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SUMMARY

Using validation sets for outcomes can greatly improve the estimation of vaccine efficacy (VE) in the field
(Halloran and Longini, 2001; Halloran and others, 2003). Most statistical methods for using validation
sets rely on the assumption that outcomes on those with no cultures are missing at random (MAR). How-
ever, often the validation sets will not be chosen at random. For example, confirmational cultures are often
done on people with influenza-like illness as part of routine influenza surveillance. VE estimates based on
such non-MAR validation sets could be biased. Here we propose frequentist and Bayesian approaches for
estimating VE in the presence of validation bias. Our work builds on the ideas of Rotnitzky and others
(1998, 2001), Scharfstein and others (1999, 2003), and Robins and others (2000). Our methods require
expert opinion about the nature of the validation selection bias. In a re-analysis of an influenza vaccine
study, we found, using the beliefs of a flu expert, that within any plausible range of selection bias the VE
estimate based on the validation sets is much higher than the point estimate using just the non-specific case
definition. Our approach is generally applicable to studies with missing binary outcomes with categorical
covariates.
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1. INTRODUCTION

Many statistical methods have been developed to deal with estimating the causal effects of randomized
treatments when outcomes are missing on some participants. Most methods rely on the non-identifiable
assumption that the outcome of interest is missing at random (MAR) (Little and Rubin, 2002). If the
outcome is not MAR, then effect estimates could be subject to selection bias. Rotnitzky and others (1998,
2001), Scharfstein and others (1999), and Robins and others (2000) developed a frequentist selection
model that displays the sensitivity analysis over a plausible range of selection bias parameters. Scharfstein
and others (2003) developed a Bayesian approach that allows the formal incorporation of prior beliefs
about the degree of the selection bias to obtain the full posterior distribution, a single summary of the
sensitivity analysis. Others, for example Little (1994) and Daniels and Hogan (2000), have developed
pattern-mixture models for sensitivity analyses. Some other approaches include the work of Baker and
others (2003), Molenberghs and others (2001), Verbeke and others (2001), and Vansteelandt and others
(2006).

A particular case of missing data occurs if the outcome of interest is difficult or expensive to ascertain,
so that a surrogate outcome may be used instead. The outcome of interest may be measured on some
of the study participants in a subset called a validation sample, while the surrogate is measured on all
participants. In this situation, statistical missing data methods are available to use the outcomes of in-
terest in the validation sample to correct the bias based on the non-specific case definition alone (Pepe
and others, 1994). Halloran and Longini (2001), Halloran and others (2003), and Chu and Halloran
(2004) have demonstrated the potential use of these methods for estimating vaccine efficacy (VE) on the
example of an influenza vaccine. In a randomized study with a planned random sample selected for the
validation set, MAR would be a reasonable assumption. However, in many situations, the selected sample
may be a convenience sample, so that MAR is unlikely to hold. Halloran and others (2003) presented
a simple model to explore the sensitivity of the VE estimates to the magnitude of the departure from
the MAR assumption. However, their approach was ad hoc and did not give confidence bounds on their
estimators.

Here, we formulate a class of selection models, indexed by interpretable parameters, to evaluate the
sensitivity to selection bias when using validation sets to estimate VE. Frequentist and Bayesian ap-
proaches to inference will be presented. In developing and applying our methodology to the re-analysis
of the influenza vaccine study, we worked closely with a scientific expert. Our approach is generally
applicable to missing binary outcomes with categorical covariates.

2. INFLUENZA VACCINE STUDY

A field study of a trivalent, cold-adapted, influenza virus vaccine (CAIV-T) was conducted in Temple-
Belton, Texas, and surrounding areas during the 2000–2001 influenza season. The field study was part
of a larger community-based, non-randomized, open-label field study conducted from 1998–2001 (Piedra
and others, 2001; Gaglani and others, 2003). In Temple-Belton, eligible healthy children and adoles-
cents aged 18 months through 18 years were offered CAIV-T vaccine through the Scott & White (S &
W) Clinics from 1998–2001. The analysis includes children who were S & W Health Plan members,
and is concerned with the CAIV-T vaccinations administered in the influenza season 2000–2001. Children
received a single dose of CAIV-T each year that they enrolled. The primary clinical outcome was a non-
specific case definition called medically attended acute respiratory infection (MAARI), which included
all ICD-9-CM diagnoses codes (Codes 381–383, 460–487) for upper and lower respiratory tract infec-
tions, otitis media and sinusitis. Any individual presenting with history of fever and any respiratory
illness at S & W Clinics was eligible to have a throat swab (or nasal wash in young infants) for in-
fluenza virus culture. The decision to obtain specimens was made irrespective of whether a patient had
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Table 1. Study data for influenza epidemic season 2000–2001 (from Halloran and others, 2003)

Age Vaccine Children MAARI MAARI MAARI Number Fraction Fraction
(years) status cases proportion cases positive cultures cultured

cultured cultures positive

1.5–4 CAIV-T 537 389 0.72 16 0 0 0.041
None 1844 1665 0.90 86 24 0.28 0.052

5–9 CAIV-T 807 316 0.39 17 2 0.12 0.054
None 2232 1156 0.52 118 53 0.45 0.102

10–18 CAIV-T 937 219 0.23 19 3 0.16 0.087
None 5249 1421 0.27 123 56 0.46 0.087

Total CAIV-T 2281 924 0.41 52 5 0.10 0.056
None 9325 4242 0.45 327 133 0.41 0.077

received CAIV-T. The specific case definition is culture-confirmed influenza. Table 1 contains the data.
The overall fraction of MAARI cases sampled was a little higher in the unvaccinated than in the vaccinated
groups (p = 0.03).

