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Early detection of person-to-person transmission of emerging infectious
diseases such as avian influenza is crucial for containing pandemics. We de-
veloped a simple permutation test and its refined version for this purpose. A
simulation study shows that the refined permutation test is as powerful as or
outcompetes the conventional test built on asymptotic theory, especially when
the sample size is small. In addition, our resampling methods can be applied
to a broad range of problems where an asymptotic test is not available or fails.
We also found that decent statistical power could be attained with just a small
number of cases, if the disease is moderately transmissible between humans.

1. Introduction. Most emerging infectious disease pathogens in humans
cross from their natural zoonotic reservoir to human populations where early mu-
tated, reassorted or recombined forms begin to spread from person-to-person [An-
tia et al. (2003)]. Examples include human immunodeficiency virus, monkey pox,
severe acute respiratory syndrome and pandemic influenza. Currently, a highly
pathogenic avian influenza strain (H5N1) has been spreading from poultry to hu-
mans, mostly in Southeast Asia, with possible limited human-to-human spread
through close contact in Indonesia [Butler (2006)]. A concern is that this virus
could cause a large scale pandemic as it becomes more adapted to human-to-
human transmission. Real-time surveillance provides limited information on small
clusters of human cases in terms of symptom onset times and physical location. It
is critical to answer two questions in real time: 1. Is the infectious agent spreading
from person to person? and 2. If it is, how transmissible is it? The first question
is novel and, to our knowledge, has not been addressed in the statistical literature.
The second question is an estimation problem, and various statistical methods us-
ing household data are applicable, such as the models based on observed final in-
fection status [Longini and Koopman (1982), Becker and Hasofer (1997), O’Neill
and Roberts (1999)] and those based on a discrete-time sequence of symptom on-
set [Rampey et al. (1992), Yang, Longini and Halloran (2006)]. Our major goal in
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this paper is to answer the first question, but an estimation method is needed for
this goal. We base our approach on that in Yang, Longini and Halloran (2006).

The statistical questions hinge on inference about the transmissibility of the in-
fectious agent. The basic reproductive number, R0, is the fundamental measure of
the transmissibility of an emerging infectious agent. Given that the emerging in-
fectious agent is transmissible, estimates of R0 will generally be small and are not
very informative. In addition, estimation of some epidemic characteristics such as
secondary attack rates (SAR) and R0 heavily relies on the specification of a correct
transmission model. When there is no person-to-person transmission, estimates of
these characteristics may be nonzero, but are not meaningful. Therefore, a test of
the existence of person-to-person transmission can provide a solid ground for para-
meter estimation. Specifically, one would like to test whether the person-to-person
transmission probability, no matter how it is defined, is 0. As a probability always
takes values from 0 to 1, the boundary value 0, which is a nonstandard condition,
imposes an immediate challenge, because the null distribution of standard statis-
tics, based on which tests are performed, are generally difficult to track. Although
statisticians have discussed asymptotic tests for a limited set of scenarios [Moran
(1971), Self and Liang (1987), Feng and McCulloch (1992)], more often such an
asymptotic null distribution is not available for a specific case. Furthermore, the
validity of asymptotic tests depends on relatively large sample sizes, which may
compromise the power of such tests to detect person-to-person transmission if ap-
plied to a small sample size, such as those generated by avian influenza. These
challenges motivate our investigation in exact rather than asymptotic testing meth-
ods.

2. Methods. The data structure we usually observe is a sequence of symp-
tom onsets and associated cluster information, for example, at what time a symp-
tom onset occurred in which household. To construct a probability model with a
reasonable level of complexity from the observed data, it is necessary to make
basic assumptions about the natural history of the disease and the transmission
mechanism. We assume that the incubation period is the same as the latent pe-
riod, but other assumptions could be made about the relation of the two periods.
We make the following additional assumptions about the disease. Any newly in-
fected person remains asymptomatic over a period of δ days (the incubation pe-
riod) before symptom onset, where δ is a random quantity with a distribution of
g(l) = Pr(δ = 1), l = δmin, δmin +1, . . . , δmax. We denote by δmin and δmax the min-
imum and maximum durations (in days) of the latent period. Upon symptom on-
set, the person becomes and remains infectious over a period of η days (infectious
period), where η is also a random quantity with a distribution f (l) = Pr(η = l),
l = ηmin, ηmin + 1, . . . , ηmax. Similarly, ηmin and ηmax are the minimum and max-
imum durations of the infectious period. In this paper our method requires pre-
specifying g(l) and f (l).
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We consider the dynamic of a community-based epidemic on a day-by-day ba-
sis. We assume that the whole community is exposed to some external source with
a constant level of infectivity for S days. Such an external common source takes
into account all possible channels, such as exposure to infected animals, through
which the disease can be introduced into the community. Let b be the probabil-
ity that a susceptible person in the community is infected by the common source
during one day of exposure. The probability of infection by the common source
throughout the S-day exposure period is called the community probability of infec-
tion (CPI) and is given by 1 − (1 − b)S [Longini and Koopman (1982)]. Once the
disease is introduced into the community, transmission between people may occur
through contacts. There are various types of contacts one can define. We define a
contact as all possible interactions during one day that can potentially transmit the
disease from an infective person to a susceptible person. We consider two levels
of contacts: close contacts between two persons who live in the same household
and casual contacts between two persons who live in different households but may
make contact in the community. We denote by p1 the daily probability of trans-
mission with a close contact, and by p2 with a casual contact.

