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Abstract

The Bayes factor is a summary measure that provides an alternative to the p-value for

the ranking of associations, or the flagging of associations as “significant”. We describe an

approximate Bayes factor that is straightforward to use and is appropriate when sample sizes

are large. We consider various choices of the prior on the effect size, including those that allow

effect size to vary with the minor allele frequency of the marker. An important contribution

is the description of a specific prior that gives identical rankings between Bayes factors and

p-values, providing a link between the two approaches, and allowing the implications of the

use of p-values to be more easily understood. As a summary measure of noteworthiness

p-values are difficult to calibrate since their interpretation depends on minor allele frequency

and, crucially, on sample size. A consequence is that a consistent decision-making procedure

using p-values requires a threshold for significance that reduces with sample size, contrary to

common practice. We outline how Bayes factors may be simply calculated under a variety

of sampling schemes, including those in which imputed SNPs are available, or the response

is a survival endpoint.

Keywords: Bonferroni correction; p-values; Prior distributions; Strength of evidence.
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Introduction

Genome-wide association studies (GWASs) are an exciting prospect for discovering genetic

variants that are detrimental or protective for human disease (Hirschhorn and Daly 2005;

Wang et al. 2005), and a number of important results have already been reported (DeWan

et al. 2006; Sladek et al. 2007; Easton et al. 2007; Consortium 2007).

The most common summary measure for inference in a GWAS is the p-value; p-values have

a number of well-documented drawbacks, however (Sterne and Smith 2001; Goodman 1999;

Wacholder et al. 2004). Many recommendations for significance thresholds have appeared

and the majority depend on the number of tests that are performed, and on neither the

sample size of the study, nor the minor allele frequency (MAF) of the SNP. The use of a

single threshold regardless of sample size implicitly implies that the ratio of costs of type I to

type II errors varies with sample size. Specifically, consider two situations with low power in

the first and high power in the second; if the p-value threshold is the same in boh situations

then one is accepting that the cost of a type II error is higher in the second situation. Later

we give a precise formulation of this argument.

The Bayes factor, defined as the ratio of the probability of the data under the null and

alternative hypotheses, provides an alternative to the p-value for assessing the consistency

of a set of data with a null hypothesis, as compared to the alternative. Bayes factors

have been previously discussed in a genome-wide context (Wakefield 2007; Marchini et al.

2007; Consortium 2007), and also used in other genetic settings (Servin and Stephens 2007).

The more widespread use of the Bayes factor has been hampered by the need for prior

distributions to be specified for all of the unknown parameters in the model, and the need

to evaluate multi-dimensional integrals, a complex computational task. In this paper we

provide a more rigorous derivation of a recently-proposed asymptotic Bayes factor (Wakefield
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2007), that avoids each of these requirements. An important additional contribution is the

description of a specific prior on the effect size that leads to identical rankings between SNPs

based on the p-value and on the asymptotic Bayes factor, providing an important conceptual

link between the two and allowing a Bayesian interpretation of the p-value. In particular, the

p-value implicitly assumes a prior in which larger effect sizes at lower MAFs are expected.

Methods

Bayes Factors

In a GWAS, a common approach (Balding 2006) is to fit the logistic model:

pj

1 − pj
= exp(α + θxj) (1)

where pj is the probability of disease for an individual with j = 0, 1, 2 copies of the mutant

allele at a particular SNP, and xj is a variable that depends on the assumed genetic model.

For j = 0, 1, 2 copies we have xj = 0, 1, 1, for a dominant genetic model, xj = 0, 0, 1 for a

recessive genetic model, and xj = 0, 1, 2 for a multiplicative genetic model (Sasieni 1997).

The Bayes factor for the general two degree of freedom model can also be considered, but

for simplicity of explanation we concentrate on genetic models in which there is a single

parameter of interest θ. Model (1) may be easily extended to include matching and other

variables for which adjustment is required, as detailed in the appendix.