Halloran and others (2003) analyzed the data by adapting the mean score method for validation sets
(Pepe and others, 1994) with the goal of evaluating the protective VE of CAIV-T vaccination in healthy
children during the influenza season 2000–01. Chu and Halloran (2004) developed a Bayesian method.
The overall vaccine effectiveness estimate based on the non-specific case definition was 0.18 (95% CI:
0.11, 0.24). The overall efficacy estimates incorporating the surveillance cultures using the mean score
method was 0.79 (95% CI: 0.51, 0.91) and the Bayesian method was 0.74 (95% HPD: 0.50, 0.88). In this
situation, using the surveillance cultures as a validation set resulted in a four-fold increase in estimates,
much closer to the efficacy estimate of 0.93 (95% CI: 0.88, 0.97) obtained in a double-blind, randomized
controlled trial (Belshe and others, 1998).

In the influenza vaccine study in Texas, no surveillance cultures were positive in the age group 1.5–4
years. In Halloran and others (2003), a continuity correction of 0.5 was added to the number of cultured
samples and to the number positive in that age group in the mean score analysis. For this age group,
their estimate of VE using the mean score method was 0.91 (95% CI: −0.24,0.99). The Bayesian method
of Chu and Halloran (2004) yielded an estimate of 1.00 (95% HPD: 0.52,1.00). So, the Bayesian method
provided a much tighter measure of uncertainty than the mean score method with the continuity correction.

The results of Halloran and others (2003) and Chu and Halloran (2004) are valid only if the culture-
confirmed influenza status is MAR. In consulting with influenza experts, we learned that this assumption
can easily be violated in this study if physicians tend to select children whom they believe to have influenza
for culturing. Our goal is to develop frequentist and Bayesian methods for sensitivity analyses for these
and similar data. Further, we develop a fully Bayesian procedure that formally incorporates expert beliefs
about the culturing mechanism.

3. NOTATION AND DATA STRUCTURE

In the vaccine field study, let n be the total number of participants, and n0 and n1 the number of non-
vaccinated and vaccinated participants, respectively. Let Z denote the vaccination indicator, taking on
the value 1 if a participant is vaccinated and 0 if not vaccinated. Let A(0) and A(1) denote the indicator
of MAARI (1: yes, 0: no) for a participant if she had been, possibly contrary to fact, unvaccinated or
vaccinated, respectively. The observed MAARI outcome A = A(Z) is observed for every participant. Let
Y (0) and Y (1) denote influenza status (1: positive, 0: negative) for a participant if she had been, possibly
contrary to fact, unvaccinated and vaccinated, respectively. Only one of these outcomes can be potentially
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observed. In this study, influenza status is biologically confirmed by a culture. In the validation substudy,
a possibly non-random sample of the participants are biologically confirmed, so that influenza status,
Y = Y (Z), is known for a subset of the participants. Let R be the validation indicator, where R = 1 if
sampled for validation and R = 0, otherwise. Sampling for validation only occurs for those with A = 1.
Let X denote age category (0: 1.5–4 years, 1: 5–9 years, 2: 10–18 years) measured at the time of study
entry.

With this notation, the observed data for an individual are O = (Z , X, A, R, Y : A = R = 1). We
assume that we observe n i.i.d. copies,OOO = {Oi : i = 1, . . . , n}.

Throughout, probabilities P , indexed by subgroup subscripts indicate restriction to the associated
subpopulation. For example, for events A and B, Pz,x [A] = P[A|Z = z, X = x] and Pz,x [A|B] =
P[A|B, Z = z, X = x].

4. VACCINE EFFICACY

The scientific goal is to use the observed data to estimate the causal effect of vaccination on the outcome
Y , within age levels as well as overall. Specifically, we want to estimate age-specific VE

VES,x = 1 − Px [Y (1) = 1]

Px [Y (0) = 1]

and overall VE

VES = 1 −
∑2

x=0 Px [Y (1) = 1]P[X = x]∑2
x=0 Px [Y (0) = 1]P[X = x]

.

To identify VES,x , it is sufficient to identify Px [Y (z) = 1] for z = 0, 1. For VES , we must identify
Px [Y (z) = 1] for all z and x , and the marginal distribution of X . While the marginal distribution is iden-
tified from the observed data without additional assumptions, the conditional probabilities Px [Y (z) = 1]
will require non-identifiable assumptions.

5. TWO STRUCTURAL ASSUMPTIONS

Before proceeding further, we will make two structural assumptions to facilitate identification of
Px [Y (z) = 1].

ASSUMPTION 5.1 Z is independent of {A(0), A(1), Y (0), Y (1)} given X .