With the above setting, we can construct a likelihood and obtain the maximum
likelihood estimates (MLEs) for the unknown parameters (b, p1 and p2) as given
in the Appendix. Two quantities related to transmission probabilities that we would
also like to estimate are the SAR and R0. The SAR is defined as the probability
of infection if a susceptible is exposed to an infective during his or her infectious
period. Corresponding to the levels of contact, there are two types of SAR defined
as SARk = ∑

l f (l)(1 − (1 − pk)
l), k = 1,2. SAR1 is the SAR within households

and is of more epidemiological interest than SAR2. The basic reproductive number
refers to the expected number of people a typical infective person can infect among
a large susceptible population. Here we are interested in the expected number of
people that an infective person can infect given that he or she is the first infected
person in this community. We refer to this as the local reproductive number R.
Estimates of the local R cannot be generalized to a broader context because of the
potential selection bias. The clusters are often selected based on a number of cases
and may represent higher R0 than in the general population. For a community of N

households with a uniform household size M , we have R = (M − 1) × SAR1 +
(N − M) × SAR2.

Nonzero estimates of p1 or p2 do not necessarily imply that their true values
are nonzero. In addition, construction of valid 95% confidence intervals for the
estimates of transmission probabilities is difficult when their true values are 0’s.
Therefore, a valid test of the hypothesis p1 = p2 = 0 would be of great public
health interest. A formal statement of the hypothesis test is

H0 :p1 = p2 = 0 vs.

H1 :p1 > 0 or p2 > 0,
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where H0 is the null hypothesis and H1 is the alternative hypothesis.
A natural choice of test statistic is the likelihood ratio statistic

λ = −2 log
supb L0(b|t̃i , i = 1, . . . ,N)

supb,p1,p2
L(b,p1,p2|t̃i , i = 1, . . . ,N)

,(1)

where the numerator is the maximum likelihood (ML) when we restrict p1 = p2 =
0, and the denominator is the ML without such restriction, both conditioning on
observed symptom onset times t̃i (t̃i = ∞ for uninfected individuals). Explicit ex-
pression of the likelihoods are given in the Appendix. The likelihood ratio statistic
asymptotically follows a Chi-square distribution with 2 degrees of freedom when
H0 is true, if all regularity conditions hold for this probability structure [Lehmann
(1999)]. However, two nonstandard conditions are present in our case. One is that
the hypothesized parameter values under testing are boundary. As mentioned be-
fore, the asymptotic null distribution is generally difficult to track when boundary
values are to be tested. Self and Liang (1987) discussed asymptotic distributions
of the likelihood ratio statistic for some settings of boundary parameters, but our
case is not one of them. The other nonstandard condition is that the parameters to
be tested affect the domain of observable data. When p1 = p2 = 0, infections are
confined to the S days with exposure to the common infective source. Therefore,
no symptom onset can happen after day S + δmax. When p1 �= 0 or p2 �= 0, the
domain of the observable data is much larger. No valid asymptotic test exists when
this nonstandard condition is present, unless we only use the data up to day S for
testing at the price of losing some information.

Resampling methods have been widely applied to hypothesis testing, especially
in the recent decade because of their easy implementation with modern computa-
tional capacity. While employing less stringent model assumptions, these meth-
ods can attain the same level of statistical power as standard tests [Hoeffding
(1952), Box and Andersen (1955)]. Permutation tests (or randomization tests) have
been well developed in the setting of two-sample comparison and ANOVA [Fisher
(1935), Pitman (1937), Welch (1990)]. For the boundary problem with parameter
values specified by H0, the bootstrap was used in combination with the likeli-
hood ratio statistic to test the number of components in mixture models [McLach-
lan (1987), Feng and McCulloch (1996)]. We propose two approaches, a simple
permutation test and a more refined one, for the problem of testing the person-
to-person transmission probability. These resampling-based methods do not suffer
from the two nonstandard conditions mentioned above, as shown by a simulation
study. When the observed data are truly generated from H0, we can reassign all of
the observed symptom onset days (and associated infection status) to a different
collection of individuals, and every such rearrangement is equally likely with the
same likelihood L0. The empirical distribution of the test statistic calculated from
permuting symptom onset days across the population can then be used to approx-
imate the null distribution under H0. This simple permutation test can be refined
by varying symptom onset days of infected individuals in any given permuted data
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while keeping the likelihood L0 under the null hypothesis unchanged. The refined
permutation test resamples data points from a much larger sampling space as com-
pared to the simple permutation test. Technical details concerning development of
the two resampling methods can be found in the Appendix.

