Homework #2

3-7 (10 points)

3-15 (20 points)

L-4 (10 points)

L-5 (30 points)

PHYSICS 311 SPECIAL RELATIVITY

Lecture 6:

Addition of velocities. 4-velocity.

OUTLINE

- Addition of velocities general case
- The extremes: speed of light and v<<c
- Transverse velocity
- 4-velocity space and time, unite!
- 4-vectors are not scary, they are nice.

Addition of velocities

- Lab frame at rest, Rocket frame moving at speed *v* along the x-axis.
- The Lab coordinates are x, y, z and t;
 the Rocket coordinates are x', y', z' and t'
- Initial conditions: t = t' = 0; the origins coincide
- A bullet is fired at speed u'along the x axis in the Rocket frame.
- What is the speed of the bullet in the Lab frame?

Define and analyze events

- Event 1: the bullet is fired; coordinates: (x_1, t_1) and (x_1', t_1') (y,z are not important)
- Event 2: the bullet its the target; coordinates: (x_2, t_2) and (x_2', t_2')
- Bullet speed in Rocket frame: $(x_2' x_1')/(t_2' t_1') \equiv \Delta x'/\Delta t' = u'$
- Bullet speed in Lab frame: $(x_2 x_1)/(t_2 t_1) \equiv \Delta x/\Delta t = ?$

Transform time and distance, then divide

$$t_{1} = \mathbf{v}\gamma x_{1}' + \gamma t_{1}'$$

$$t_{2} = \mathbf{v}\gamma x_{2}' + \gamma t_{2}'$$

$$x_{1} = \gamma x_{1}' + \mathbf{v}\gamma t_{1}'$$

$$x_{2} = \gamma x_{2}' + \mathbf{v}\gamma t_{2}'$$

Bullet velocity in the Lab frame:

$$u = \Delta x/\Delta t = (\chi \Delta x' + v \chi \Delta t')/(v \chi \Delta x' + \chi \Delta t')$$

$$= (\Delta x' + v \Delta t')/(v \Delta x' + \Delta t') \quad \text{(time-stretch cancels!)}$$

$$= (\Delta x'/\Delta t' + v)/(v \Delta x'/\Delta t' + 1) \text{(divide by } \Delta t')$$

$$u = (u' + v)/(1 + u'v)$$

Speed of Light

• Special case: $u' = c \equiv 1$. Then:

$$u = (c + v)/(1 + cv) = (1 + v)/(1 + v) = 1 \equiv c$$

Speed of light is the same in all inertial frames!

Another extreme: v << 1

• Then:

$$u = (u' + v)/(1 + u'v) \approx (u' + v)/1 = u' + v$$
 (since $u'v << 1$ even for $u' = c = 1$)

The Galilean velocity addition!

- This is good news a new theory should agree with the old theory where the old theory works, or where the effects of the new theory are not noticeable.
- What about the transformations for time and distance? (Notice: v << 1 means that $\gamma \approx 1$)

$$t = \mathbf{v}\gamma x' + \gamma t'$$
 $x = \gamma x' + \mathbf{v}\gamma t'$
Lorentz transformations
 $t = \mathbf{v}x' + \mathbf{v}t'$
 $t = \mathbf{v}x' + t$
 $t = \mathbf{v}x' + t$
 $t = \mathbf{v}x' + t$
"classical" transformations

Not quite Galilean! Galileo assumed $c = \infty$, the term vx' is due to different synchronization of clocks

What about the orthogonal velocity?

- We have seen that the displacements orthogonal to the direction relative motion of reference frames do not change: y = y' and z = z'.
- Does this imply that the orthogonal velocity does not change either?

 NO! And why is that? Because time changes when we go between frames!

Event 1

In the Lab frame...

- Velocity acquires a component along x according to the velocity addition formula: $\mathbf{u_x} = (0 + \mathbf{v})/(1 + 0\mathbf{v}) = \mathbf{v}$
- Assume that both **v** and **u**' are very close to speed of light. If the orthogonal velocity remained the same, then we would have:

$$u = (v^2 + u'^2)^{1/2} > c!!!$$

So, orthogonal velocity must change - let's derive it!

•
$$t_{1} = \mathbf{v}\gamma x_{1}' + \gamma t_{1}'$$

$$t_{2} = \mathbf{v}\gamma x_{1}' + \gamma t_{2}'$$
•
$$z_{1} = z_{1}'$$

$$z_{2} = z_{2}'$$
• Then:
$$\Delta z = (z_{2} - z_{1}) = (z_{2}' - z_{1}') = \Delta z'$$

$$\Delta t = (t_{2} - t_{1}) = \mathbf{v}\gamma(x_{1}' - x_{1}') + \gamma(t_{2}' - t_{1}') = \gamma \Delta t'$$

Orthogonal velocity in the Lab frame:

$$u = \Delta z/\Delta t = \Delta z'/\gamma \Delta t' = u'/\gamma = u'(1 - v^2)^{1/2}$$

 $u = u'(1 - v^2)^{1/2}$

Lorentz transformations separate time and space!

• There are transformations for space, and then there are transformations for time:

$$t = \mathbf{v}\gamma x' + \gamma t'$$
$$x = \gamma x' + \mathbf{v}\gamma t'$$

Space and time transform differently! What can we do to reunite them?

The march of 4-vectors

- In the spirit of treating space and time as one entity the **spacetime** we will introduce the "4-vectors".
- 4-vectors are 4-dimensional vectors whose three coordinates correspond to space, and the fourth (or first, as is usually the case) is related to time.
- You have already met one 4-vector: the displacement X = {ct,x,y,z}
- Other examples are: 4-velocity, energy-momentum, force-power.
- 4-vectors have special metric for example, the length of the displacement 4-vector is $|X| = s = ((ct)^2 (x^2 + y^2 + z^2))^{1/2}$ the minus sign!
- 4-vectors transform between inertial frame as the interval i.e. their absolute value is invariant.