This assumption states that vaccination status is independent of the potential outcomes {A(0), A(1),
Y (0), Y (1)}, given age (X ). That is, within levels of age, vaccination is randomized. Our expert felt that
this assumption was reasonable, since there is no reason to believe that the decision to vaccinate was based
on anything related to the potential outcomes.

ASSUMPTION 5.2 A(z) = 0 implies Y (z) = 0.

We make this assumption because the study design called for passive case ascertainment. As a result,
the data structure is such that no participants who do not appear in the clinic are cultured for confirmation
of influenza infection. The above assumption states that if a participant, under vaccination status z, does
not have MAARI, then she does not have medically attended influenza. The interest is in efficacy against
medically attended, culture-confirmed influenza, not influenza infection.
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6. IDENTIFICATION OF Px [Y (z) = 1]

With these assumptions, we can write

Px [Y (z) = 1] = Pz,x [Y (z) = 1] (6.1)

= Pz,x [Y = 1] (6.2)

=
1∑

r=0

Pz,x [Y = 1|A = 1, R = r ]Pz,x [A = 1, R = r ]. (6.3)

Equation (6.1) follows from randomization within levels of X , (6.2) uses the fact that Y = Y (Z), and
(6.3) follows from an application of the law of conditional probability and our second assumption above.
Note that, for all z, x , r , Pz,x [Y = 1|A = 1, R = 1] and Pz,x [A = 1, R = r ] are identifiable but
Pz,x [Y = 1|A = 1, R = 0] are not. Thus, identification of Px [Y (z) = 1] will require identification of
these latter probabilities.

The most common assumption employed to identify these probabilities is that of MAR (Little and
Rubin, 2002). MAR states that R is independent of Y given (Z , A, X). This implies that, for all z, x ,
Pz,x [Y = 1|A = 1, R = 0] = Pz,x [Y = 1|A = 1, R = 1]. As a result, Px [Y (z) = 1] becomes
identifiable. Since the assumption of MAR is untestable and is considered questionable by our scientific
expert, it is useful to perform a sensitivity analysis to outcomes that are missing not at random.

7. FREQUENTIST SENSITIVITY ANALYSIS

7.1 Model specification

Scharfstein and others (1999, 2003) and Robins and others (2000) introduced a sensitivity analysis
methodology in which a class of models (including MAR) are posited, each yielding identification of
Pz,x [Y = 1|A = 1, R = 0]. They recommended that inferences about the estimands of interest be pre-
sented over a range of posited models, considered plausible by subject matter experts. In particular, they
assumed a pattern-mixture model of the form

Pz,x [Y = 1|A = 1, R = 0] = Pz,x [Y = 1|A = 1, R = 1] exp(αz,x )

cz,x
, (7.1)

where
cz,x = Pz,x [Y = 0|A = 1, R = 1] + Pz,x [Y = 1|A = 1, R = 1] exp(αz,x )

and αz,x is a specified non-identifiable constant to be varied in the sensitivity analysis. Setting αz,x = 0 is
equivalent to MAR. Note that plugging the right-hand side of (7.1) into the right-hand side of (6.3) yields
identification of Px [Y (z) = 1]. Specifically,

Px [Y (z) = 1] = Pz,x [Y = 1|A = 1, R = 1]

{
Pz,x [A = 1, R = 1] + exp(αz,x )

cz,x
Pz,x [A = 1, R = 0]

}
.

(7.2)

It is possible to re-write Model (7.1) as the following selection model:

logit Pz,x [R = 0|A = 1, Y = y] = hz,x + αz,x y, (7.3)

where

hz,x = log

{
1

cz,x

Pz,x [R = 0|A = 1]

Pz,x [R = 1|A = 1]

}
. (7.4)
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For subjects with Z = z, X = x , and MAARI, αz,x is interpreted as the log odds ratio of being unvalidated
for diseased vs. undiseased subjects. So, αz,x positive or negative indicates that diseased subjects have
lower or higher odds of being validated, respectively.

When eliciting plausible ranges for αz,x , our expert found it easier to think about selection bias on a
relative risk as opposed to an odds ratio scale. Specifically, he felt more comfortable expressing opinions
about the relative risk of being validated given that a MAARI participant has influenza, compared with
having another influenza-like illness. As a result, we re-formulated the above models in terms of the
relative risk selection bias parameters

βz,x = Pz,x [R = 1|A = 1, Y = 1]

Pz,x [R = 1|A = 1, Y = 0]
. (7.5)

We can re-parametrize Model (7.3) in terms of βz,x . Letting ηz,x = Pz,x [R = 1|A = 1, Y = 0], we
can show that there is a one-to-one mapping between (hz,x , αz,x ) and (ηz,x , βz,x ). Specifically,

ηz,x = (1 + exp(hz,x ))
−1

βz,x = 1 + exp(hz,x )

1 + exp(hz,x + αz,x )

or

hz,x = log(1 − ηz,x ) − log(ηz,x )

αz,x = log(β−1
z,x − ηz,x ) − log(1 − ηz,x ).