We first use simulations to verify the validity of the resampling methods by
comparing them to the asymptotic test for a simpler scenario with only b and p1,
that is, person-to-person transmission can only happen within households. For this
two-parameter setting, Self and Liang (1987) showed that λ will asymptotically
follow a mixture distribution of χ2

0 and χ2
1 with equal mixing probability. Only

data up to day S are used for such comparison with the asymptotic test. We found
that the refined permutation test has the best performance in terms of preserving
type I error at the pre-specified level and yielding higher statistical power when
population size and the number of cases are small. Results and discussion for the
simple scenario are provided in the Appendix as well. Then we use simulations to
investigate the performance of the refined permutation test for the scenario with
three parameters: b, p1 and p2.

Computing λ involves calculating likelihoods under two different models, the
one with restriction of parameters conforming to H0 is the null model, and the
other one without any restriction is the full model. For a realized epidemic, one of
the two models may not be admissible (or possible). For example, when the min-
imum interval between any pair of consecutive cases is larger than the maximum
duration of the latent period, no infection can be possibly attributed to person-to-
person infection; thus, only the null model is admissible. On the other hand, when
there is any case on or after the day S + δmax, where δmax is the maximum duration
of the latent period, only the full model is admissible because the common source
is infective up to day S. When only the null (full) model is admissible, the p-value
for that epidemic is assigned 1 (0). Resampling-based tests are performed only
when both models are admissible. Checking admissibility can help avoid noncon-
vergence problems when maximizing likelihoods.

3. Results. For simplicity, we simulate epidemics over a community com-
posed of 100 households, each of size 5. We let the exposure to external common
source last S = 30 days, and let the epidemic exhaust itself. We do not introduce
initial cases to start the epidemic, but let the common source initiate infection. Sim-
ulation runs with zero infections were discarded. We simulate epidemics based on
g(l) = 1

3 , l = 1,2,3, and f (l) = 1
3 , l = 3,4,5, and these distribution are correctly

specified by the methods that we evaluate. All p-values presented in this section
are obtained by the refined permutation test, but simulations show that the simple
permutation method gives similar results under the same population and parameter
settings as discussed here, except that it tends to be too conservative about preserv-
ing type I error for extremely small b.

As p2 is of limited interest, we fix it at 0.00005 (SAR2 = 0.0002), and vary b

from 0.0002 to 0.002 (CPI from 0.006 to 0.058) with a step of 0.0002. We vary p1
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FIG. 1. A sample epidemic curve for b = 0.001, p1 = 0.014 and p2 = 0.00005. Cases from the
same household have the same color.

from 0.004 to 0.046 (SAR1 from 0.016 to 0.17) with steps chosen specific to b so
as to yield power values in the range of (0.6,1.0). All tests are performed at the
level of 0.05, that is, we intend to have type I errors of no more than 5% when
p1 = p2 = 0. An epidemic curve of a sample run for b = 0.001 (CPI = 0.03) and
p1 = 0.014 (SAR1 = 0.055) is displayed in Figure 1, with each block representing
a symptomatic case. Cases from the same household are filled with the same color.
A pattern is evident that cases in the same household tend to cluster together in
time. The CPI, R and SAR given in the figure are based on the true parameters, but
they could be estimated from the data as well. Results based on 2000 simulations
and 2000 permutations for each test are presented in Table 1. The first row where
p1 = p2 = 0 gives type I errors for various values of b, from which it is observed
that type I errors are all preserved at the specified level. As expected, larger p1

yields higher power for fixed b; similarly, larger b also yields higher power for any
given p1. Surprisingly, when there are as few as a total of only seven cases, it is
still possible to have 80% power with a moderate p1 (SAR1 = 0.14), which means
that person-to-person transmission can still be detected even when there is a very
limited number of cases. This finding could be very useful as most avian influenza
epidemics in humans in recent years have a scale of eight total cases or fewer. Of
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TABLE 1
Power (×100) to detect person-to-person transmission for different settings of b and p1, with p2

fixed at 0.00005 (SAR2 = 0.0002). Numbers in parentheses are the average number of index cases
over the average total number of cases. Results are based on 2000 simulations. 2000 permuted

