d?z/d:? is always negative
for the same values, since « >a— 8. Hence in this case « has a form similar
to what it has in the equivariant case. That is, it begins (when x,=0) at
zero at an angle of which the tangent is % ; constantly increases with a
decreasing increment, so that it always remains concave to the axis of ¢;
and finally approaches the limit L when ¢ is very large.

When K is negative, the quadratic expression in equations 8 and 28 has
only one change of sign, and therefore only one positive root, I, or a+ 8.
The other root, L, does not concern us because we consider only positive
values of . In this case, e”# diminishes indefinitely as ¢ increases, and
« finally reaches the limit L. Here, too, dz/dt always remains positive for
possible values of x, that is, while ¢ varies from zero to positive infinity ;
so that » again always increases from zero to L'. If A+v—V + N+, that
is, 2Ka, is positive, d%z/dt? is always negative in this case also, and = is
therefore concave to the axis of x as before. But if this expression is
negative, d?z[dt? will be positive at first, but will change sign when z = «,
and finally vanish when z=L"; so that, in this case, z will be first convex
and then concave to the axis of £ This is the only difference in general
form. It is seldom that ¥y—V can be greater than %+ N+, which is
always positive; hence z has the same form in most cases where % is a

constant.
(iv) For the proportional curve of new cases, /, we have
S=h(1—u); (34)
dffdt = —hdx[dt A2 = —hdPw[dt? (35)

Hence, when 7, = 0, f begins at the value % and, as ¢ increases, gradually
falls to the limit A (1—L) when X is positive, and to the limit % (1—L")
when K is negative. The curvature is the opposite of that of z—as in the

equivariant case.
To find the value of P, the total population, write equation 6 in the form,

1/P . dP/dt = v—Kz,

Therefore log P = vt —[Kuxdt
2K Be KA

Yo — e 2KBL

=m—KU+j

= (v—KL)t + log(y,— e~?%Ft) 4 constant.
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On evaluating the constant we find that we can arrange P in either of two
ways, namely,

P = Pt 0= kit 1 p — oot 0 =1 xan (36)
Yo—1 Yo—1
If 2z, = 0 and ¢ is large, these become, when K >0 and K < 0, respectively,
P = Pt ekt or P = Pyt L ok (37)

The former expressions are suitable when K is positive, and the latter
when it is negative. Thus in the case of injurious happenings when K
is positive, the population will diminish indefinitely nnless the natural
increase denoted by v is large enough to compensate for the decrease, KL,
due to the happening (L being positive in this case). In the case of
beneficial happenings when K is negative, L is also negative while L’
remains positive, so that the happening enhances the natural increase of the
population due to the happening.

- As with equivariant happenings, 2 never quite reaches either L or L’;
and it will therefore be useful to find the value of ¢ when the affected
population equals the limit less one individual, that is, when Z = LP—1
or L'P—1, or when # = L—1/P,or I'—1/P. This can easily be ascertained
from equations 29 and 30, and we have to find ¢ from the equation
1/P = (L'=L)/(y — 1) when K is positive, and from -:the ' équation
1/P =y (L'—=L)/(y—1) when K is negative. From these we have when
xe =0

(KL —v)t = log LP (K>0)
(RKL—v)t = log L'P . (K<0) (38)

To find the integral of P, we write P in the form (when )= 0)

€

P = LTPO . (—KL)t __ _LP, . =KL,
L'—L ’ L'—L

Therefore

4
j Pdit = Pyevt
0

/' _KLt__ .—KL —KL¢_ —KL
L' ¢ —e T pe L e KUt _g-KL

I'=L  »—KL =L »=KL ‘(2’9)’

The integrals of Z and F are found from this by the same methods as were

used in equations 24 and 25, or by integrating both sides of equation 6.
From the latter we have

(v=V) [ 2t = o | Pat—(P—Py) (40)

‘The remarks made in Section IV (v) apply here also.

VOL. XCIL—A, S
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VL

Independent Happenings: Constant New Cases—A third example of inde-
pendent happenings remains to be considered, namely, the one referred to at
the beginning of Section IV, in which ¥, the number of new cases, is always
a constant.  The only instances of this which I can recall are the cases of
certain societies (such as the Royal Society) which elect a fixed number
of new members every year. Indeed, this process of increment seems to be
too artificial to be seen in nature, unless, perhaps, in certain cases of seeding
or spore formation, and we need only note the form of the principal function
for future reference if required.

