Simulations of Rubella Vaccination Strategies in China

Linda Q. Gao
North Central College

Herbert Hethcote
The University of Iowa

February 12, 2009
University of Washington
References

Background:

- **Rubella**: mild childhood infectious disease
- **Congenital Rubella Syndrome**: severe consequences when pregnant women are infected
- **Vaccination status**: 1969 – now
- **WHO recommendations on Rubella/CRS control**
Background:

WHO recommended that “All countries should assess their rubella situation and, if appropriate, make plans for introduction of rubella vaccination and CRS/rubella surveillance.” (Geneva, 2000)
Warning:

“inadequately implemented childhood vaccination runs the risk of altering rubella transmission dynamics and increasing susceptibility in women of child bearing age, thereby increasing the risk of CRS” (Geneva, 2000)
Background: -China

- Rubella vaccination is not mandatory in the national immunization program. MMR is available in some major cities.
- Resources for vaccination are limited.
- Population structure is changing
- Should China vaccinate for rubella? If so, which strategy?
Table 2. Seropositivity for rubella antibody, by age group, of persons tested in 20 provinces in the People’s Republic of China, 1979–1980.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>No. of persons tested</th>
<th>Percentage of persons seropositive</th>
<th>Geometric mean titer</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>766</td>
<td>34.5</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>644</td>
<td>41.9</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>652</td>
<td>56.9</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>698</td>
<td>63.5</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>723</td>
<td>73.6</td>
<td>83</td>
</tr>
<tr>
<td>6–10</td>
<td>3,422</td>
<td>88.5</td>
<td>71</td>
</tr>
<tr>
<td>11–15</td>
<td>2,399</td>
<td>96.0</td>
<td>55</td>
</tr>
<tr>
<td>16–20</td>
<td>1,918</td>
<td>96.2</td>
<td>41</td>
</tr>
<tr>
<td>21–25</td>
<td>1,624</td>
<td>95.2</td>
<td>38</td>
</tr>
<tr>
<td>26–30</td>
<td>1,525</td>
<td>94.6</td>
<td>37</td>
</tr>
<tr>
<td>31–40</td>
<td>2,287</td>
<td>96.8</td>
<td>41</td>
</tr>
<tr>
<td>Total</td>
<td>16,658</td>
<td>85.6</td>
<td>51</td>
</tr>
</tbody>
</table>
Method:

Use mathematical models and computer simulations to compare various rubella vaccination strategies with consideration of China’s changing population structure

- Construct demographical model
- Add epidemiological model
China Demographic Model

• 58 age groups: 0,1,2,…,49, 50-54, 55-59, …, 75-79, 80-84, 85+

China Demographic Model

• Derived 1965 age distribution from 1987 age distribution data.
• Used the birth/death rate from 1965-1992 as the scaling factor for fertility and death rate.
• Interpolate fertility and death rate between 1992 and 2000 data.
• Used Leslie matrix population model
Leslie population matrix demographic model

\[n_i = \text{size of population in age group } i \]

\[m_i = \text{average birth rate of people in age group } i \]

\[S_i = \text{fraction of those in age group } i \]

\[\text{who survive to age group } i+1 \]

\[
\begin{bmatrix}
 n_1 \\
 n_2 \\
 n_3 \\
 \vdots \\
 n_k
\end{bmatrix} =
\begin{bmatrix}
 m_1 & m_2 & m_3 & \cdots & m_k \\
 S_1 & 0 & 0 & \cdots & 0 \\
 0 & S_2 & 0 & \cdots & 0 \\
 0 & 0 & S_3 & \cdots & 0 \\
 0 & 0 & 0 & \cdots & S_{k-1}
\end{bmatrix}
\begin{bmatrix}
 n_1 \\
 n_2 \\
 n_3 \\
 \vdots \\
 n_k
\end{bmatrix}
\]
1990: the model and the data
2000: the model vs. data
Growth rate with the size
The changing age structure of the population:
The epidemiological model:

- **M**: passively immune
- **I**: infective
- **S**: susceptible
- **R**: recovered with immunity
- **E**: exposed (latent)
- **V**: vaccinated
Parameter values:

- average passive immunity period is 6 months (182.5 days)
- average latent period is 10 days
- average infectious period is 12 days
- force of infection values: .20 for 0, .24 for 1-4, .27 for 5-9, .15 for 10-14, .10 for 15-49, .04 for 50-64, .03 for 65+
Seropositivity: the model vs. data (with no vaccination)
Rubella cases: no vaccination

![Graph showing the number of Rubella cases in China from 1966 to 2051 without vaccination.](image)
CRS cases: no vaccination
Why?

• Changing demographics => average age of infection increases => more rubella in pregnant women.
• Average CRS in 2020-2050 is over two times the level in 2005
• Thus maintaining current policy will lead to more CRS
Vaccination Strategies

• Routine vaccination: 1 year old children
• Routine vaccination: 12 year old girls
• Mass campaign: 2-14 year old children
• Mass campaign: 2-14 year old girls
• Mass campaign: 15-40 year old women
• Combinations of above
Rubella cases:
CRS cases:
Increasing age of attack:
Results from simulations:

• Routine vaccination of 1 year old children causes rubella incidence to decrease.
• CRS incidence increases unless 50% or more are vaccinated.
• Rubella and CRS will be eliminated if 80% or more are vaccinated (assuming the current population control policy continues).
Rubella: vaccinate 12 year old girls
CRS: vaccinate 12 years old girls
Observations:

