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Teleportation: Teleportation: 
making an exact replica of making an exact replica of 
an arbitrary quantum state an arbitrary quantum state 
(while destroying the (while destroying the 
original...)original...)



Homework #6 
• Problems 1 (30 points) and 3 (40 points) from Chapter 2 of 
“Exploring Black Holes” (handouts).

Due Wednesday, November 28.



Physics 311
General Relativity

Lecture 17:
Geodesics, tidal accelerations 

and gravitational waves.



Today’s lecture: 

• Geodesics: motion on the metric

• Gravitational red shift, geodesics of Schwarzschild metric

• Tidal accelerations and space curvature

• Gravitational waves – time-dependent solution of Einstein 
field equation

• LIGO, LISA and such



Straight line – always the shortest distance?
• Term “geodesics” is a generalization of the notion of “straight line”, 
when applied to a curved space.

• Straight line is the shortest distance between two points – right?

• Sometimes it is, sometime it isn’t!

A

B

Shortest distance on a plane is
a straight line

A

B

Shortest distance on a sphere
is an arc



Airlines know that!
• Airliners take the shortest path between airports – which at first sight 
doesn’t seem like the shortest! The name “geodesics” is taken from 
geodesy – the science of measuring the size and shape of Earth.



How to find the geodesics?
• The strict definition of a geodesics is a locally shortest path between two 
points on a metric.

• Being the shortest path, geodesics thus describes the motion of free 
particles. Thus, geodesics is the world line of a free particle in a given 
metric.

• What was the world line of a free particle in Special Relativity?

• Straight line! We can thus make a conclusion that the geodesics of 
Minkowski metric is a straight line.

• Formally, geodesics between two points can be found by writing down 
the equation for the length of a curve, then minimizing the length of the 
curve using standard techniques of calculus and differential equations.

• That, in practice, is how you find geodesics for some funny metrics you 
may encounter...



Curved spacetime
• The geodesics is pretty boring in Special Relativity. In fact, we didn’t 
even need the term there. In General Relativity, geodesics becomes very 
important.

• Recall the bending of light effect. Light always takes the shortest path, 
thus, light rays trace a geodesics in (the 4-dimensional) spacetime. What 
we observe in the 3-dimensional space is light deflection from apparently 
straight line. Light rays trace out the space part of the geodesics!

• There is a way to also “trace out” the time part of the geodesics. It 
comes from another effect of curved spacetime – the so-called 
gravitational red shift.



Gravitational red shift
• Let’s recall Schwarzschild metric:

ds2 = [1-(2m/r)]dt2 – [1-(2m/r)]-1dr2 - r2dθ2 - r2sin2θdφ2

• This metric applies to spacetime around a spherically-symmetric mass, 
as around a planet, a star or a black hole.

• Three important features of Schwarzschild metric that we have not yet 
discussed:

1) c = G = 1, which implies that mass is measured in meters!

2) Direct measurement of radius r in the curved space is 
impossible. Instead, we define r = C/2π, where C is the 
circumference of the great circle around the center of attraction.

3) To similarly avoid the effects of the curvature of time near the
heavy mass, we measure time with faraway clocks.



Schwarzschild coordinates
• In Schwarzschild geometry, there’s r – the radial coordinate, defined as 
circumference/2π (a.k.a. “reduced circumference”), and there’s the rshell –
the local radial coordinate. 

• Same story for time: the Schwarzschild time t is measured by a faraway 
clock; the shell time tshell (or dτ) is measured locally.

ds = drshell (if dt = 0)
ds = dtshell = dτ (if dr=0)

r

dr



More on Schwarzschild coordinates
• Schwarzschild metric:

ds2 = [1-(2m/r)]dt2 – [1-(2m/r)]-1dr2 - r2dθ2 - r2sin2θdφ2

• For an observer located near the mass giving rise to the metric (the 
“shell observer”), we define local radial and temporal displacements as:

drshell = [1-(2m/r)]-1/2dr

dtshell = [1-(2m/r)]1/2dt
These are equivalents of the “proper length” and the “proper time”
of the Special Relativity!