samples were drawn for each permutation test

b

p1 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020 SAR1 R

0.0a 4.3( 3
3 ) 4.8( 6

6 ) 5.0( 9
9 ) 5.1( 11

12 ) 5.3( 14
15 ) 4.2( 17

18 ) 4.8( 19
21 ) 4.9( 21

23 ) 4.9( 24
26 ) 5.0( 26

29 ) 0.0 0.0

0.004 62( 24
28 ) 62( 26

31 ) 67( 29
34 ) 0.016 0.16

0.006 62( 15
18 ) 68( 18

21 ) 71( 21
25 ) 72( 24

29 ) 75( 26
32 ) 79( 29

36 ) 0.024 0.19

0.008 66( 13
15 ) 75( 15

19 ) 79( 18
22 ) 81( 21

26 ) 84( 24
30 ) 84( 26

33 ) 87( 28
36 ) 0.032 0.23

0.010 68( 10
12 ) 75( 13

16 ) 80( 15
19 ) 84( 19

23 ) 87( 21
27 ) 90( 24

31 ) 92( 26
34 ) 92( 29

38 ) 0.039 0.26

0.012 75( 10
12 ) 81( 13

16 ) 85( 16
20 ) 90( 18

24 ) 91( 21
28 ) 95( 24

32 ) 95( 26
36 ) 96( 29

39 ) 0.047 0.29

0.014 72( 7
8 ) 81( 10

13 ) 87( 13
17 ) 91( 16

21 ) 93( 19
25 ) 95( 21

29 ) 0.055 0.32
0.016 77( 7

9 ) 84( 10
13 ) 90( 13

17 ) 0.062 0.35
0.018 78( 7

9 ) 87( 10
14 ) 0.070 0.38

0.022 85( 7
10 ) 0.085 0.44

0.026 88( 7
11 ) 0.10 0.50

0.030 75( 4
6 ) 92( 7

11 ) 0.11 0.56
0.034 77( 4

6 ) 0.13 0.61

0.038 80( 4
7 ) 0.14 0.67

0.042 84( 4
8 ) 0.16 0.73

0.046 86( 4
8 ) 0.17 0.78

CPI 0.006 0.012 0.018 0.024 0.030 0.035 0.041 0.047 0.053 0.058

aThe presented values are type I errors when p1 = p2 = 0.0.

interest as well is that all of the R values are below 1, as seen from the last column
of Table 1.

Figure 2 illustrates the information in Table 1, where power levels are shown
in different colors and symbols with b and p1 as the horizontal and vertical axes,
respectively. The 80% power contour curve obtained by Loess smoothing lies be-
tween green circles and red downward triangles. This figure clearly displays the
trend of such a contour curve, descending sharply at b = 0.0002 (CPI = 0.006)
and becoming flat around p1 = 0.008 (SAR1 = 0.032) as b increases to 0.0014
(CPI = 0.041). Let Nidx denote the mean number of index cases and Ntot the mean
total number of cases, averaging over all simulated epidemics. As only the num-
ber of cases are observable in real epidemics, we replace b and p1 with Nidx and
Ntot as the axes in Figure 3. Not surprisingly, the underlying 80% power con-
tour curve looks more linear, since roughly Ntot ≈ (1 + R)Nidx. While R depends
on p1, the range of 1 + R is relatively narrow, about [1.2,1.3] at b ≥ 0.0006, and
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FIG. 2. Power to detect person-to-person transmission for different settings of b and p1, with p2
fixed at 0.00005. Results are based on 2000 simulations. 2000 permuted samples were drawn for each
permutation test. The dashed line is the 80% power contour line obtained from Loess smoothing.

becomes narrower as b increases. The figure also indicates that the power to de-
tect person-to-person transmission is jointly determined by Nidx and Ntot, instead
of either alone. We fitted a linear regression between the complementary log–log
transformed power values and selected transformations of Nidx and Ntot, and found
the following empirical formula:

Power = exp
{− exp

(
1.29 + 0.75Nidx − 0.55Ntot − 1.40 log(Nidx)

)}
,

which explains 99% of the variation in power. Figure 4 plots the simulated vs. fitted
power values, where most points fall close to the diagonal line, indicating that the
empirical formula gives decent prediction, except for one point at b = 0.0002 and
p1 = 0.03, where the predicted power, 0.71, is somewhat lower than the simulated
power, 0.75. Such an empirical formula could be used to predict power levels at
various values of Ntot and Nidx for which simulations are not performed. The coef-
ficients in the empirical formula will likely change for different parameter settings,
and the linearity may not always hold.