Because of this one-to-one relationship, specification of βz,x will lead to identification of Px [Y (z) = 1]
via the following formula:

Px [Y (z) = 1] = Pz,x [Y = 1|A = 1, R = 1]Pz,x [A = 1]

βz,x Pz,x [Y = 0|A = 1, R = 1] + Pz,x [Y = 1|A = 1, R = 1]

= P[Z = z, X = x, A = 1, R = 1, Y = 1]P[Z = z, X = x, A = 1]/P[Z = z, X = x]

βz,x P[Z = z, X = x, A = 1, R = 1, Y = 0] + P[Z = z, X = x, A = 1, R = 1, Y 1]
.

(7.6)

7.2 Estimation and inference

The frequentist non-parametric estimator of Px [Y (z) = 1] can be found by replacing the probabilities P
in (7.6) by their empiricals P̃ . Then

P̂x [Y (z) = 1] = P̃[Z = z, X = x, A = 1, R = 1, Y = 1]P̃[Z = z, X = x, A = 1]/P̃[Z = z, X = x]

βz,x P̃[Z = z, X = x, A = 1, R = 1, Y = 0] + P̃[Z = z, X = x, A = 1, R = 1, Y = 1]
.

(7.7)

The right-hand side of the above equation reduces to the results with the mean score method when
βz,x = 1, for all z and x .

We can then estimate VES,x by

V̂ES,x = 1 − P̂x [Y (1) = 1]

P̂x [Y (0) = 1]
,
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and VES by

V̂ES = 1 −
∑2

x=0 P̂x [Y (1) = 1]P̃[X = x]∑2
x=0 P̂x [Y (0) = 1]P̃[X = x]

.

In Section A of supplementary material available at Biostatistics online (http://www.biostatistics.
oxfordjournals.org), we derive the large sample-based confidence intervals for VES,x and VES . The sen-
sitivity analysis proceeds by varying the βz,x over plausible ranges. When a stratum has a relatively small
number of validation cultures and small number of positive cultures, as in our influenza example, these
large sample confidence intervals may not perform well. When there are no positive cultures, one can use
the continuity correction approach of Halloran and others (2003). In Section 8, we show how to compute
Bayesian credible intervals which should perform better in this setting.

8. BAYESIAN INFERENCE

Scharfstein and others (2003) developed a Bayesian methodology that allows full posterior inference
about the estimands of interest, by assuming informative prior distributions on the selection bias parame-
ters on the odds ratio scale. Their work did not allow for covariates and assumed independent priors across
treatment groups. Our goal is to extend their work to the relative risk parametrization of selection bias,
discrete covariates, and dependence of the priors for the relative risk parameters across treatment groups.

To simplify notation, we let βββz = (βz,0, βz,1, βz,2)
′, βββ = (βββ ′

0,βββ
′
1), ηηηz = (ηz,0, ηz,1, ηz,2)

′, ηηη =
(ηηη′

0,ηηη
′
1)

′, pz,x = Pz,x [Y = 1|A = 1], pz = (pz,0, pz,1, pz,2)
′, p = ( p′

0, p′
1), φz,x,a = Pz[A = a, X = x],

φφφz = (φz,0,0, φz,0,1, φz,1,0, φz,1,1, φz,2,0, φz,2,1)
′, and φφφ = (φφφ′

0,φφφ
′
1)

′. With this notation,

Px [Y (z) = 1] = Pz,x [Y = 1] = pz,x
φz,x,1∑1

a=0 φz,x,a
,

and

VES,x = 1 − p1,x

p0,x

φ1,x,1

φ0,x,1

∑1
a=0 φ0,x,a∑1
a=0 φ1,x,a

, (8.1)

VES = 1 −
∑2

x=0

{
p1,xφ1,x,1

( ∑1
z=0

∑1
a=0 φz,x,a

)/( ∑1
a=0 φ1,x,a

)}∑2
x=0

{
p0,xφ0,x,1

( ∑1
z=0

∑1
a=0 φz,x,a

)/( ∑1
a=0 φ0,x,a

)} . (8.2)

In the prior specification for βββ, we provide two options: (1) Bayesian analogue of the frequentist
sensitivity analysis and (2) fully Bayesian analysis. For option (1), we specify point-mass priors on βββ
and estimate the posterior distributions of the estimands of interest, over a range of βββ. This approach
is comparable to the frequentist sensitivity analysis described above, but does not rely on large sample
approximations. For option (2), we specify a non-degenerate prior distribution on βββ, elicited from a subject
matter expert. This approach has the advantage of providing a single summary of the posterior inference
about the estimands, which naturally incorporates the uncertainty due to selection bias.

8.1 Prior specification for (βββ ′,ηηη′, p′,φφφ′)′

In our specification of the joint prior distribution on (βββ ′,ηηη′, p′,φφφ′)′, we make the following assumptions:

• φφφ is independent of (βββ ′,ηηη′, p′)′.

• φφφ1 is independent of φφφ0.

http://www.biostatistics.oxfordjournals.org
http://www.biostatistics.oxfordjournals.org
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• p is independent of (βββ ′,ηηη′)′.

• The components of p are independent.

• The components of βββ may be correlated.

• Given βz,x , ηz,x is independent of {β1−z,x ′ , η1−z,x ′ : x ′ �= x}.
• βz,x and ηz,x are only related through βz,x ’s restriction on the support of ηz,x .