• Let’s fix the spatial position, so that dr = dθ = dφ = 0 and look at events 
that are only separated in time, not in space. (To lift the suspense: the 
events we are interested in are arrivals of the crests of an 
electromagnetic wave at the place where we are observing them).

• Then the metric is just the proper time:

ds2 = (dtshell)2 = [1-(2m/r)]dt2 or dtshell = [1-(2m/r)]1/2dt
• Remember that time dt is measured at infinity, while the proper time 
dtshell is measured locally, near the mass, the black hole or what have you.

• The quantity 2m/r is less than or equal to 1 outside of the black hole, 
while r = 2m defines the famous event horizon. This means that the 
period of wave crests will appear longer for a remote observer. 

• This lengthening of the period is known as the gravitational red shift
(experimentally verified!).

Gravitational red shift - 2





• So, what is the expression for the geodesics of Schwarzschild metric?

• Well, it is not as simple as the Minkowski geodesics! In flat spacetime, 
straight line worked for all kinds of event separations – timelike or lightlike 
(spacelike geodesics is nonsense – why?).

• In Schwarzshild spacetime geodesics will be different for different types 
of event separation, and for different types of motion. They can be 
calculated using the recipe described a few slides back.

• The radial geodesics are:

(dr/dτ)2 +(1 – 2m/r) = E2 (timelike geodesics)

(dr/dτ)2 = E2 (lightlike or null geodesics)

(remember, geodesics is a path of a free particle, thus there is no 
spacelike geodesics)

• Here, E is called the energy of the geodesics.

Geodesics of Schwarzschild metric



Geodesics of Schwarzschild metric

geodesics of freefall

event horizon event horizon

null geodesics inward
null geodesics outward
constant radius
constant time



Tidal accelerations
• Recall what happens to test masses as our reference frame is in the 
freefall near Earth.

• The test masses are free particles, so they move along the geodesics 
(of Schwarzschild metric in this case). Tidal accelerations is nothing 
more than a manifestation of the curvature of spacetime!

d=20m

d<20m



• Time-dependence in Einstein field equation leads to spacetime 
curvature that varies with time.

• These time-variations of spacetime curvature are expected to propagate 
at speed of light and are called gravitational waves.

Gravitational waves

In this figure, two hypothetical 
black holes orbit each other at 
high rate.

Each black hole creates its 
own curved spacetime around 
itself.

As the black holes rotate, the 
centers of their respective 
metrics move. This creates a 
wave pattern!



• Gravitational waves carry away energy. This energy must come from 
somewhere. In other words, the source of gravitational waves must lose 
energy.

• Looking for this loss of energy is an indirect way of detecting 
gravitational waves. 

Energy of gravitational waves 



• Two enormous Michelson interferometers look for tiny relative
movements of their mirrors caused by gravitational waves.

• Current sensitivity ~ 10-18 meters (1000 times smaller than the proton!), 
yet not sensitive enough (would probably detect waves coming from our 
entire Galaxy collapsing...)

LIGO - Laser Interferometer Gravitational 
wave Observatory



• Three satellites flying 5 million kilometers apart, with laser beams 
“connecting” them.

• May be launched in 2012.

• Would have sensitivity 1,000,000 times better than LIGO

LISA - Laser Interferometer Space Antenna 



Recap 

• Geodesics is a line in spacetime that follows the path of a 
free particle; geodesics is the (locally) shortest distance on a
given metric.

• Geodesics is found by minimizing the path between two 
events.

• Tidal accelerations, light bending and gravitational red shift 
are all manifestations of particles following geodesics in 
curved spacetime.

• Gravitational waves arise from time-dependent metrics; 
they come about because of finite speed (speed of light) of 
the metric propagation through space.
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