Under a rare disease assumption, the relative risk corresponding to departure from the null

model is given by RR= exp(θ), and we wish to compare the null hypothesis H0 : RR = 1

with the alternative H1 : RR 6= 1. As described elsewhere (Wakefield 2008) there are two

endeavors that may be carried out in the context of a genome-wide association study. The
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first is to rank markers in terms of association, to provide a list of those that should be carried

through to a next phase. The second is calibration of inference to make a final decision as to

whether to call the marker “significant”, i.e. associated with disease, or not. Each of these

tasks may be carried out using the Bayes factor (BF) given by

BF =
Pr(y|H0)

Pr(y|H1)

where y is the observed data, and corresponds to a vector of binary indicators when disease

status is the phenotype. If the Bayes factor equals 1 then the data are equally likely under

the null and the alternative, and the smaller/larger the Bayes factor becomes the more/less

the alternative is favored. For a measure of “significance” the posterior odds on H0 are

required:

Posterior odds on H0 = BF × Prior Odds on H0

where the prior odds on H0 are given by π0/(1−π0), with π0 = Pr(H0) the prior probability

of the null. Ranking may be carried out directly on the basis of the Bayes factor if the prior

odds of no association is constant across all SNPs, since the relative value rather than the

absolute value is all that is needed.

The Bayes factor requires the specification of a prior distribution for all unknown parameters,

and for logistic regression models it is computationally expensive to evaluate, which has lead

to the search for simple approximations. In the Wellcome Case Control Consortium study

(Consortium 2007), Bayes factors were calculated using the Laplace approximation (Kass and

Raftery 1995). This approximation can be difficult to implement, however, since a search for

the maximum of the multidimensional posterior is required for each association. Below we

describe an alternative asymptotic Bayes factor that is based on the output from a simple

logistic regression analysis; the only data input required for Bayes factor calculation is a

confidence interval for the parameter of interest θ (or equivalently an estimate and standard
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error). Maximization of a binomial likelihood is required when a logistic regression model

is fitted, but this operation is routinely carried out by all statistical packages. The Bayes

factor we describe has a simple closed form, which offers a number of benefits including ease

of power calculations, and straightforward combination of evidence across studies.

Let θ̂ and
√

V represent the maximum likelihood estimate (MLE) and standard error from

a logistic regression analysis; V depends on the genetic model, the case and control sample

sizes, n1 and n0, and on the MAF (equation (8) gives the specific form). Asymptotically, that

is as n0 and n1 increase, the MLE θ̂ has the normal distribution N(θ, V ). Combining this

“likelihood” with a normal prior, N(0, W ), on the log relative risk, θ, gives the asymptotic

Bayes factor

ABF =

√
V + W

V
exp

(
−z2

2

W

(V + W )

)
(2)

where z = θ̂/
√

V is the usual Wald statistic. High/low values of the asymptotic Bayes factor

occur when z2 is small/large and correspond to evidence for/against the null hypothesis.

The appendix provides a rigorous derivation of the ABF.

A great advantage of the Bayes factor, (2), is that is depends on readily available summaries

only, though if the sample sizes are not large there may be some loss in efficiency if {θ̂, V }

do not summarize all the information contained in the full data concerning θ.

The crucial difference between inference based on the ABF and on the p-value calculated

from the Wald statistic, which equals 2{1 − Φ(|z|)} (where Φ(·) is the distribution function

of a standard normal random variable), is that ABF depends, in addition to z, on the power

through the asymptotic variance V . The relationship between ABF and V is not monotonic.

For fixed z (i.e. fixed p-value) and fixed prior variance W we examine the behavior of ABF

as a function of the V . Figure 1 illustrates the behavior of the evidence for the alternative

(1/ABF) against V for z = 4 and W = 0.212 (corresponding to a 95% belief that the
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relative risk is less than 1.5). Recall that the significance level of the p-value is constant and

that under the p-value approach no alternative is considered. In contrast, the Bayes factor

compares the evidence between H0 and H1, assuming that one of them is true. Under the

null θ̂ ∼ N(0, V ) while under the alternative θ̂ ∼ N(0, V + W ) and the Bayes factor is the

ratio of these two quantities. For low values of V (high power) the evidence for H1 is not

strong since although the data (the z-score) are unlikely under H0, they are unlikely under

H1 also — this behavior contrasts with the p-value under which very small departures from

H0 provide small p-values when the power is high. The evidence for H1 increases rapidly

as the power decreases, to a maximum at V = W/(z2 − 1). Beyond this point there is a

decrease in the evidence for H1 since the power is not sufficient to give strong evidence.

We briefly examine the asymptotic properties of ABF. Let θ̂n be the MLE based on samples

of size n where, for simplicity, we have assumed that n0 = n1 = n. In this case the asymptotic

variance Vn = F/n where F depends on the MAF and the genetic model but not on n. We

have
√

n(θ̂n − θ) → N(0, F ) as n → ∞, by the properties of MLEs and

log ABFn =
1

2
log

(
1 +

Wn

F

)
− nθ̂2

n

2F
× W

F
n

+ W

= log

(
1 +

Wn

F

)
− {√n(θ̂n − θ) +

√
nθ}2

2F
× W

F
n

+ W
.