To investigate how sensitive the statistical power of the permutation test is to
the distribution of the latent period, we vary the true mean duration from 1.5 to
14 days, while keeping g(l) a uniform distribution over three days. These distri-
butions of the latent period are correctly specified in the models. We expect to
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FIG. 3. Power to detect person-to-person transmission plotted by the number of index cases versus
the total number of cases. Results are based on 2000 simulations. 2000 permuted samples were
drawn for each permutation test. The dashed line is the 80% power contour line obtained from Loess
smoothing. The solid line is the lower bound (0) of power, where the number of index cases equals
the total number of cases.

see an increase in power, because increasing the latent period is essentially in-
creasing the generation time between successive cases [Fine (2003)]. To look at
the trend of changes in power when b is small, medium and large, simulations
were done under three parameter settings: (b = 0.0004 [CPI = 0.012], p1 = 0.014
[SAR1 = 0.055]), (b = 0.001 [CPI = 0.03], p1 = 0.006 [SAR1 = 0.024]) and
(b = 0.002 [CPI = 0.058], p1 = 0.004 [SAR1 = 0.016]). The values of p1 are
chosen to ensure that the initial power is below 0.8 and has the potential of reach-
ing or exceeding 0.8. Results are displayed in Figure 5. Overall, power increases,
and the rate of increment decreases, as the mean duration of the latent period (and
thus the generation time) becomes longer. However, the rate of increment is higher
at larger values of b, which means that the power of the refined permutation test
is more sensitive to the distribution of the latent period when b is large. Such
sensitivity does not compromise the usefulness of the permutation test, since our
simulation study is performed under the setting with the minimum level of power.
For avian influenza, the mean latent period may be as long as 14 days, and the
power will very likely be higher than in our simulation setting.
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FIG. 4. Plot of simulated and fitted values of power from the empirical formula
Power = exp{− exp(1.29 + 0.75Nidx − 0.55Ntot − 1.40 log(Nidx))}. A good formula should have
all the points falling close to the diagonal line.

FIG. 5. Trend of changes in power as mean duration of the latent period increases for different
settings of b and p1. Distributions of the latent period are uniform over three days and correctly
specified in the models. Results are based on 2000 simulations. 2000 permuted samples were drawn
for each permutation test.
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4. Discussion. We have proposed a simple permutation method and its refined
version to test the presence of person-to-person transmission within or between
households. Using simulations, we have shown that the resampling methods are
comparable to or outcompete the standard asymptotic testing method where such
asymptotic method is applicable. More importantly, the resampling methods re-
main valid in many settings where the asymptotic method is not applicable or not
available yet. We have shown that, for an infectious disease with relatively rare in-
cidence, person-to-person transmission could still be detected with decent power
even if the total number of cases is as few as seven or eight, given that the trans-
mission probability is high and the population is relatively large. We have studied
the statistical power of the resampling methods under the model with two levels
of contacts: within households and between households. The methods could be
generalized to models with additional clustering groups such as schools and work
places.

We have assumed that the latent and incubation periods are identical and that
the distributions of the latent and infectious periods are known. Other assumptions
about the relation between the latent and incubation periods could be made, but
may lead to different inference procedures and conclusions. As the presence of
the infectious period implies nonzero transmission probabilities, the actual alter-
native hypothesis we are testing is p1 > 0 or p2 > 0 and η ∼ f (l), that is, f (l) is
a part of the parameters, but we fix it rather than estimate it. Estimating g(l) and
f (l) solely from a sequence of symptom onsets is an ongoing research topic and is
only practical for a relatively large number of cases [Wallinga (2004), Cauchemez
(2006)]. To use our method in real epidemics, one could choose a range of plau-
sible settings of g(l) and f (l), and any setting yielding a significant p-value is a
warning sign of transmission between human beings. Appropriate adjustment for
multiple testing could be used, but one should be aware that these tests are highly
correlated as they are essentially based on the same data set, and a Bonferroni-type
adjustment is likely to be over-conservative.

In our simulation study the likelihood is calculated up to day T − δmax for sub-
jects who do not show symptoms up to day T , an incomplete adjustment for right-
censoring of infection status. A complete adjustment should take into account that
infection might have occurred after T − δmax and the latent period extends over T .
Complete adjustments may be important for real-time analysis, especially when
T � δmax does not hold. In our simulation setting, T � δmax approximately holds,
and the bias in parameter estimates induced by right-censoring is minimal accord-
ing to the simulation results in Yang, Longini and Halloran (2006).

When conducting the test, maximum likelihood estimates of b, p1 and p2 are
obtained. From these, estimates of other quantities such as the local reproduc-
tive number R and SAR can be derived. We note that, fixed at a value as small
as 0.00005 (SAR2 = 0.0002), p2 is generally underestimated due to limited infor-
mation and, consequently, R is also biased downward. Based on simulation results
(not shown), the bias decreases as the true value of p2 or size of the data increases.