Here, since ¥ is a constant, let ¥ = ¢. Then equations 6 and 7
become

dP/dt = vP—(v—V) Z, (41)
AZ]dl = c+(V=N—2)Z, (42)
= K (L—Z%).

where K = M—I+E+7 and L =¢/K. The solution of this is given in
equation 12, except that Z is here substituted for 2. If Z, = 0, we have

1 —e M-T+E-n)¢

s Yy

It is to be hoped that the case of the Royal Society is at least an equi-
variant one.
VIIL

(1) Dependent Hoppenings: Proportional Happening.—Referring to the
definition of dependent happenings in Section III (v), we see that in such
h must be a function of Z, and consequently of £ First consider the case in
which each affected individual affects or infects ¢ other individuals in unit of
time, ¢ being a constant. This may be taken as being a first approximation
to the study of those very important happenings, the intectious diseases.

The total number of the happenings which occur in element of time will
be ¢Zdt; but, as in the preceding cases, some of these may chance upon
individuals who are already affected, and the number of new cases in element
of time, namely, F d¢, will therefore most probably be given by the proportion

Fdt[eZdt = A[P, (43)
that is F = ¢Z(1-z), and h = ex.
(i1) Equations 1 and 3 now become

arfdt = vP—(v—V)zP, (44)
daP[dt = caP (1—2z)+(V—N—r)zP. (45)
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Treating these as in Section IV (i), we find that, as before, on eliminating
dzP[dt and dP/dt, P also cancels out, and we have

defdt = (e—v+V—=N—r)z—(c—v+V)a? (46)
= Kz (L—2), (47)

where K =¢—v+V and L =1—(N+7)/K. Here again dz/dt vanishes
when 2 = L. Integrating by substitution as before, put

y = (L—2)f2, o=LJ(1+y) (48)
L dy L / L > Y
H —_——— = JO— i KL —ee
onee (1+y)* dt K1+9KL I+y (I+yy
dyly = —KLdt  y = ye XKLt (49)
o= L
U 14+ (Lfm—1) e KL
LazyeKLt (50)

- onKLt_{,(L_%)'
Before analysing this it is advisable to obtain the integrated expressions

for P and Z. Dividing equation (44) by P and integrating both sides,

we have
log P = vt —(v—V) [ dt

= vt—(v—V)[K.log (¥ -+ L — ) + constant,

whence P = Poet (— ——>(U—WK (51
= bee <$0€KLt+L—$0 )
L o/K
— 7 vt KL
and Z = Zoe‘ te t<m> 3 (52>
where the fraction within the brackets obviously = (/o) K.
The explicit value of ¢ is given by
KLt = log X% _log =% (53)
o €

(iil) For analysing the proportional curve of affected individuals, x, the first
‘tangential is given in equation 47. The second and third tangentials are

dzfdi? = K2(L—z)(L—2z), (54)

diz[dt? = Ke(L—x)(12—6Lx + 622). (55)

From these and from equations 50, it will .be seen that z and all its

tangentials are zero when z = 0 and = L. If 2, is very small, the curve

begins at nearly zero when ¢ = 0; and then increases very slowly at first

and more rapidly afterwards, remaining convex to the axis of ¢ to begin with.
8 2
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‘When, however, © = I, there is a change of curvature and = becomes -
concave to the axis of 7, and then finally approaches the ultimate limit L
when ¢ is very large, and never exceeds that limit. Its maximum rate of
increase, namely $K L2, is reached when z = {L; and then

KLt = log [(L—a0) [o).

The curve is now seen to be a symmetrical one with this point as the centre
of symmetry. Moving the origin to the point by putting z = {L+2" and
¢ = 1/KL. log [(L—a0) [x]+?', we obtain

@ = JL(1—eKU) [(1 4 "KL, (56)

Substituting —¢’ for ¢’ in this, we find that z’ also merely changes its sign
without changing its numerical value. In fact, » has the general shape of a
long-drawn-out letter S.