When θ = 0, log ABFn → ∞ as n → ∞ and when θ 6= 0, log ABFn → −∞ so that ABF

is consistent under both the null and the alternative and the correct model is chosen with

probability 1 as the sample sizes increase.

When data from two studies (or phases) are available, with estimates θ̂1 and θ̂2 and standard

errors
√

V1 and
√

V2, the Bayes factor for the combined evidence is given by

ABF(θ̂1, θ̂2) =

√
W

RV1V2

exp

{
−1

2

(
z2

1RV2 + 2z1z2R
√

V1V2 + z2

2RV1

)}
(3)

where R = W/(V1W + V2W + V1V2) and z1 and z2 are the z-statistics arising from the two
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Figure 1: Evidence in favor of the alternative as a function of the asymptotic variance of

the estimator, V , for fixed p-value. Small and large values of V corresponds to high and low

power, respectively.
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studies. Strong evidence in favor of the alternative requires large z statistics of the same

sign. This formula can be simply extended to three or more studies.

For both single and multiple studies, and with PO = π0/(1 − π0) the prior odds on the

null, the posterior probability of H0 is given by the Bayesian False Discovery Probability

Wakefield (2007):

BFDP =
ABF × PO

1 + ABF × PO
. (4)

Prior Specification

The approximate Bayes factor sidesteps the need for specification of a prior on the nuisance

parameters, but still requires a prior for the log relative risk of interest, θ, which is taken

as normally distributed with mean 0 and variance W . The latter variance is the single

specification that is needed, and we describe three particular choices.

Effect-MAF independence: The simplest choice is to take the variance, W , as inde-

pendent of the MAF. The prior distribution of the relative risk, exp(θ), is lognormal and

we may specify an upper value RRu, above which we believe that relative risks will occur

with low probability. If the prior probability of a relative risk above RRu is q we obtain

W = {log RRu/Φ−1(1 − q)}2. For example, for a 5% chance that relative risks are above 2,

RRu = 2, q = 0.05 and W = 0.422.

Effect-MAF dependence: It has been argued that larger genetic effects will be associated

with smaller MAFs (for discussion, see Wang et al. 2005), in which case the variance W

should depend on the MAF. Selection would imply that large detrimental relative risks should

not occur for common variants. A simple form that can mimic this behavior is:

W (M) = δ0 exp(−δ1 × M) (5)
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where M is the MAF. The parameters δ0 > 0, δ1 > 0 are chosen a priori. For example one

may set the upper bound on the prior for the relative risk at two values of the MAF and

then solve for δ0, δ1. Specifically, let Mlo and Mhi be the rare and non-rare MAF’s at which

we specify relative risks of RRlo
u > RRhi

u , above each of which we believe relative risks will

lie with probability q. The variances at the rare and non-rare variants are:

Wlo = {log(RRlo
u /Φ−1(1 − q)}2, Whi = {log(RRhi

u /Φ−1(1 − q)}2

which may be solved to give:

δ1 =
log(Wlo) − log(Whi)

Mhi − Mlo

δ0 = Wlo exp(δ1 × Mlo).

An implicit p-value prior: In general, both ranking and significance of SNPs will differ

when assessed using Bayes factors and p-values, and it is of great interest to see when the

approaches can be reconciled. This unification occurs when the Bayes factor depends on the

data only through z2 in a monotonic fashion, since this is the only function of the data that

determines the p-value. This is achieved if we eliminate V from ABF and occurs if we take

the variance to be proportional to the asymptotic variance of the MLE:

W (M) = K × V, (6)

where K does not depend on the data (and in particular does not depend on n), to give

ABF =
√

1 + K exp

(
−z2

2

K

(1 + K)

)
(7)

We want K to be independent of the data because we want a Bays factor that depends on

the z score (and therefore the p-value) only. Such a prior was discussed with respect to the

use of p-values in the context of a normal model by Cox and Hinkley (1974, p. 395–399).
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Under the p-value prior, (6):

log ABFn =
1

2
log(1 + K) − {√n(θ̂n − θ) +

√
nθ}2

2F
× K

1 + K

which tends to 1

2
log(1+K) when θ = 0 and not ∞ as is desirable. This is a consequence of the

fact that for a fixed p-value threshold pT the null will be incorrectly rejected a proportion pT

of the time under repeated sampling (which is intuitively why we need the p-value threshold

to decrease with increasing sample size).