Thus, the prior distribution of (βββ ′,ηηη′, p′,φφφ′)′ can be written as

π(βββ,ηηη, p,φφφ) = π(βββ)

1∏
z=0

2∏
x=0

π(pz,x )π(ηz,x |βz,x )π(φφφz).

We further assume that

• π(βββ) is an informative prior on a compact subset of R6. For the fully Bayesian analysis of the vac-
cine trial, we assume an informative multivariate normal prior on the logβββ scale. The details of the
informative priors are described in Section 9.1.

• π(pz,x ) is a uniform prior on [0, 1].

• π(ηz,x |βz,x ) is a uniform prior on [0, min(β−1
z,x , 1)]. Specifically,

π(ηz,x |βz,x ) = max{βz,x , 1}I (ηz,x < min{1, 1/βz,x }),
where I (A) denotes the indicator of the event A.

• π(φφφz) is a non-informative prior on the set{
(φz,0,0, φz,0,1, φz,1,0, φz,1,1, φz,2,0, φz,2,1) : 0 � φz,x,a � 1,

2∑
x=0

1∑
a=0

φz,x,a = 1

}
.

Assume that the combinations of (x, a) have k = 1, . . . , K categories with nzk subjects in each cate-
gory. The prior on φφφz is specified as a Dirichlet, D(1, . . . , 1). This represents a prior sample of K , the
number of categories of (x, a). We could make this less informative by replacing the 1’s with 1/K .

8.2 Sampling from the posterior distribution

To sample from the posterior, we constructed a Gibbs sampling algorithm with data augmentation (Tanner
and Wong, 1987) and slice sampling (Damien and others, 1999; Neal, 2003). Section B of the supple-
mentary material available at Biostatistics online (http://www.biostatistics.oxfordjournals.org) provides a
full description of the algorithm.

9. DATA ANALYSIS

9.1 Informative priors

For Bayesian inference, we specify informative priors for the selection bias relative risk parameters, βββ,
by age group and vaccination status. We asked an influenza expert the following question: “If a physician
were doing surveillance cultures during an influenza season, what is the probability that he would select

http://www.biostatistics.oxfordjournals.org
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the children who actually had true influenza over the children who just had non-specific respiratory symp-
toms to culture?” He responded that this was very hard to answer. One “would be more likely to be correct
in the unvaccinated,” because unvaccinated children presenting with true influenza would have more typi-
cal, severe disease than the vaccinated children. One would be “less likely to be correct in young children
under 5 years,” because children under 5 years experience many other severe respiratory diseases that
could be mistaken for influenza, while older children are already immune to such diseases. He added that
the degree of selection bias would also “depend on the rules for collection, for example, a certain number
per week or with specific symptoms.”

Another influenza expert had similar views. He provided us with his best guess for each of the univari-
ate relative risk selection bias parameters βz,x defined in (7.5) and his belief about the interval that would
likely contain 90% of the prior distribution for each βz,x . He also provided us with the degree of correla-
tion of the selection bias by age group and vaccine status. Correlations could also be elicited graphically
(Shardell, 2005). Although π(βββ) is an informative prior on a compact subset of R6, the expert did not
have different prior beliefs about the selection bias in the 5- to 9-year and 10- to 18-year age groups. Thus,
we present the prior distributions for these two age groups as one group in Table 2.

For our analysis, we plugged the elicitations into a multivariate Normal prior on the logβββ scale as
follows. We transformed the elicited best guesses for each βz,x and 90% range to the log βz,x scale.
Using qnorm in Splus, we found the univariate Normal (mean, standard deviation) distributions that best
approximated the elicited priors on the log scale. In the unvaccinated 5- to 18-year olds, the elicitation
was quite consistent with a Normal distribution. In the other three groups, adjustments were necessary as
shown in Table 2. The expert felt comfortable with the changes in elicited and proposed priors in light of
the uncertainty about the selection bias. Table 2 contains the log-transformed elicited priors, the slightly
adjusted univariate Normal priors with their 90% interval on the log βz,x scale, and the corresponding
best guess and ranges on the relative risk, βz,x , scale. The corresponding univariate distributions that we
used for the log βz,x for the unvaccinated 1.5- to 4-year old and older children are Normal (0.69, 0.43) and
Normal (1.10, 0.25) and for the vaccinated 1.5- to 4-year olds and older children are Normal (0.18,0.57)
and Normal (0.53, 0.32).

The expert believed that the correlation in selection bias among the strata would be high. He suggested
a correlation as high as 0.90. The corresponding covariance matrices for π(βββ) were constructed from the
marginal univariate Normal distributions and the correlations. We also performed the analysis assuming
zero correlation.

All programs were written in R. The Markov Chain Monte Carlo algorithm was run for 500 000
iterations with 100 000 discarded as burn-in.