222 Y. YANG, I. M. LONGINI AND M. E. HALLORAN

We have assumed that each susceptible individual is exposed to an external com-
mon infectious source up to day S. One may argue that such exposure may only
be reasonable for a subset of the population in some situations. Our model can be
applied to such situations as well, but only when there is no infected case in the
subpopulation which is not exposed to the common source; otherwise, person-to-
person transmission exists for sure. In addition, the exposure level to the common
source can be assumed as varying from household to household, but permutation
should be restricted within households and inference must be supported with suf-
ficient data.

In real epidemics, statistical inference may be very sensitive to the specifica-
tion of S. Particularly, mis-specifying a smaller value for S will likely increase the
type I error, as cases that appear after S + δmax must be accounted for by intensive
person-to-person transmission. If no relevant information is available for deter-
mining S, assuming S ≥ T will yield the most conservative p-value. Changing the
value of S may affect the admissibility of models, depending on the specification
of g(l) and f (l). To apply our methods, it is necessary to ensure that both the null
and the alternative models are admissible under these assumptions. Additionally,
it may be difficult to identify a clear cut point for the common source exposure,
and how to impose the censoring mechanism on S without compromising the test
performance is open to further research.

Early detection of person-to-person transmission from limited data is crucial in
containing pandemics of emerging infectious diseases such as avian influenza, and
our work provides an effective tool for such evaluation. Our method requires not
only a time sequence of symptom onsets, but also data on membership of house-
holds, whether or not they have cases. We believe that such data requirements are
reasonable, and that the information could be collected by local health authori-
ties. When only households with cases are available, selection bias needs to be
addressed to make the test valid, which is a topic for further investigation.

APPENDIX

A.1. Statistical model. Assume that the epidemic starts on day 1 and stops by
day T in a population of size N . Let t̃i be the symptom onset day for an infected
person i. The probability that an infective family member j infects subject i on
day t , given that subject i is not infected up through day t − 1, is expressed as

pji(t) = p
I(j∈Hi)
1 p

I(j /∈Hi)
2 f (t − t̃j ),(2)

where I (·) is the indicator function (1: true, 0: false), Hi is the set of people in the
same household with person i, and f (l) is the distribution of the infectious period.
The probability that subject i escapes infection from all infective sources on day t ,
conditioning on that subject i is not infected up through day t − 1, is then given by

ei(t) = (1 − b)I (t≤S)
N∏

j=1

pji.(3)
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Because the exact infection date is unobservable, we assume that the duration of
the latent period δ is distributed as g(l) = Pr(δ = l), l = δmin, δmin + 1, . . . , δmax,
so that we can construct a likelihood for person i as the following:

Li(b,p1,p2|t̃j , j = 1, . . . ,N)
(4)

=




T∏
t=1

ei(t), not infected,

∑
t

g(t̃i − t)
(
1 − ei(t)

) t−1∏
τ=1

ei(τ ), otherwise.

The overall likelihood L(b,p1,p2|t̃i , i = 1, . . . ,N) = ∏
i Li(b,p1,p2|t̃j , j =

1, . . . ,N) for the full model is maximized with respect to b, p1 and p2 to ob-
tain the MLEs of the three parameters, and from these, the estimates of CPI, SARs
and R. For notational convenience, we suppress the information about household
membership that should appear behind the condition symbol in L. When there is
no person-to-person transmission, that is, p1 = p2 = 0, (3) reduces to

ei(t) = (1 − b)I (t≤S).

Let L0(b|t̃i , i = 1, . . . ,N) denote the likelihood for the null model. The test statis-
tic is defined as in (1).

A.2. Null distribution.

A.2.1. Resampling distribution. Consider the observed data set as a sample
point from the space of all possible infection status and symptom onset times that
could occur based on the given population and parameter setting. There exists a
class of sample points, which we refer to as the likelihood equivalence class, that
have the same likelihood L0(b|t̃i , i = 1, . . . ,N) as the observed data under the null
hypothesis H0 :p1 = p2 = 0. If the null hypothesis is true, each sample point in
the class occurs with equal probability. That is, if such a class is identifiable, we
can obtain the null distribution of the test statistic by resampling sample points
from the class with equal probability. Clearly, sample points obtained by permut-
ing the observed infection status and associated symptom onset dates across the
population belong to the likelihood equivalence class. Generally, the whole likeli-
hood equivalence class is difficult to identify, and the use of permuted samples is
straightforward and fruitful. Let (t̃

[k]
1 , t̃

[k]
2 , . . . , t̃

[k]
N ) be the kth permuted sample of

(t̃1, t̃2, . . . , t̃N ), and let λ[k] be the corresponding test statistic, k = 1, . . . ,M . Then
the empirical distribution of λ[k] over all k can serve as the null distribution of λ,
and the p-value is given by 1

M

∑
k I (λ ≥ λ[k]).