The implicit p-value prior (6) gives relatively strong belief that the effect size is small when

the sample size is large and/or the MAF is not rare (since in both cases V is small). The

dependence on the sample sizes n0 and n1 is alarming and does not make sense in the genome-

wide context (in contrast to a designed experiment in which one would pick larger sample

sizes when the expected effect was small, behavior that would be reflected in the prior also).

For ranking, n0 and n1 will be constant across SNPs (give or take missing values) and so

this aspect of the prior is not troubling.

The association between effect size and MAF is in the direction expected (larger effects at

rarer MAFs) and is determined in a very specific manner by the depenence of V on the MAF.

A convenient form for the asymptotic variance of θ̂ is available from a score test (Slager and

Schaid 2001), and is asymptotically equivalent to the logistic regression variance estimate:

V =
n0 + n1

n0n1[(1 − M)2x2
0 + 2M(1 − M)x1 + M2x2

2 − {(1 − M)2x0 + 2M(1 − M)x1 + M2x2}2]

(8)

where M is the MAF, and x0, x1 and x2 depend on the genetic model (examples of which

were given above). The variance of the p-value prior (6) is not a simple function of the MAF,

and so we graphically illustrate the shape, plotting against the comparison prior, (5). The

variance of the latter can decrease rapidly with increasing MAF (with large values of δ1),

while the p-value prior exhibits a more gradual change. In Figure 2 we plot the priors for
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MAFs of 0.10, 0.30 and 0.50; the p-value priors are drawn as the solid red lines while the

comparison priors are the dashed lines density respectively. For the comparison prior δ0 and

δ1 were chosen to give 95% points of 2.5 and 1.2 at MAFs of 0.05 and 0.50; K was chosen

to give qualatively similar behavior though as we see, the relationship between the variance

of the p-value prior and the MAF is not as strong as with the comparison prior.

The Specification of p-value Thresholds

The above shows that rankings with p-values and Bays factors based on (6) will be identical,

but for calibration the two approaches are more difficult to unify. As summarized elsewhere

(Wakefield 2007) the Bayesian decision theory approach to calibration is to specify the costs

of false non-discovery CFND and false discovery CFD, and then flag the SNP as “significant”

if the posterior odds on H0 drop below the ratio R = CFND/CFD. Hence an association will

be called noteworthy if

ABF × PO < R (9)

so that there are three elements to the decision problem, the ratio of the probabilities of the

data under null and alternative, ABF, the prior odds on H0, PO, and the ratio of costs, R.

For simplicity assume that the case and control sample sizes are equal, n = n0 = n1. Recall

that for a MAF of M the implicit p-value prior is W (M) = K × F (M)/n where F (M) is

given in (8) and does not depend on sample size. To rectify the undesirable dependence of

the prior on sample size, while retaining the effect-MAF relationship implied by the p-value,

one can take W (M) = K⋆ × F (M) to give

ABF =
√

1 + nK⋆ exp

[
−z2

2

nK⋆

(1 + nK⋆)

]
(10)

=
√

1 + nK⋆ exp

[
−1

2
Φ−1

(
1 − p

2

)2 nK⋆

1 + nK⋆

]
(11)
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Figure 2: Implicit p-value prior (solid red lines) with prior variance on the log relative

risk W (M) = K × V (M) (where M is the MAF), as compared to the prior W (M) =

δ0 exp(−δ ×M) (dashed blue lines); δ0 and δ1 are chosen so that at a MAF of 0.05 the 95%

point of the prior is 2.5, and at 0.50 it is 1.2.
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In contrast to the use of the prior W = K × V this ABF depends upon n, as well as upon

the p-value. Hence two ABFs calculated from (11) with the same p-value, but with different

sample sizes will provide different evidence for/against the null. This consequence is not

pertinent to ranking, since rankings are based on comparisons with fixed sample sizes.