Table 2. Best guess and 90% range for the informative prior distributions on the selection bias parameter
βββ and log βββ

Age
group
(years)

βββ (relative risk) scale log βββ scale

Unvaccinated Vaccinated Unvaccinated Vaccinated

Best 90% Best 90% Best 90% Best 90%
guess range guess range guess range guess range

1.5–4 elicited 2.00 1.00, 3.50 1.20 1.00, 2.50 0.69 0.00, 1.25 0.18 0.00, 0.92
used 2.00 1.00, 4.00 1.20 0.58, 2.50 0.69 0.00, 1.39 0.18 −0.55, 0.92

5–18 elicited 3.00 2.00, 4.50 1.60 1.00, 3.50 1.10 0.69, 1.50 0.47 0.00, 1.25
used 3.00 2.00, 4.50 1.70 1.00, 2.89 1.10 0.69, 1.50 0.53 0.00, 1.06
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9.2 Results

Figures 1 and 2 display results of the frequentist sensitivity analysis. These figures present results by age
stratum. The selection bias parameters were varied over the 90% ranges elicited from the expert. It was
not feasible to present parsimoniously the overall results because the selection bias parameters were too
high-dimensional. This is a key drawback of the frequentist sensitivity analysis methodology.

Figure 1 shows the estimated probabilities (and 95% confidence intervals) for influenza in the vac-
cinated and unvaccinated groups, for each age stratum, as a function of βz,x . Figure 2 shows the point
estimates and lower 95% confidence bounds for the age-group-specific efficacy. The black diamonds in-
dicate the results at the best guess of the expert. Within these ranges and within each age group, the VE
estimates based on the validation sets are higher than the point estimates based on the non-specific defi-
nition, which were 0.2, 0.25, and 0.14 for the age groups 1.5–4, 5–9, and 10–18, respectively. The lower
confidence bounds indicate the degree of variability.

The prior and posterior distributions for the relative risks of selection βz,x ’s by vaccination status and
age group are the same, since there is no information in the data about the degree of selection bias (figure
not shown). Figure 3 shows the Bayesian posterior distribution of the age-group-specific efficacy and
overall efficacy using the informative prior distributions from Table 2, assuming a correlation of 0.9. The
mode is 1.00 in the age group 1.5–4 years, since there are no positive cultures in the vaccinated group in
that age group. The results assuming a zero correlation were nearly identical (not shown).

Table 3 compares the summaries of the Bayesian posterior distributions and of the frequentist estimates
and 95% confidence intervals. The assumption of MAR results in an overestimate of the VE compared
with the selection bias relative risk assumptions elicited from the expert. Consistent with Chu and Halloran
(2004), the Bayesian posterior means are somewhat lower than the frequentist estimates. In general, the
Bayesian credible intervals are tighter than the frequentist confidence intervals. This is especially true for
the age group 1.5–4 years, where the validation sample is small and there are no positive cultures.

Fig. 1. Frequentist sensitivity analysis of Pz,x [Y = 1]. Shown are the estimated probabilities (and 95% confidence
intervals) for influenza in the vaccinated and unvaccinated groups, for each age stratum, as a function of the relative
risk selection bias parameter βz,x , varied over the 90% ranges elicited from the expert.
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Fig. 2. Frequentist sensitivity analysis of point estimates and lower 95% confidence bounds for the age-group-specific
VE as a function of the relative risk selection bias parameters β1,x (vaccinated) and β0,x (unvaccinated) varied over
the 90% ranges elicited from the expert. Black diamonds indicate the results at the best guess of the expert. Black
lines with numbers indicate the contours.

It is interesting to note that the Bayesian analysis using an informative prior for βββ had a narrower
credible interval than the analysis with βββ fixed at its best guess, i.e. a degenerate prior (see the first
two rows of Table 3). At first glance, this former interval would be expected to be wider. However, the
posterior results are a weighted average of posteriors with fixed βββ, of which some have larger and some
have smaller variation than the posterior at the best guess. Thus, it is plausible to get a smaller width
for the overall posterior credible interval than that fixed at the best guess. Similar phenomena have been
previously documented in Gustafson and Greenland (2006) in the context of adjusting for misclassification
of exposure.

10. DISCUSSION

In this paper, we have developed both frequentist and Bayesian methods for analyzing missing binary
outcomes that are thought to be informatively (i.e. related to the unobserved outcome) missing. Our rel-
ative risk parametrization of selection bias, incorporation for discrete covariates, and prior dependence
of the selection bias across treatment groups extends earlier work (Scharfstein and others, 2003), which
used the log odds ratio parametrization without covariates. We elicited informative age group and vacci-
nation status prior distributions from an influenza expert. Bayesian inference with informative priors on
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Fig. 3. Posterior distributions of the overall VE and by age group using the informative prior distributions.