(iv) The curve dz/dt is also a symmetrical one with its centre of symmetry
at the same distance from the primary origin, riamely log [(Li—y)/20]. When
%o is small, the curve increases slowly at first, then rapidly; reaches a
maximum value, 1 K12, at the centre of symmetry, and then falls just as it
rose. It has two changes of curvature which are the two roots of the
quadratic expression in d%/dt?, namely when z = (4 4/4%)L; that is when

' = F028867L,
and KLt = Flog[(/3—1)[(4/3+1)] = F131697. (57)
At these points the ordinate of dafdt, that is, of Ke(L—z), is
KI2G+4/ 1) =5 =1/1%)

that is 21KI?2 or two-thirds of the maximum ordinate at the centre of
symmetry ; and the ordinate is, of course, the same at both points of change
of its curvature, as also at other points equidistant from the centre of
symmetry.

The curve of dzfdl is therefore a regular bell-shaped curve, very similar to
those often found in epidemies. ’

By the conditions of this kind ‘of happening, =, and Z, can never be zero,
for if they were there would be no new cases. It is convenient therefore to
take Zo as being one individuval—that is, Zy = 1, 2 = 1/Py, and da/dt =
K (Py—1)/P¢? or nearly K/Po.

As with the kinds of happening previously considered (see equation 21),
x and Z never quite reach the limits L and LP respectively ; it is useful then
to find when the number of affected individuals reaches the limit less one
individual, that is when Z=LP—1 and 2 =L-1/P. If Z,=1 and
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2 = 1/Py as just suggested, then, owing to the symmetry of the curves, this
figare will be reached when # = L—a, ; that is (equation 53) when

KLt = log [(L—x0)/20] —1og [#o [ (Li—:0)],
= 2log (LPy—1) = 2KLr (say). (58)

Thus if the total population is large and L is not very small, 7, the
abscissa of the centre of symmetry when z, = 1/Py, is very nearly equal to
1/KL.log LPy; and at twice this period from the beginning the limit of
affected individuals less one will be reached. We observe also that when
¢ = 27 the ordinate of dz/dt will be the same as it was at the beginning,
namely nearly K/P,.

If ) = 1/P,, the tangent of the radius-vector from the origin to the
swinmit of dz/dt is } K12/, that is

K213/4 log (LPy—1). (59)
From equations 48 and 49 we have

aw — @ L= 2 LP—ayly _ 4 LPy—Z
" @y L—z zP, LP—aP Zo LP—7"

(60)

This provides a useful formula for a cursory estimation of the increase of Z
with respect to ¢ when the latter is small. For if Py and P, Zy and Z are
not very different, and LP, is large and Z, small—as at the commencement
of the happening—then this equation is nearly

Z = Zye¥,
Suppose that Z, is one individual (¢ = 0), then Z = 2, 3, 4, ... individuals
as e¥* increases through the values 2, 3,4, ...; thatis, as ¢ increases through

the values 1/KL.log (2, 3,4, ...). This same thing does not hold true,
however, when Z is larger.

Similarly, we may have at first F = cZje¥t— %—c(ZoeKL‘)z.
0

(v) The actual and proportional curves of new cases are respectively :—

¥ =cZ(1—u),
J=ca(l—-z). (61)
To analyse f we have
dffdt = cKa(L—xz)(1—2z), (62)
@*f[dt? = (K2 (L—a){L—2(2L+ 1)z -+ 622}. (63)

And, since L = 1—(N +7)/K, we may also write /' in the form
A Kffe = dzfdt+ (N +7)a. (64)
The form of the curve f depends upon the value of L. If L =1, that is,
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if (N+7)/K is zero or very small, the curve f equals or approximates to the
curve dz/dt multiplied by the constant ¢/ K—which is generally greater than
unity. That is, in this case f is a symmetrical bell-shaped curve with the
properties just described. In any case, however, /' is such a curve plus the
constantly-increasing function ¢(N +#)z/K, or ¢(1—L)z. Wemay, therefore,
expect that, at first, when z is small / will follow the graph of dz/dt, but that
as « increases, the ordinates of / will become increasingly greater than those
of du/dt.- At last, when ¢ is very large and z approximates to L, dw/dt
becomes nearly zero and f approaches the constant value ¢L(1—L), at which
it remains indefinitely. Thus f is quite symmetrical only if L = 1; but is
nearly symmetrical if L is only a little less than unity.