Now suppose one wishes to use a formal decision theory approach to picking a p-value

threshold for calling an association noteworthy. Substituting (10) into (9) and rearranging,

one finds that the z2 threshold is

z2

T = 2
(1 + K⋆n)

K⋆n
log

(
PO

R

√
1 + K⋆n

)
(12)

We stress that we are assuming that both the prior odds, PO, and the ratio of costs, R,

do not depend on the sample size or the MAF — further discussion of these assumptions is

postponed until the discussion. The p-value threshold that should be used is therefore

pT = 2
[
1 − Φ−1 (zT )

]
(13)

From (12) we see that the z2 threshold increases (so that the p-value threshold decreases) as

the prior odds of no association increases or as the ratio of costs of false discovery to false

non-discovery increase, both as expected. It is difficult to make general statements about

the dependence of the threshold on sample size since the formula is a complex function of n,

as we saw in Figure 1.

To evaluate particular values of the threshold one must pick a value of K⋆ to calibrate the

prior. If we take K⋆ = 1 then this prior is equivalent to the unit-information prior (Kass

and Wasserman 1995) which has been suggested as a “reference prior” for Bayes factors;

this prior is not appealing in the GWAS setting in which substantive prior opinion on the

size of possible effects exists. In what follows, for illustration, we choose a dominant model,

evaluate the asymptotic variance at the null, and choose K⋆ so that the 95% points of the
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Figure 3: p-value threshold at which to call an association noteworthy versus cases and

control sample sizes n, and for different values of the prior on the alternative π1, and ratios

of costs of false non-discovery to false discovery.
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prior on the relative risk are 4.4 and 2.3 at MAFs of 0.05 and 0.50, respectively. Figure 3

shows the p-value threshold (on a log 10 scale) as a function of n, and for particular values of

π1, the prior on the alternative, and the ratio of costs R (neither of which, recall are assumed

to depend on sample size or MAF). The curves are not horizontal which shows that it is

important to make thresholds depend on sample size if a p-value approach is taken. The non-

monotonic behavior is due to the complex relationship between the ABF and power (Figure

1). Requiring a smaller p-value for larger sample size (larger power), has been frequently

advocated (Wacholder et al. 2004; Consortium 2007). From a decision theory perspective

taking a common threshold across all sample sizes is only consistent with one or more of

the prior variance on the effect size, the prior odds on an association, or the ratio of costs

changing with n, and in a very stylized way. We stress that we are not advocating the use of

the rule (13) in practice, as we would rather use a Bayes factor with the prior on the effect

size reflecting our actual beliefs.

Multiple Testing

An important observation is that the threshold rule, (11), does not depend on the number of

SNP associations to be considered, m, though interpretation, and in particular the expected

number of false discoveries, will depend on this number. The small p-value thresholds shown

in Figure 3 occur in large part due to the low a priori probability of a non-null hypothesis.

Hence the threshold rule we have derived is in direct contrast to the Bonferroni threshold

which is based on the number of tests considered, with the sample size being irrelevant. For

example, Reisch and Merikang (1996) argue that when testing 106 associations a Bonferroni

correction would suggest a level of 5 × 10−8, while Dahlman et. al. (2002) suggest p-values

in the range 10−7 to 10−8 if 250K–500K tests are carried out. In spite of the limitations of
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the Bonferroni correction, including the relevance of controlling the probability of a single

type I error, and questions over the relevant number of tests over which to control (Colhoun,

McKeigue, and Davey-Smith 2003; Balding 2006) it remains the most common method of

adjustment in GWASs (DeWan et al. 2006; Frayling et al. 2007).

If one believes that all of the nulls might be true then the Bonferrroni correction is more

meaningful, and a similar adjustment can be obtained via a Bayesian approach (Westfall

et al. 1995). Specifically suppose that when one specifies the prior over the set of m null

associations one wishes to control the prior probability of all the nulls being true. The

simplest way of achieving this is to take the prior on each null as Π
1/m
0 to give a prior

probability of all nulls being true as Π0. In contrast, if one specifies independent priors

on each null to be π0 the induced prior on all nulls being true is πm
0 . Under the latter, if

π0 = 1 − 1/100000 (so that we believe that in 1 in 100K SNPs are non-null), the prior on

all 500K SNPs being null is 0.0067, i.e. very unlikely. If this prior truly reflects ones beliefs

then controlling the family wise error rate (as is achieved by the Bonferonni correction) is

an unappealing criterion.