Table 3. Results of Bayesian and frequentist analyses using surveilance cultures. For the Bayesian anal-
yses, the posterior means (95% highest posterior density credible intervals) for vaccine efficacy are re-
ported, for the frequentist analyses, the point estimates (95% confidence intervals). The estimates using

just the non-specific MAARI case definition are included for comparison

Analysis Age group

1.5–4 years 5–9 years 10–18 years Overall

Bayesian

Informative π(βββ) 0.80 (0.23, 1.00) 0.65 (0.13, 0.93) 0.51 (−0.12, 0.88) 0.65 (0.35, 0.86)
π(βββ) fixed at best guess 0.77 (0.11, 0.99) 0.63 (0.10, 0.93) 0.50 (−0.12, 0.86) 0.64 (0.32, 0.85)
π(βββ) fixed at 1 (MAR) 0.84 (0.41, 0.90) 0.73 (0.40, 0.94) 0.64 (0.26, 0.89) 0.73 (0.53, 0.88)

Frequentist

β fixed at best guess 0.88 (−0.97, 0.99) 0.74 (−0.05, 0.88) 0.61 (−0.25, 0.88) 0.73 (0.34, 0.89)
β fixed at 1 (MAR) 0.91 (−0.34, 0.99) 0.80 (0.26, 0.95) 0.70 (0.13, 0.90) 0.79 (0.52, 0.91)

MAARI alone 0.20 (0.14, 0.25) 0.25 (0.15, 0.34) 0.14 (0.01, 0.26) 0.18 (0.11, 0.24)

the selection bias parameters provides a useful and parsimonious way of drawing inference about VE that
incorporates expert uncertainty about the missing data mechanism. In addition, the Bayesian approach
provides better small-sample inference.

The frequentist or Bayesian sensitivity analysis approach provides much greater detail than the single
summary from the fully Bayesian analysis. As a consequence, when the dimension of the selection para-
meters is greater than 3 or 4, it is harder to visualize. While the advantage of the Bayesian sensitivity
analysis is the finite sample performance, it is computationally very intensive. The frequentist sensitivity
analysis is computationally more feasible and will perform well when the sample sizes are large.
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We used our proposed methods to re-analyze an influenza vaccine field study. We did a formal sen-
sitivity analysis to evaluate the effects of preferential selection of children with non-specific illness for
obtaining surveillance cultures to confirm true influenza. Our analysis showed that under plausible ranges
of selection bias, the VE estimates, though lower than when assuming MAR, are substantially higher than
those based on the non-specific influenza-like illness definition alone. Our methods will be generally use-
ful in future vaccine field studies, or other similar studies, in which confirmatory biological specimens are
not MAR.

For our development in this paper, we made the assumption that any person who does not present with
non-specific influenza-like illness also does not have medically attended influenza illness. Implicitly, we
assumed a degenerate prior at zero for the Pz,x [Y = 1|A = 0]. In many vaccine field studies, cases are
ascertained on symptoms, then possibly confirmed biologically. Those participants without symptoms are
generally not confirmed biologically. In the study analyzed here, ascertainment was passive through clinic
visits, so our efficacy measure was for medically attended influenza illness. Ascertainment on symptoms
could also be active, say, through regular phone calls to the home. Our methods could be used for studies
with an active ascertainment method without further extension, whereby A(z) = 1 would denote being
symptomatic by whatever case definition was used for that study, and the interpretation of VE would be
for symptomatic influenza.

It is straightforward to extend our method to the situation that infection is confirmed, perhaps sero-
logically, in a sample of people who did not have non-specific illness, A(z) = 0. In this case, we would
not need Assumption 2. The scientific question then would be to estimate efficacy against infection, not
medically attended disease, as in this paper. There would be additional selection bias parameters in that
situation. However, if a study were well enough planned to sample asymptomatic participants, it would
be hoped that the sampling would be planned to be random, so that selection bias would not play a role.

Our informative priors for the selection bias parameters were assumed to be multivariate Normal on the
log βββ scale. Prior distributions could also be constructed less parametrically using the information elicited
from the experts. When using our methods to analyze future studies, the providers making the decision
from whom to obtain biological specimens could be directly asked their prior beliefs about selection bias.

In ongoing research, we are extending the Bayesian methods to incorporate higher-dimensional co-
variates. We are also working on methods for longitudinal and time-to-event outcomes.

ACKNOWLEDGMENTS

Daniel Scharfstein was partially supported by National Institutes of Health (NIH) grants R01-CA85295,
P30-MH066247, and R01-A132475. Elizabeth Halloran was partially supported by NIH grant R01-
AI32042. Michael Daniels was partially supported by NIH R01-CA85295 and R01-HL079457. Haitao
Chu was supported in part by the NIH through the data coordinating centers for the Multicenter AIDS
Cohort Study (UO1-AI-35043), the Women’s Interagency HIV Study (UO1-AI-42590), and the Pediatric
Chronic Kidney Disease cohort study (UO1-DK-066116). We thank Ira M. Longini, Jr., Pedro A. Piedra,
W. Paul Glezen, and Arnold Monto for helpful comments during elicitation of the informative priors.
Conflict of Interest: None declared.

REFERENCES

BAKER, S. G., KO, C.-W. AND GRAUDBARD, B. I. (2003). A sensitivity analysis for nonrandomly missing cate-
gorical data arising from a national health disability survey. Biostatistics 4, 41–56.

CHU, H. AND HALLORAN, M. E. (2004). Estimating vaccine efficacy using auxiliary outcome data and a small
validation set. Statistics in Medicine 23, 2697–712.



628 D. O. SCHARFSTEIN AND OTHERS

DAMIEN, P., WAKEFIELD, J. AND WALKER, S. (1999). Gibbs sampling for Bayesian non-conjugate and hierarchical
models by using auxiliary variables. Journal of the Royal Statistical Society, Series B 61, 331–44.