In our situation, however, it is possible to identify a subset of the likelihood
equivalence class which is much larger than and that contains the permuted sam-
ples. The idea is more clearly illustrated in the situation without the latent period.
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Suppose that infection times are observable, and let t̃i denote the infection time
instead of the symptom onset time for now. Then, the likelihood for the null model
is given by

L0(b|t̃i , i = 1, . . . ,N) = ∏

i∈D

(1 − b)S × ∏
i∈D

{(1 − b)t̃i−1b}
(5)

= (1 − b)(N−Ñ)S−Ñ+∑
i∈D t̃i bÑ ,

where D is the set of Ñ infected subjects and D the set of uninfected subjects.
Therefore, one can randomly re-arrange the infection status and infection times
while keeping the likelihood value unchanged, as long as the sum of infection
times (

∑
i∈D t̃i ) and the number of infections (Ñ ) remain the same. Each re-

arrangement is a sample point in the likelihood equivalence class. To keep Ñ un-
changed, a permutation of the infection and associated symptom status across the
population would suffice, and we refer to it as the initial stage of the resampling
procedure. The next stage, which we call the refinement stage, is to draw a sample
point with equal probability from all possible distinct re-arrangements of infection
times, given the infected cases are fixed. If the refinement stage is not carefully
planned, the principle of equal probability can be easily violated, and the conse-
quence is incorrect type I error and/or insufficient statistical power. The problem
can be re-stated as sampling with equal probability from all distinct arrangements
of n balls (sum of infection times) into m boxes (infected cases), each box with
a fixed volume of v (S). Let W(n,m,v) be the number of all possible distinct
arrangements for such condition. This is a recursive system that can be solved by

W(n,m,v) =
min(n,v)∑

k=0

W(n − k,m − 1, v),(6)

with the stopping rules W(n,0, v) = 0, W(0,m, v) = 1 and W(n,1, v) =
I (n ≤ v). An arrangement can be sampled with equal probability through the
following procedure:

1. Start with the box labeled i = 1, and there are N1 = n balls to be distributed.
2. In step i, let Ni be the number of balls not distributed yet. Randomly choose

an integer ni from (0,1, . . . , r) according to the weights W(Ni − k,m − i, v),
k = 0,1, . . . , r , where r = min(Ni, v), and assign ni balls to box i. Let Ni+1 =
Ni − ni , and go to box i + 1.

3. In the last step, distribute all the remaining Nm balls to box m.

Nm will not exceed v for sure, because in step m − 1 any arrangement resulting
in Nm > v has a weight of 0 and thus is excluded from sampling. Hence, this
sampling procedure has the advantage of looping over all boxes only once.

This sampling scheme can be adapted to situations with a latent period, but
symptom onset times instead of infection times are subject to re-arrangements.
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The main deviation from the above ideal situation is that, because some cases may
have special exposure history, re-arrangement of their symptom onset times will
likely change the whole likelihood, and thus, they should be excluded from the
refinement stage. One example is seen in simulations, where we let the exposure
to a common source of infection last from day 1 to day S, and let the latent period
vary from δmin to δmax days. For any case i with symptom onset time t̃i > δmax,
there are δmax − δmin + 1 days in which infection could happen, that is, any day
between t̃i −δmax and t̃i −δmin. Symptom onset time of case i could be re-arranged
from day δmax + 1 to day S + δmin without changing the likelihood of the null
model, as long as the sum of symptom onset times are not changed. However, there
may be cases with symptom onset between day δmin + 1 and day δmax, for whom
the number of days in which infection could happen is less than δmax − δmin + 1.
Re-arrangement of symptom onset times of these cases will very likely change
the likelihood because the number of potential infection days will also change.
Similarly, cases with symptom onset after day S + δmin should be excluded from
the refinement stage as well.

A.2.2. Asymptotic distribution. While the asymptotic null distribution of λ

is not readily available for testing H0 :p1 = p2 = 0, it is available for testing
H0 :p1 = 0 if we fix p2 = 0, that is, infection is only possible by the common
source or within-household contacts. In this two-parameter setting, the escape
probability for person i on day t given the existence of person-to-person trans-
mission is

ei(t) = (1 − b)I (t≤S)
∏

j∈Hi

(
1 − p1f (t − t̃j )

)
,

and the test statistic is

λ = −2 log
supb L0(b|t̃i , i = 1, . . . ,N)

supb,p1
L(b,p1|t̃i , i = 1, . . . ,N)

.(7)

Self and Liang (1987) showed that λ ∼ 1
2χ2

0 + 1
2χ2

1 under H0 :p1 = 0 in such a
model, where χ2

0 is constant 0 and χ2
1 is a Chi-square random variable with one

degree of freedom.

