

Climate Controls - Long & Short Timescales

- Solar output (luminosity): 10⁹ yr
- Continental drift (tectonics): 10⁸ yr
- Orogeny (tectonics): 10⁷ yr
- Orbital geometry (Earth -Sun distance): 10⁴-10⁵ yr
- Ocean circulation (geography, climate): 10¹ -10³ yr
- Composition of the atmosphere (biology, tectonics, volcanoes): 10⁰-10⁵ yr

$T = \frac{u}{4} = \frac{S}{4} (1 - A)$ $\times \text{Geothermal Ht. Flux}$ $\times \text{Mass Coss of Sun}$ $T = \sqrt{\frac{S}{4r} (1 - A)}$ $T = \sqrt{\frac{S}{$	Lower Solar Output Compensated by Larger Greenhouse Effect
	Adapted from Kump et al. (1999)

*** Ended Here - 11/10/08 ***

Late Proterozoic Glaciations: Evidence

~4 global glaciations followed by extreme greenhouses 750-580 Ma

•Harland (1964); Kirschvink (1992) •Hoffman et al. (1998) *Science*, v. 281: 1342-6; Hoffman & Schrag (2000) *Sci. Am.*, Jan: 68-75.

*** Ended Here - 11/12/08 ***

	Geo	logic Evidence for Glaciers
	• <u><i>Tillites</i></u> : Packed pebbles, sand & mud. Remnants of moraines	
	Glacial Striations	• <u>Glacial Striations</u> : Scratches from rocks dragged by moving ice • <u>Dropstones</u> : Rocks
	Dropstones	transported by icebergs and dropped into finely laminated sediment (IRD).
		Adapted from Kump et al. (1999)

Glacial sediments – poorly sorted, angular clasts including dropstones – Namibia c. 750 Ma

Evidence for Snowball

• *Stratigraphy*: globally-dispersed glacial deposits.

• *Carbon isotopes*: negative $\delta^{13}C_{CaCO3}$ excursions through glacial sections ($\delta^{13}C$ reaches ~ -5 to -7‰). Little or no biological productivity (no light).

• *Banded iron formations w/IRD*: only BIFs after 1.7 Ga. Anoxic seawater covered by ice.

• *Cambrian explosion (circumstantial*): Rapid diversification of multicellular life 575-525 Ma may have resulted from long periods of isolation and extreme environments (genetic "bottleneck and flush").

Breaking out of the Snowball

• Volcanic outgassing of CO_2 over $\sim 10^6$ yr may have increased greenhouse effect sufficiently to melt back the ice.

Image from Lubick (2002) *Nature*, Vol. 417: 12-13.

 $\rightarrow \underline{\text{What we would like to know:}}$ CO₂ concentrations through snowball/hothouse cycle.

Alternate Cause for Cap Carbonate Deposition & ¹³C Depletions: Gas Hydrate Destabilization

• CaCO₃ precipitation does not require increased weathering flux of minerals

• Can be caused by increased seawater alkalinity resulting from CH₄ consumption by sulphate-reducing bacteria

Kennedy et al. (2001) Geology Vol. 29(5): 443-446.

Kennedy et al. (2001) *Geology* Vol. 29(5): 443-446.