DANIELS, M. J. AND HOGAN, J. (2000). Reparametrizing the pattern mixture model for sensitivity analyses under
informative dropout. Biometrics 56, 1241–8.

GAGLANI, M. J., PIEDRA, P. A., HERSCHLER, G. B., GRIFFITH, M. E., KOZINETZ, C. A., RIGGS, M. W.,
FEWLASS, C., HALLORAN, M. E., LONGINI, I. M. AND GLEZEN, P. (2003). Direct effectiveness of the in-
tranaal, live-attenuated trivalent, cold-adapted, influenza virus vaccine (CAIV-T) against the 2000–2001 influenza
A (H1N1) and B epidemic in healthy children. Archives of Pediatric and Adolescent Medicine 158, 65–73.

GUSTAFSON, P. AND GREENLAND, S. (2006). Curious phenomena in Bayesian adjustment for exposure misclassi-
fication. Statistics in Medicine 25, 87–103.

HALLORAN, M. E. AND LONGINI, I. M. (2001). Using validation sets for outcomes and exposure to infection in
vaccine field studies. American Journal of Epidemiology 154, 391–8.

HALLORAN, M. E., LONGINI, I. M., GAGLANI, M. J., PIEDRA, P. A., CHU, H., HERSCHLER, G. B. AND

GLEZEN, W. P. (2003). Estimating efficacy of trivalent, cold-adapted, influenza virus vaccine (CAIV-T) against
influenza A (H1N1) and B using surveillance cultures. American Journal of Epidemiology 158, 305–11.

LITTLE, R. J. A. (1994). A class of pattern-mixture models for normal missing data. Biometrika 81, 471–83.

LITTLE, R. J. A. AND RUBIN, D. B. (2002). Statistical Analysis with Missing Data, 2nd edition. Hoboken, NJ: John
Wiley and Sons.

MOLENBERGHS, G., KENWARD, M. G. AND GOETGHBEUR, E. J. T. (2001). Sensitivity analysis for incomplete
contingency tables. Applied Statistics 50, 15–29.

NEAL, R. M. (2003). Slice sampling (with discussion). Annals of Statistics 31, 705–67.

PEPE, M. S., REILLY, M. AND FLEMING, T. R. (1994). Auxiliary outcome data and the mean score method. Journal
of Statistical Planning and Inference 42, 137–60.

PIEDRA, P. A., GAGLANI, M., HERSCHLER, G., RIGGS, M., GRIFFITH, M., KOZINETZ, C. AND GLEZEN, W. P.
(2001). Safety and effectiveness of trivalent, cold-adapted influenza vaccine (CAIV-T) in children. In: Osterhaus,
A. D. M. E., Cox, N. and Hampson, A. W. (editors), Options for Control of Influenza IV. Amsterdam: Excerpta
Medica. pp 939–43.

ROBINS, J. M., ROTNITZKY, A. AND SCHARFSTEIN, D. O. (2000). Sensitivity analysis for selection bias and
unmeasured confounding in missing data and causal inference models. In: Halloran, M. E. and Berry, D. A.
(editors), Statistics in Epidemiology, Environment and Clinical Trials. New York: Springer. pp 1–94.

ROTNITZKY, A., ROBINS, J. M. AND SCHARFSTEIN, D. (1998). Semiparametric regression for repeated outcomes
with non-ignorable non-response. Journal of the American Statistical Association 93, 1321–39.

ROTNITZKY, A., SCHARFSTEIN, D., SU, T. AND ROBINS, J. M. (2001). Methods for conducting sensitivity analysis
of trials with potentially non-ignorable competing causes of censoring. Biometrics 57, 103–13.

SCHARFSTEIN, D. O., DANIELS, M. J. AND ROBINS, J. M. (2003). Incorporating prior beliefs about selection bias
into the analysis of randomized trials with missing outcomes. Biostatistics 4, 495–512.

SCHARFSTEIN, D. O., ROTNITZKY, A. AND ROBINS, J. M. (1999). Adjusting for nonignorable drop-out using
semiparametric nonresponse models (with discussion). Journal of the American Statistical Association 94,
1096–146.

SHARDELL, M. (2005). The analysis of informatively coarsened discrete time-to-event data, [PhD. Thesis].
Baltimore, MD: Johns Hopkins University.

TANNER, M. A. AND WONG, W. H. (1987). The calculation of the posterior distributions by data augmentation.
Journal of the American Statistical Association 82, 528–40.



Estimation of VE using validation samples 629

VANSTEELANDT, S., GOETGHEBEUR, E., KENWARD, M. G. AND MOLENBERGHS, G. (2006). Ignorance and
uncertainty regions as inferential tools in a sensitivity analysis. Statistica Sinica (in press).

VERBEKE, G., MOLENBERGHS, G., THIJS, H., LESAFFRE, E. AND KENWARD, M. G. (2001). Sensitivity analysis
for nonrandom dropout: a local influence approach. Biometrics 57, 7–14.

[Received July 25, 2005; first revision January 24, 2006; second revision March 6, 2006;
accepted for publication March 22, 2006 ]