A.3. Simulation study in the two-parameter setting. We compare the re-
sampling test to the asymptotic test via a simulation study for the two-parameter
setting. Only data observed up to day S, the last day of exposure to the common
infective source, are used for testing to make the comparison fair, because the as-
ymptotic test cannot handle data beyond day S + δmax. The resampling method
has two variations, one involving only the initial permutation stage, and the other
having both stages. The former is referred to as the simple permutation test, which
is widely applied to many problems; and the latter is called the refined permuta-
tion test in this paper to make a distinction between these two variations. We shall
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TABLE 2
Comparison of type I error and power between the permutation test and the asymptotic test for

models with only b and p1. The community is composed of 4 households of size 5. Results are based
on 5000 simulations. 2000 permuted samples were drawn for each test

Simple Refined
b CPI p1

a SAR1 Nidx
b Ntot

c Asymptotic permutation permutation

0.01 0.26 0.0 0.0 3 5 0.029 0.039 0.050
0.02 0.078 3 6 0.21 0.22 0.26
0.05 0.18 3 8 0.60 0.57 0.63
0.08 0.28 3 10 0.85 0.81 0.85

0.02 0.45 0.0 0.0 4 9 0.034 0.046 0.049
0.02 0.078 4 10 0.21 0.21 0.24
0.05 0.18 4 12 0.60 0.54 0.63
0.08 0.28 4 14 0.87 0.79 0.87

0.03 0.6 0.0 0.0 4 11 0.048 0.049 0.048
0.02 0.078 4 13 0.18 0.19 0.22
0.05 0.18 4 15 0.55 0.48 0.58
0.08 0.28 4 16 0.80 0.67 0.81

aType I errors are reported when p1 = 0.
bNidx is the average number of index cases.
cNtot is the average total number of cases.

show through simulations that the refined permutation test has some advantages
over both the simple permutation test and the asymptotic test for small sample
sizes, and that the three tests tend to be equivalent for large sample sizes. By large
sample size, we mean both a relatively large population and a large number of
cases of the disease.

We first present simulation results in Table 2 for a small population composed of
4 households, each of size 5. Values of b and p1 are chosen to cover a full range of
statistical power levels. When p1 = 0, the reported values are type I errors. Clearly,
the refined permutation test preserves type I error at the specified level of 0.05 for
all settings of b. The asymptotic test is the most conservative in rejecting the true
null hypothesis by having the smallest type I errors when there are 10 or fewer
cases. Surprisingly, the simple permutation test is also conservative when there are
only few cases, but less so than the asymptotic test. When b is as large as 0.03
(CPI = 0.6), all methods preserve type I error equally well. In terms of statistical
power, the refined permutation test is superior to both of the other two methods.
The simple permutation test, however, has the lowest power when there is a fair
number of secondary (nonindex) cases, especially when both b and p1 are large.

In Table 3 the population size is increased to 500 with 100 households. Similar
to Table 3, we observe that the asymptotic test is conservative with the type I errors
much lower than 0.05. When p1 is relatively small, that is, at the second row for
each level of b, the asymptotic test is not as powerful as the resampling methods.
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TABLE 3
Comparison of type I error and power between the permutation test and the asymptotic test for

models with only b and p1. The community is composed of 100 households of size 5. Results are
based on 2000 simulations. 2000 permuted samples were drawn for each test

Simple Refined
b CPI p1

a SAR1 Nidx
b Ntot

c Asymptotic permutation permutation

0.0005 0.015 0.0 0.0 7 7 0.037 0.042 0.046
0.010 0.039 7 8 0.51 0.52 0.53
0.020 0.078 7 9 0.78 0.77 0.78
0.030 0.11 7 10 0.87 0.86 0.87

0.0010 0.03 0.0 0.0 13 14 0.031 0.047 0.047
0.010 0.039 13 16 0.59 0.64 0.64
0.015 0.059 13 17 0.78 0.81 0.81
0.020 0.078 13 18 0.88 0.90 0.90

0.0050 0.14 0.0 0.0 51 66 0.037 0.049 0.053
0.005 0.020 51 69 0.43 0.45 0.47
0.010 0.039 51 74 0.85 0.85 0.86
0.015 0.059 51 78 0.97 0.97 0.97

aType I errors are reported when p1 = 0.
bNidx is the average number of index cases.
cNtot is the average total number of cases.

The three methods tend to have the same performance when p1 increases. Again,
the refined permutation method seems to be the best choice in these circumstances.
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