We illustrate we use the prior Π
1/m
0 along with the asymptotic Bayes factor (10). A Bonfer-

onni threshold is obtained by taking the p-value threshold corresponding to π0 = Π0, and

then dividing this threshold by m. This may be compared with the threshold arising from

(10) with the prior π0 = Π1/m, which we refer to as the power prior. Table 1 gives thresholds

based on Π0 = 0.9999, calculated for n = 1000. For a single test the thresholds under this

prior is 6.2× 10−8. We see that there is a close correspondence between the Bonferonni and

power prior thresholds. The message here is that the Bonferroni correction has a Bayesian

justification, but only for a very extreme prior that will often be inapprorpiate in a GWAS.
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Table 1: p-value thesholds (to the log10) for Π0 = 0.9999. For the Bonferroni threshold we

take the p-value threshold corresponding to m = 1, and divide by m. For the power prior

we take π0 = Π
1/m
0 .

Number of Tests m

1 1,000 100,000 317,000 500,000

Bonferroni Threshold -6.17 -9.17 -11.17 -11.67 -11.87

Power Prior Threshold -6.17 -9.27 -11.32 -11.83 -12.03

Discussion

We have considered the use of Bayes factors in genome-wide association studies and have

illustrated that the use of the p-value corresponds to a particular prior on the relative risk

parameter. This prior depends on the MAF in a qualatively reasonable way, with stronger

effects anticipated at lower MAFs. The relationship between effect size and MAF is not

strong, however (as illustrated in Figure 2), and lists of top-ranked SNPs from p-value and

a Bayes factor approach with prior independence between effect size and MAF will often be

similar, with differences only for SNPs with very low MAFs.

For final inference the use of the p-value is problematic, however, since its interpretation

depends on sample size. We have shown, using a decision theory approach that if one assumes

that neither the ratio of costs of type II to type I errors nor the prior odds do not depend

on either the sample size or the MAF, and that the effect size does not depend on sample

size, then it is not optimal to take a single p-value threshold for all sample sizes. Rather the

threshold should decrease as a function of sample size, an approach that is already informally

taken, based on experience and examination of interval estimates. A fixed threshold leads

to a procedure that is inconsistent, in that the correct model is not chosen with probability
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1 as the sample size increases.

With a formal Bayesian approach to testing, one may allow the ratio of costs and the prior

odds to depend on sample size and MAF also. As data collection proceeds the cost of false

discovery will increase relative to the cost of false non-discovery (early on we would like a

long list), and such behavior can be formalized with a Bayesian decision theory approach.

We may also wish the costs to depend on the MAF, so that there is a higher cost associated

with a more common variant.

Andrews (1994), in a wide-ranging article, showed the relationship between Bayes factors

and Wald, likelihood ratio and score statistics, under more general priors; the normal prior

discussed above is a special case which is practically convenient. See also Efron and Gous

(2001), and Johnson (2005, 2007); the latter derives properties of the Bayes factors based on

test statistics.

For calculation, the Bayes factor described here requires just a point estimate/standard

error, or a confidence interval. R code for one- and two-stage designs is available at:

http://faculty.washington.edu/jonno/cv.html

The asymptotic Bayes factor described here can be used in any situation in which an estimate

and standard error are available. A number of authors have considered regression using

imputed unmeasured SNPs (Marchini et al. 2007; Servin and Stephens 2007). When data

on such SNPs are analyzed the uncertainty in genotype must be acknowledged; and there are

now a number of packages that allow valid inference to be made (Sinnwell and Schaid 2005).

The implemented methods use weighted logistic regression model, with the weights given by

the posterior probabilities of the genotypes, and a generalized estimating equation (with the

clusters being the individuals), to account for the repeated observations on each individual

(French et al. 2006). The use of estimates and standard errors from such approaches results
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in a Bayes factor that is adjusted for measurement error in the genotype.

Recently two-phase sampling has been suggested as a method by which efficiency may be

gained in a genetic epidemiology study (Chatterjee and Chen 2007). Specifically, at phase

1 inexpensive covariates may be measured on all individuals, with genetic and exposure

information only gathered on an informative set of individuals at phase 2. The selection

mechanism is carefully chosen to maximize information, but depends on the outcome and so

must be accounted for in the estimation scheme. In other situations, survival data may be

the endpoint of interest so that, for example, the Cox model may be the appropriate analysis

tool. In both of these case a valid estimate and standard error is produced by the relevant

software, and these can be used to evaluate the Bayes factor described here, so long as the

sample size is large.