4-velocity

• 4-velocity of a moving particle in an inertial frame is the first derivative of the displacement 4-vector measured in that frame with respect to particle's **proper time** τ :

$$U = ds/d\tau$$

- Let's assume that the particle is moving at velocity **u** with respect to the Lab frame. Displacement and time in the particle frame are x', t'; displacement and time in the Lab frame are x, t.
- The displacement 4-vector in the Lab frame: $s = \{ct, x, y, z\}$; the proper time is the interval in the particle's frame: $\tau = s' = \{ct', 0, 0, 0\}$.
- Infinitesimals: $ds = \{cdt, dx, dy, dz\}$ $d\tau = \{cdt', 0, 0, 0\}$

4-velocity components

• "Time"-component:

$$U^0 = cdt/cdt' = (\mathbf{u}\gamma d\mathbf{r'} + \gamma dt')/dt'$$

We are considering a general case of particle moving along an arbitrary direction, so all velocity components are in general non-zero. Lorentz-transformation for time then depends on total velocity \boldsymbol{u} and radius-vector \boldsymbol{r} .

$$U^0 = u\gamma(dr'/dt') + \gamma(dt'/dt') = \gamma$$

(remember: d*r*^{*}/dt' = 0 is particle's velocity in its *rest* frame)

- The "time"-component is thus simply time-stretch factor γ . "How could it be?" you ask, " shouldn't it have dimensionality of velocity?"
- It should and it does! Our strange units simply hide it. Remember: our velocity is *unitless*. In fact, we can, and we should, write the "time"-component of 4-velocity as c_{γ} (remembering that c = 1).

4-velocity components

• "Space"-components:

$$U^{1} = dx/cdt' = (\gamma dx' + \mathbf{u}_{x}\gamma dt')/dt'$$

Here, u_x is the x-component of particle's velocity in the Lab frame. Lorentz transformations for x, y and z will depend on u_x , u_v and u_z , respectively.

$$U^{1} = \gamma(dx'/dt') + \boldsymbol{u}_{x}\gamma(dt'/dt') = \boldsymbol{u}_{x}\gamma$$

The other two:

$$U^{2} = \gamma(dy'/dt') + \boldsymbol{u}_{y}\gamma(dt'/dt') = \boldsymbol{u}_{y}\gamma$$

$$U^{3} = \gamma(dz'/dt') + \boldsymbol{u}_{z}\gamma(dt'/dt') = \boldsymbol{u}_{z}\gamma$$

• The whole 4-velocity vector is then:

$$U = \{c\gamma, \gamma \boldsymbol{u_x}, \gamma \boldsymbol{u_y}, \gamma \boldsymbol{u_z}\}$$

4-velocity magnitude

- Recall: the claim was that the 4-velocity absolute value is invariant, just like the interval is. What is this value?
- The 4-velocity vector: $U = \{c\gamma, \gamma u_x, \gamma u_y, \gamma u_z\}$. It's absolute value:

$$|U| = ((c\gamma)^{2} - [(\gamma u_{x})^{2} + (\gamma u_{y})^{2} + (\gamma u_{z})^{2}])^{1/2}$$

$$= \gamma (c^{2} - u^{2})^{1/2}$$

$$= \gamma c (1 - (u/c)^{2})^{1/2}$$

$$= 1/\gamma!!!$$

$$|U| = c$$

- Well, true indeed, the speed of light is the same in all inertial frames, what can be better?!
- But what is the meaning of this? Sure, this seems strange whatever the particle's 3-velocity **u** might be, the 4-velocity magnitude is *always* the speed of light!

4-velocity magnitude: the meaning

• Let's go into the particle rest frame. There, particle's 3-velocity components are all zero, the time-stretch factor γ is 1 (no time stretching in the rest frame!), and the 4-velocity there is:

$$U_{rest} = \{c, 0, 0, 0\}$$

- As you can see, the "time"-component of the 4-velocity is exactly the speed of light. Even though the particle is at rest, it is still traveling along the 4th dimension time! That travel happens at the speed of light, so to speak.
- The 4-velocity has a nice way of reminding us that everything around us happens in spacetime, and even an object at rest in space is moving through time.
- If we accept that time-travel "velocity" is c, then the time-stretch factor γ has a very nice meaning: the time-travel "velocity" is γ times faster in moving frames (U = {c γ , γu_x , γu_y , γu_z }). The time is stretched, and we need to go faster to keep up!

4-vectors in general

• 4-vectors defined as any set of 4 quantities which transform under Lorentz transformations as does the interval. Such transformation is usually defined in the form of a matrix:

$$M = \begin{bmatrix} \gamma & -\gamma \mathbf{v} & 0 & 0 \\ -\gamma \mathbf{v} & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• The transformation for the 4-velocity is then simply:

U = MU', or for its components:

$$U^{0} = \gamma(U^{0})' - \gamma \mathbf{v}(U^{1})'$$

$$U^{1} = -\gamma \mathbf{v}(U^{0})' + \gamma(U^{1})'$$

$$U^{2} = (U^{2})'$$

$$U^{3} = (U^{3})'$$

 Notice that the "orthogonal" components of the 4-velocity do not change!

4-vectors are useful!

• 4-vectors are very useful. Do not be intimidated by their apparent complexity. We'll be seeing a lot more of them when we study the relativistic dynamics – force, momentum and energy.