Physics 311 Special Relativity

Lecture 5:

Invariance of the interval. Lorentz transformations.

OUTLINE

- Invariance of the interval a proof
- Derivation of Lorentz transformations
- Inverse Lorentz transformations

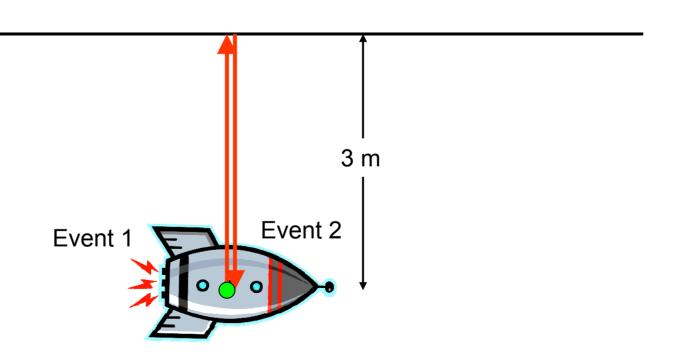
Space and time separation in moving frames

- Two events are recorded in two frames: the Lab frame and the Rocket frame (moving at v = 4/5c). The events are:
- Light flash is emitted from the Rocket normal to the direction of relative motion (Event 1)
- Light is reflected back and later detected at the Rocket (Event 2)
- The two events have zero space separation in the Rocket frame: the light was reflected right back to the rocket
- Distance to the reflecting mirror is 3 m, perpendicular to the direction of the Rocket motion. (Remember: the transverse dimension is the same in all frames, follows from the isotropy of space)
- Enough words, let's look at the events in the two frames!

1. The Rocket frame

• The events are separated by 0 m of space and 6 m of time

$$s^2 = 6^2 - 0^2 = 36$$
, thus $s = 6$

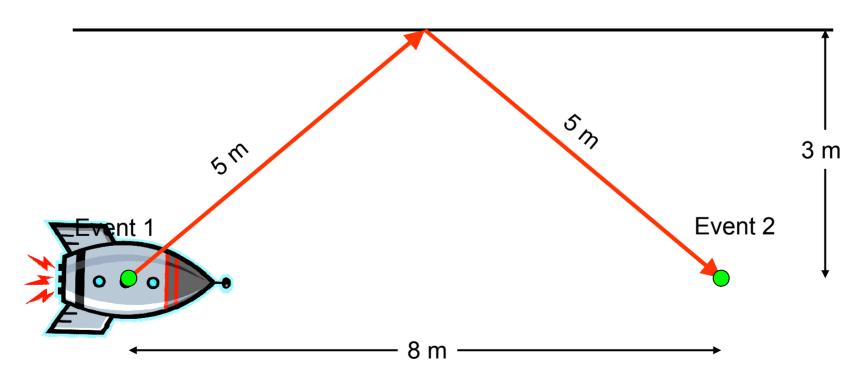


2. The Lab frame

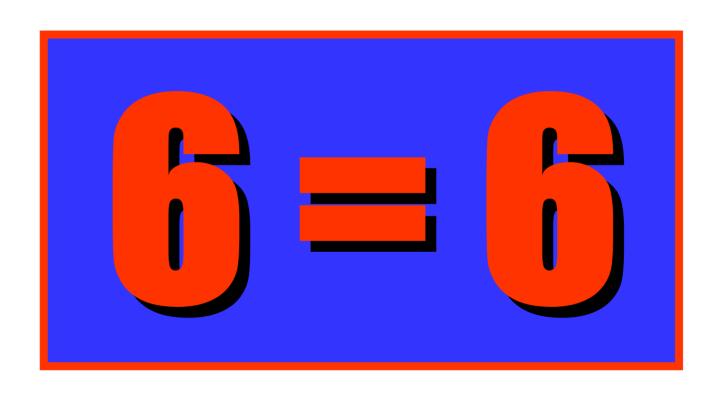
• The events are separated by 8 m of space and 10 m of time (we've secretly used Pythagorean theorem to calculate that)

$$s^2 = 10^2 - 8^2 = 36$$
, thus $s = 6$

(Notice how light travels in a different direction in the Lab frame)

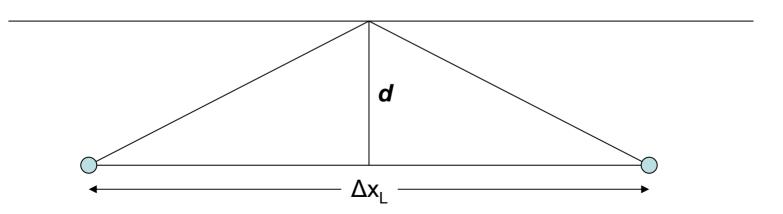


We've just proved a very important thing.....