It is evident from equation 62 that df/d¢ vanishes when z equals either
Lor 4. Thatis, if L>%, f reaches a maximum when # = , the ordinate of
this maximum being exactly ci(1—1%), or 2¢; and as @ increases above this
value, f then decreases, and falls towards its ultimate constant value
¢L(1—L) 'as « approaches L. If L =} exactly, df/dt vanishes only once
(and that not quite), namely, when & = L. = {, so that f now always increases
until it reaches its maximum, }e—which is also its ultimate value. If
L <4, however, z never attains the value 4, and consequently df/dt has no
vanishing point for any values of z between z, and L, and therefore again
always increases for all considered values of # and therefore of £ Hence the
curve of f has two forms: (Type I)if L >4, an irregular bell-shaped form
(becoming regular if L = 1); and (Type II)if L%, a drawn-out S-shaped
form somewhat similar to that of « itself, but not usually symmetrical.

From equation 63 it will be seen that f may have two changes of
curvature as « varies from 2, to L, namely, at the two roots of the gquadratic
expression in the value of d%z/di%.  The roots are

65 = (2L+1) 4 /[(2L+1)2—6L] ; (65)

and are real and positive. The lesser root is always less than L, and is
therefore always attained by z as it varies from o to L—so that f always
has at least one change of curvature. The greater root is also less than I,
when L>%; is equal to L when L = §; but is greater than L when L < {—
so that the second change of curvature occurs only when L>>4. (As 2 never
quite reaches L, there is no second change of curvature when L = }.) These
results are therefore as were to be expected from the two forms of the curve
of f already discussed.

As already seen, when L>>4, the summit of the f-curve is 1e¢ and is
reached when # = . The corresponding value of ¢ is

t=7—1/KL.log(2L—1), (66)
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the logarithm being negative since 2L—1, that is, 1—2(N+7)/K, is less
than unity. '

It has also been seen that when L> §, f falls after reaching its maximum,
f¢, to a constant value, cL.(1—L). The difference between the maximum
and the ultimate values of f is therefore

1(2L—1),
and their ratio is 1/4L(—1L) = A (say). (67)

As with independent happenings (e.g. equation 22), we shall use the
symbol / to denote the limit which f approaches when ¢ is very large, and
this will be examined further in Section VIII (iii) (Part II).

(vi) The curves of new cases in proportional happenings are especially
important because, ¥ the original assumptions upon which they are based are
sufficient in themselves to explain time-to-time variations in the frequency
of infectious diseases, these curves should agree, at least for a first approxima-
tion to the truth, with the curves of new cases actually observed in such
diseases. Now, according to Brownlee (Section I), the curves of many
epidemics, especially of the short and sharp zymotic diseases, tend to be
remarkably symmetrical bell-shaped curves, roughly similar, in fact, to the
J-carve developed from certain values of the constants.

‘We now proceed, therefore, to examine these constants with greater care.
They are in detail,

K=¢—-v+V, KL=¢—v+V—-N—r, L=1—-(N+r)[(c—v+V) (68)
The particular elements have been already discussed in Sections IIT and V.
The natural-variation element v governs the natural increase of the popula-
tion apart from exceptional happenings; but V, N, » are connected with the
special happening under consideration. If the period covered by such
happening is short compared with the average life of the individuals con-
cerned, v may be so small as to be negligible, and N also may be very small.
In injurious happenings such as infectious diseases, v—V should be positive
(Section V (iii) ), and V will be negative if M>N and E>1, so that v—V
still remains positive even when v = 0; but, as a rule, except in very fatal
diseases, v—V is very small. The element # may be unity when reversion is
immediate, as in slight accidents, but may be nearly zero when the immunity
conferred by one attack of a disease lasts for a long time on the average, as
in many zymotic diseases. DBoth N and = are only positive quantities, so
that v—V+4+ N+ is usually a small or very small positive fraction in the
case of infectious diseases (its actual magnitude depending, of course, on the
magnitude of the time-unit taken as well as on the elements themselves).
The element of special importance is ¢, that is the average number of
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individuals infected or reinfected in unit of time by each already infected
individual. But while », V, N, » may be taken as fixed for the kind of
happening considered, ¢ is generally unknown, and, indeed, one of the
ultimate objects of such studies as these will be to ascertain its value. At
present, however, we take it to be a constant.