Appendix: Derivation of the Asymptotic Bayes Factor

In a case-control study we have binary disease indicators Yi on i = 1, ..., n1 cases, and

i = n1 + 1, ..., n1 + n0 controls. These data follow a binomial distribution with index 1 and

probability pi, the risk for individual i. We assume the logistic regression model:

pi

1 − pi
= exp(αzi + θxi) (14)

where zi is a 1 × p vector of confounders (which includes the intercept) with associated

parameters α, and xi depends on the genetic model and is a function of the number of

mutant alleles possessed by individual i. The Bayes factor is given by Pr(y|H0)/ Pr(y|H1)
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where the numerator and denominator are integrals given, respectively, by

Pr(y|H0) =

∫
Pr(y|α, θ = 0)π(α)dα

Pr(y|H1) =

∫
Pr(y|α, θ)π(α, θ)dαdθ

where π(α, θ) is the prior over all parameters, and π(α) is the prior over the nuisance

parameters only. These integrals are analytically intractable for the binomial likelihood, and

the specification of multivariate priors is cumbersome. We follow a different approach and

assume we are in an asymptotic situation in which n0 and n1 are “large”, a situation that

is almost always satisfied in genome-wide association studies. In this case inference for the

logistic model may be carried out on the basis of the asymptotic distribution:




α̂

θ̂



 ∼ Np+1








α

θ



 ,




I00 I01

IT

01 I11





−1


 (15)

where I00 is the p × p matrix expected information concerning α, I11 is the expected infor-

mation concerning θ, and I01 is the p × 1 vector of cross terms. In (Wakefield 2007) it was

assumed that α̂ and θ̂ were independent. Here we relax this assumption, reparameterize the

model and consider (α, θ) → (β, θ) where

β = α +
I01

I00

θ

which yields 


β̂

θ̂



 ∼ Np+1








β

θ



 ,




I⋆

00 0

0T I11





−1


 (16)

where β̂ = α̂ + (I01/I00) × θ̂ and 0 is a p × 1 vector of zeros. Hence, asymptotically,

p(β̂, θ̂|β, θ) = p(β̂|β)×p(θ̂|θ). We assume independent priors on β and θ, π(β, θ) = π(β)π(θ)
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and calculate the Bayes factor working with “data” {β̂, θ̂}. Under H0:

p(β̂, θ̂|H0) =

∫
p(β̂, θ̂|β, θ = 0)π(β)dβ

=

∫
p(β̂|β)π(β)dβ × p(θ̂|θ = 0)

and under H1:

p(β̂, θ̂|H1) =

∫ ∫
p(β̂, θ̂|β, θ)π(β, θ)dβdθ =

∫ ∫
p(β̂|β)p(θ̂|θ)π(β)π(θ)dβdθ

=

∫
p(β̂|β)π(β)dβ

∫
p(θ̂|θ)π(θ)dθ

Hence the Bayes factor based on (β̂, θ̂) is given by:

ABF =
p(θ̂|θ = 0)

∫
p(θ̂|θ)π(θ)dθ

(17)

The reparamaterization trick works because of the assumption of independent priors on β

and θ, which does not imply independent priors on α and θ. We emphasize that we need

never specify the prior on β, because terms involving β cancel in the Bayes factor calculation.

Under the prior θ ∼ N(0, W ) the Bayes factor (17) becomes

ABF =

√
V + W

V
exp

(
−z2

2

W

(V + W )

)
.

where V = I−1

11 . The reparameterization described here is that which is used when the linear

model:

Yi = α + xiθ + ǫi

is written as

Yi = β + (xi − x)θ + ǫi

which, of course, yields uncorrelated least squares estimators β̂, θ̂. The approach employed

here is similar to the “null orthogonality” reparameterization of Kass and Vaidyanathan

(1992).
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Figure Legends

Figure 1: Evidence in favor of the alternative as a function of the asymptotic variance of

the estimator, V , for fixed p-value. Small and large values of V corresponds to high and low

power, respectively.

Figure 2: Implicit p-value prior (solid red lines) with prior variance on the log relative

risk W (M) = K × V (M) (where M is the MAF), as compared to the prior W (M) =

δ0 exp(−δ ×M) (dashed blue lines); δ0 and δ1 are chosen so that at a MAF of 0.05 the 95%

point of the prior is 2.5, and at 0.50 it is 1.2.

Figure 3: p-value threshold at which to call an association noteworthy versus cases and

control sample sizes n, and for different values of the prior on the alternative π1, and ratios

of costs of false non-discovery to false discovery.
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