GENERAL CASE

- Light flash is emitted (Event 1)
- Light is reflected back from a mirror d m away and detected (Event 2)
- The events are recorded in two frames: the Lab frame and the Rocket frame flying at velocity v
- Rocket frame: $\Delta x_R = 0$, $\Delta t_R = 2d$, s = 2d
- Lab frame: $\Delta x_L = \mathbf{v} \Delta t_L$, $\Delta t_L = 2((\Delta x_L/2)^2 + (\Delta t_R/2)^2)^{1/2}$ (Pythagorean theorem) $s_L^2 = \Delta t_L^2 \Delta x_L^2 = \Delta x_L^2 + \Delta t_R^2 \Delta x_L^2 = \Delta t_R = 2\mathbf{d} :$



Well, it's a mildly general case, you say. But any two events can be represented this way!

Lorentz transformations

- Lorentz transformations give us means to calculate relationships between events in spacetime, including velocities measured in moving frames, electric and magnetic fields, time dilation and length contraction.
- More powerful than the intervals alone, Lorentz transformations are a **useful mathematical tool**. Yet, they are **not fundamental**, but simply follow from the relativity principle and the invariance of the speed of light.
- As any transformation of coordinates for inertial frames, Lorentz transformations must be linear:

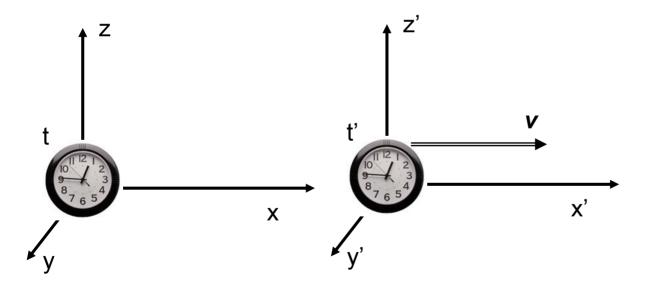
$$x = Ax' + Bt'$$

 $t = Cx' + Dt'$

As relativistic transformations, they must conserve the interval.

Derivation – the setup

- The setup: Lab frame at rest, Rocket frame is moving at speed **v** along the x-axis.
- The Lab coordinates are x, y, z and t;
 the Rocket coordinates are x', y', z' and t'
- Initial conditions: t = t' = 0; the origins coincide



Derivation – the plan

- Use the invariance of the interval to derive coordinate and time transformations for events in the origin of the Rocket frame (x' = 0)
- Realize that any point in the Rocket frame can be the origin (i.e. the transformations must be linear, space is uniform...)
- Derive the transformations for arbitrary x' and t'
- Derive the inverse Lorentz transformation from (x, t) to (x',t')

Step 1: event at x' = 0

- Light flash is emitted at x' = 0 at time t'
- Note: the orthogonal coordinates y and z do not change:

$$y = y'$$

 $z = z'$

• Spark location in the laboratory frame is (the origins coincided at t = 0):

$$x = vt$$

Now use the invariance of the interval:

$$(t')^2 - (x')^2 = (t')^2 - 0 = t^2 - x^2 = t^2 - (\mathbf{v} t)^2 = t^2(1 - \mathbf{v}^2)$$

•(Remember: **v** is unitless, it is the ratio of v/c)

Time and distance transformations for x' = 0

Now we can write down the transformation for time:

$$t' = t(1 - v^2)^{1/2}$$
, or $t = t'/[(1 - v^2)^{1/2}]$

- Common notation: $1/[(1 \mathbf{v}^2)^{1/2}] \equiv \gamma$ (a.k.a. *time stretch factor* or simply *Lorentz* γ -factor)
- Then:

$$t = \gamma t'$$

- Substituting this into x = vt, we get transformation for x = vt
- Is that all we need? Not really, there's a bit more work to do.