We observe first from equation 53 that if KL is negative  must constantly
diminish as 7 increases, which means that a change must have occurred in at
least one of the original constants. Hence we assume at present that KL is
is positive, and reserve the study of the case when it is negative for
Section IX. (Hypometric Happenings; Part IT).

Secondly, as KL is taken to be positive, ¢, whatever it is, must be greater
than' v—V + N 4 7—generally a small positive fraction ; and therefore greater
than each item individually.

Thirdly, as ¢>v—V+N+7and N and » are positive, ¢ >v—V ; that is, K is
always positive.

Fourthly, as KL>0, K>N-+7, and therefore L is always less than unity
(as it must otherwise obviously be), and always positive. Clearly also,
L increases with the increase of ¢ and V, but diminishes with the increase of
v, 7, and N (the last of which exists in K but cancels out from KL).

‘We must now examine the conditions which hold respectively if f is to be
of Type IT or Type I, or is to be nearly or quite symmetrical.

It will be of Type II, that is, always increasing in a drawn-out S-shape
[(v) above] if L. i8 not greater than § ; that is, if ¢»v—V +2(N+7). But as
just shown, in the cases which we are now considering, ¢ must always be
greater than v—V +N +7.  Hence in order that f shall be of Type IT, ¢ must
lie between the limits »—V+2(N +7) and v—V +(N+7). Now if N+~ is
small, as is usually the case in short and sharp epidemics of zymotic diseases
~ with long immunity, these limits will be narrow; in other words, out of the
whole range of possible values of ¢, that is of infectivity, only a small sector,
and that the lowest one, will make f of Type II. '

On the other hand, f will be of Type I, that is, of a bell-shape, regular or
irregular, if L>}—that is, if ¢ is any number greater than v—V +2(N +7).
In this case f rises to a maximum ordinate }¢ and then falls to a constant
level ¢I(1—1L). Lastly, /' becomes nearly symmetrical (see (v) above) when
L = 1 nearly, that is, when ¢ = v— V +(1 ++) (N +7), where v is consider-
able ;. and also of course when N and » are very small. These are probably
just the conditions which hold in mauy of the short and sharp epidemics of
zymotic diseases, such as measles, scarlatina, and dengue; and they produce
curves which differ from the perfectly symmetrical curve of ¢/K . dz/dt only
by a small increasing term which, however, never exceeds ¢/K . (N +7)L.
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For an example, suppose the case of a human infectious disease in which
v—V = 0002, N = 00004, » = 0-02, all assumed for a time-unit of one week.
Then KL will not be positive unless ¢>0'0224; that is, the happening
will have no effect unless, say 1000 affected individuals infect or re-infect
224 individuals per week on the average. If 1000 such persons can infect
or reinfect 42-8 persons per week or less, the f-curve will be of Type IT and
will always ascend to the limit }e¢ (that is, 000107 if ¢ = 0-0428), at which
figure it will remain indefinitely. If, however, ¢ is greater than this—if the
1000 affected persons can infect or re-infect say 100 persons per week—then
the f-curve will rise to a maximum value of 0:025 of the total population, and
afterwards decline to the constant value of 001647 of the total population, or
1647 per thousand, at which it will remain (L being 0792 in this case). If
c is still greater, if each affected person can affect one other person per week,
so that ¢=1, then L = 09795, that is, nearly the whole population
ultimately becomes affected. Here f, the proportion of new cases, reaches a
maximum of one quarter the whole population and thereafter declines to the
constant value of 001997, or nearly 2 per cent. of the population, at which it
remains indefinitely. (For further examples see Section IX, Part II.)

(vii) Integral expressionsfor P and Z were obtained in equations 51 and 52
by integrating both sides of equation 44. These may be written

P = Poevl(fay . e KLYO-VIE = Py(p]ay)0=VIKevte=@=VILL (69)
7 = ZoeteK W[z . e KLIK = Z(p[ay) K evte— (=L, (70)

Two important special cases present themselves here. If v—V =0, the
happening has no effect on the total number of the population, as in mild
infectious diseases such as chicken pox or (?) dengue or party politics.
This should be called the Equivariant Case of Proportional Happening. In
it, P = Pye** as in Section IV (ii), and of course Z = Zye?*. But if v—V is
small without being zero, care must be taken with the functions if ¢, N, and
+ are small. '

The other special case occurs when » = 0, and may be called the Case of
Constant Natural Population. It is particularly important, since happenings
which are considered during only a short period compared with the average
length of life of the individuals concerned approximate to this type, because
then v, the elment of natural increase, is generally so small compared with
the other constants that it may be neglected; in fact, the a priori curves
of most epidemic diseases may be considered on this basis.