- Routine vaccination of 12 year old girls are effective in reducing CRS cases.
- This strategy will never lead to elimination of rubella.
Table 1. Comparison of rubella vaccination strategies in China in 2005 to 2051

<table>
<thead>
<tr>
<th>mass:</th>
<th>mass:</th>
<th>mass:</th>
<th>routine:</th>
<th>routine:</th>
<th>total CRS</th>
<th>CRS</th>
<th># of routine</th>
<th># of mass</th>
<th>total # of</th>
<th># of vaccinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-14 yr</td>
<td>2-14 yr</td>
<td>15-40</td>
<td>1 yr old</td>
<td>12 yr</td>
<td>2005-2051</td>
<td>2051</td>
<td>vaccinations</td>
<td>vaccinations</td>
<td>vaccinations</td>
<td>prevented</td>
</tr>
<tr>
<td>girls</td>
<td>boys</td>
<td>women</td>
<td>children</td>
<td>girls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td>90%</td>
<td>60%</td>
<td>90%</td>
<td>2,578</td>
<td>0</td>
<td>596,350,829</td>
<td>395,198,054</td>
<td>991,548,883</td>
<td>2,622</td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td>60%</td>
<td>90%</td>
<td>90%</td>
<td>5,515</td>
<td>0</td>
<td>596,350,830</td>
<td>277,610,095</td>
<td>873,960,925</td>
<td>2,329</td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
<td>5,923</td>
<td>0</td>
<td>596,350,828</td>
<td>227,438,932</td>
<td>823,789,760</td>
<td>2,198</td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td>90%</td>
<td>90%</td>
<td>8,173</td>
<td>0</td>
<td>596,350,828</td>
<td>195,718,976</td>
<td>792,069,804</td>
<td>2,126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td>90%</td>
<td>12,613</td>
<td>0</td>
<td>596,350,830</td>
<td>109,850,973</td>
<td>706,201,803</td>
<td>1,918</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td>20,757</td>
<td>0</td>
<td>596,350,830</td>
<td>0</td>
<td>596,350,830</td>
<td>1,657</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td>27,308</td>
<td>1</td>
<td>530,089,627</td>
<td>0</td>
<td>530,089,627</td>
<td>1,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td>100,970</td>
<td>2,247</td>
<td>463,828,423</td>
<td>0</td>
<td>463,828,423</td>
<td>1,658</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td>117,601</td>
<td>1,722</td>
<td>308,049,970</td>
<td>0</td>
<td>308,049,970</td>
<td>1,171</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td>147,426</td>
<td>2,837</td>
<td>273,822,196</td>
<td>0</td>
<td>273,822,196</td>
<td>1,174</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td>276,978</td>
<td>8,139</td>
<td>397,567,219</td>
<td>0</td>
<td>397,567,219</td>
<td>3,831</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td>302,672</td>
<td>11,015</td>
<td>0</td>
<td>109,850,973</td>
<td>109,850,973</td>
<td>1,407</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td>327,554</td>
<td>10,656</td>
<td>0</td>
<td>227,438,932</td>
<td>227,438,932</td>
<td>4,276</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td>345,807</td>
<td>11,386</td>
<td>0</td>
<td>223,678,829</td>
<td>223,678,829</td>
<td>6,403</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>358,881</td>
<td>11,387</td>
<td>0</td>
<td>139,799,268</td>
<td>139,799,268</td>
<td>6,395</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>362,752</td>
<td>12,453</td>
<td>331,306,016</td>
<td>0</td>
<td>331,306,016</td>
<td>18,417</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>380,741</td>
<td>11,389</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>399,712</td>
<td>12,307</td>
<td>66,261,203</td>
<td>0</td>
<td>66,261,203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40%</td>
<td>406,976</td>
<td>13,910</td>
<td>265,044,813</td>
<td>0</td>
<td>265,044,813</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td>413,971</td>
<td>13,143</td>
<td>132,522,406</td>
<td>0</td>
<td>132,522,406</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td>419,181</td>
<td>13,701</td>
<td>198,783,609</td>
<td>0</td>
<td>198,783,609</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results from simulations:

• If the achievable vaccination rate is not high, vaccinating 12 year old girls reduces CRS cases by direct protection.

• If the achievable vaccination rate is high, vaccinating 1 year old children is a better strategy that leads to elimination of the disease.

• The threshold for switching is about 80%
Rubella: 2005 Mass campaign + …

CHINA RUBELLA CASES 1966-2051

vaccinating women 15-40 year in 2005

with no vaccination
10%
30%
50%
70%

70% women plus 90% 1 year old thereafter

yearly incidence

time in years
CRS: 2005 mass campaign + ...
Rubella: Campaign vaccination of 2-14 yr olds in 2005
CRS: Campaign vaccination of 2-14 yr olds in 2005

CHINA CRS CASES 1966-2051

vaccinating 2-14 years old in 2005

with no vaccination

80% 2-14 yr old

80% 2-14 yr old plus 90% 1 year old thereafter

yearly incidence

time in years

0 5000 10000 15000
Observations:

• A mass campaign of vaccinating 15-40 year old women can reduce CRS cases during the following 10-20 years.

• A mass campaign of vaccinating 2-14 year old children only can lead to large oscillations in CRS cases with peaks above the no-vaccination levels.
Conclusion (1):

The changes in demographic structure are altering rubella transmission dynamics. “No vaccination” or “Low coverage infant vaccination” are not good strategies for China.
Conclusion (2):

The best strategy seems to be a combination of initial mass vaccination to provide good short term direct protection plus routine vaccination of at least 80% of 1 year old children to move towards elimination of rubella in China.