Any point is a reference point

- Recall: the transformations must be linear in x (and x'), which follows from the fact that any point in space in any frame cam be a reference point. (Which, in turn, follows form the fact that space is uniform.)
- The transformations must be linear in t (and t'), because any point in *time* can be chosen as the origin. (This follows from the fact that time is uniform.)
- So, we seek the following form for the transformations:

$$x = Ax' + Bt'$$

 $t = Cx' + Dt'$

 We already know the coefficients B and D from the previous derivation:

$$B = \mathbf{v}_{\gamma}$$
 and $D = \gamma$

 To determine A and C let's consider an event at some (arbitrary) x' and t'. The interval in the two frames is:

$$s^2 = t^2 - x^2 = t'^2 - x'^2$$

 Substitute the expressions for x and t from the full Lorentz transformations:

$$(Cx' + \gamma t')^2 - (Ax' + \mathbf{v}\gamma t')^2 = t'^2 - x'^2$$

$$C^2x'^2 + \gamma^2t'^2 + 2C\gamma x't' - A^2x'^2 + \mathbf{v}^2\gamma^2t'^2 + 2A\mathbf{v}\gamma x't' = t'^2 - x'^2$$

... a mess! (But that's just a normal situation half-way through any derivation)

• Group together the coefficients of t'2, x'2 and x't':

$$\gamma^2(1 - \mathbf{v}^2)t'^2 - (A^2 - C^2)x'^2 + 2\gamma(C - A\mathbf{v})x't' = t'^2 - x'^2$$

• Let's study these coefficients. The equality must be satisfied for each and every value of x' and t'. That means the coefficients on the right-hand side must be equal to the matching coefficients on the left-hand side:

$$\gamma^2(1 - \mathbf{v}^2) = \gamma^2 \times 1/\gamma^2 = 1 - \text{very good!}$$

 $(A^2 - C^2)$ must equal 1, and $2\gamma(C - A\mathbf{v})$ must equal 0.

 All we have to do is to solve a system of two equations with two unknowns.

• Group together the coefficients of t'2, x'2 and x't':

$$\gamma^2(1 - \mathbf{v}^2)t'^2 - (A^2 - C^2)x'^2 + 2\gamma(C - A\mathbf{v})x't' = t'^2 - x'^2$$

• Let's study these coefficients. The equality must be satisfied for each and every value of x' and t'. That means the coefficients on the right-hand side must be equal to the matching coefficients on the left-hand side:

$$\gamma^{2}(1 - \mathbf{v}^{2}) = \gamma^{2} \times 1/\gamma^{2} = 1 - \text{very good!}
\{ (A^{2} - C^{2}) = 1
2\gamma(C - A\mathbf{v}) = 0$$

 All we have to do is to solve a system of two equations with two unknowns.

• The solution is simple:

$$A = \gamma$$
$$C = \mathbf{v}\gamma$$

The complete Lorentz transformations are:

$$t = \mathbf{v}\gamma x' + \gamma t'$$

$$x = \gamma x' + \mathbf{v}\gamma t'$$

$$y = y'$$

$$z = z'$$

Inverse Lorentz transformations

• To find the inverse Lorentz transformations (i.e. from the Lab frame to the Rocket frame), need to solve the first two equations for x' and t':

$$\begin{cases} t = \mathbf{v}\gamma x' + \gamma t' \\ x = \gamma x' + \mathbf{v}\gamma t' \end{cases}$$

Do this as an exercise! The solution is:

$$t' = -\mathbf{v}_{\gamma} \mathbf{x} + \gamma t \qquad \qquad t = \mathbf{v}_{\gamma} \mathbf{x}' + \gamma t' \\ \mathbf{x}' = \gamma \mathbf{x} - \mathbf{v}_{\gamma} t \qquad \qquad \mathbf{x} = \gamma \mathbf{x}' + \mathbf{v}_{\gamma} t' \\ \mathbf{y}' = \mathbf{y} \qquad \qquad \mathbf{y} = \mathbf{y}' \\ \mathbf{z}' = \mathbf{z} \qquad \qquad \mathbf{z} = \mathbf{z}'$$