If v = 0and V is negative (as in all injurious happenings) we see that,

since
P = Py(w[ay)=VIE+NeVLe, 1)
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the population diminishes indefinitely as time progresses ; which is, of course,
what was to be expected since by supposition there is no natural increase
to compensate for the loss due to the happening.

If neither v =0 nor v—V = 0 then, since = L ultimately, that is, a
constant, the question whether the population will finally increase or
diminish depends upon the sign of the expression

v—(—=V)L = V4+[(v—V)(N+)]/(c—v+ V). (72)
~An important value of P is reached when the xz-curve attains its centre
of symmetry, that is when z = }L and ¢ = v+ = 1/KL . log [(L—)/x)
(see (iii) above). Then
P = Py(L/2u) VK [(L—my) fary Jlo— 0=V LKL (73)
— PO(_‘%)(v—V)/K (Ll)o)v/KL’
if a9 is very small, as when it equals 1/P,.
Another important value of P is reached when Z = LP—1, that is when
¢ = 27 (equation 58). Then
P = Po[(Li—my) ] 2= o= VILIKL, (74)

A third important value of P is reached (if L > %) when the f~curve attains

its maximum ; that is, when # = § and ¢ = 7’ (equation 66). Then
P = Py(1/2a)@ VK [1]ay. (L—wp) /(2 L— 1)]lo= -V LUKL, (75)

These expressions are required to estimate the actual values of Z and ¥
at these points; but, if L is not very small, + will not be very large (see
Section VIII (vii)), and therefore P can vary but little in that period from
its original value Py, and, at least for rough calculations, can be taken as
remaining constant.

(viii) Tt remains to consider the integrals of P, Z and F, which will be
required for the analysis of several questions. We proceed as in the case
of constant, happenings (Section IV (v)) by integrating both s1des of the
fundamental differential equations (44 and 45). Hence

t
PPy = v j Pdt——(»v-—V)j Zdl, (76)
0 0

12 [
LTy = j Fd/,+(v—N—q«)j Zadt. (77)
0 0

To interpret the first of these equations, we note that the actual change in
the total population effected during the period ¢, namely P —P,, equals what

t
the change would have been by natural-variation only, namely J vPdt, less
0
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the difference between the natural-variation and the happening-variation in

i
the affected part of the population, namely j(?}——V) Zdt. The second
0

equation, which is the same as equation 24, has been already interpreted in
Section IV (v). It means that the total change in the number of the affected
during the period ¢, namely, Z —Z,, is equal to the sum of new cases, namely

t
fF(Zt, plus the affected immigrations, and less the affected emigrations,
0

2
deaths, and recoveries, namely, j (I—E—M-—7)Zdt. Both these interpreta-
0

tions agree with what was to be expected.
The integrals of F-and Z can be obtained at once in the important case
when ¢ = (; and are

13

Zidt = (P=Py)]V, (78)
0

jtm = J—Zy— (V=N —7)(P—Py)/ V. (79)

0

If in these we have also V = 0, then (P—P,)/V becomes indeterminate since
P remains constant; but the value of the fraction then is, from equation 71,

=P/ V = Lt—Llog, (1)) (80)

The integrals of Z and F can also be easily obtained by direct integration
of their values when v = 0.

We should note that the total births, deaths, immigrations, emigrations,
and recoveries among the affected during the period ¢ are given, as with

¢
constant happenings, by multiplying j Zdt by N, M, I, E, and 7 respectively.
0

The main result has already been summarised in the prefatory section.
We can see from (vi) above that, for many values of the constants, the
solution of the fundamental proposition stated in Section II yields curves
generally similar to the curves frequently found in epidemics—that is, curves
which are bell-shaped and nearly symmetrical, and tend to decline more
slowly than they rose. This decline is in the case of the a priort curves due
merely to the exhaustion of susceptible material; but the further studies
contained in the second part must be considered before attempts are made to
apply the results to actual observations,

For the projected contents of Part 11 see end of Section 1 above (p. 208).
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