Chalcogenide Semiconductor Nanostructures

Labs:
- Photoemission -- PAB B049 (Olmstead Lab)
- Scanning Probe Microscopy -- PAB B009 (Fain Lab)
- High-resolution Photoemission -- Advanced Light Source, Berkeley

Funded Projects:
- Intrinsic Vacancy Chalcogenides for Spintronic Applications
- Phase Change Materials for Nanoelectronics: A combinatorial approach to mechanistic understanding
 - Part 1: Nanotechnology Ph.D. Program
 - Part 2: Research in Olmstead and Fain Groups

Faculty:
- Prof. Marjorie Olmstead
 - olmstd@u.washington.edu
 - Office B433 685-3031
- Prof. Sam Fain
 - fain@u.washington.edu
 - Office B437 543-8444

Graduate Fellowships

Societal Impact

User Facility
- National Infrastructure
- Joint Institutes
- NT Dual PhD Program

Acting Director: Francois Baneyx
Education and Outreach: Ethan Allen
Associate Director: Qiuming Yu
NT PhD Program: Marjorie Olmstead
Founded 1997

www.nano.washington.edu

"Standard" Ph.D.: "Standard Job"
- Take Classes
- Dream New Ideas
- Take Data
- Analyze Data
- Present work
- Publish results

"Standard" Ph.D. Process
- "Standard Job"
 - Basic Research
 - Teaching
 - Preparing to teach
 - Though often not part of training

NT Dual PhD Program
- 85 Faculty
- 5 Centers
- 3 Colleges
- 10 Departments
- 40 PhD Students
- 5 Programs
- 1 National Institute
- 14 Fellowships
- 1 NT Dual PhD Program

UW Center for Nanotechnology
- 85 Faculty
- 5 Centers
- 3 Colleges
- 10 Departments
- 40 PhD Students
- 5 Programs
- 1 National Institute
- 14 Fellowships
- 1 NT Dual PhD Program

Chalcogenide Semiconductors
What Do Nanotechnologists Do?

Inform Public
Policy
Interact Across Disciplines
Teach the Public
Launch New Products
Build life-changing technologies from individual molecules
Compete Globally
Build New Tools

Optional "Essentials"

Dual Degree in Nanotechnology

1. Thesis in Nanoscale Science or Technology
 • Approved in quality by home department
 • Approved as "nano-relevant" by NT Standards Committee
 • Advisor + at least one other committee member in the Center for Nanotechnology
 2. Core Course: Frontiers of Nanotechnology
 • Student joint projects across disciplines
 • Discuss societal impact as well as science & technology
 3. Research Rotation
 • 1 quarter research outside advisor’s home department
 4. Nano-relevant Course Work
 • 3 courses, 2 of which are outside home department
 • 1 quarter research outside advisor’s home department
 • Approved as "nano-relevant" by NT Standards Committee
 5. Fellowship Program
 • Proposal writing experience
 • Bias toward Interdisciplinary Collaborations
 • IGERT, UIF, hopefully more.
Path to a UW Nanotechnology Ph.D.

Optional Degree Program in "Nanomaterials"

Ph.D. in "Home Department" and Nanotechnology

-Doctoral Requirements of Home Department

Non-thesis Option
-Dean's Option
-Graduate Research Project with Co-Tuition

Admission into a "Home Department"

Integrated Graduate Students

Path to UW

Part 2: Olmstead & Fain Group Research

Nanostructures of Dissimilar Materials

Silicon-based Nanoelectronics

Microfabrication + Microelectronics

Spintronics and Optoelectronics

Vacuum Tube

Victrola

Tabletop Turntable

Walkman

Tablet

Vacuum Tube

Tablet

VacuumTube

Tablet

Vacuum Tube

Tablet
Nanoscale Action

Macroscopic Results

Factors We Can Control --
- Temperature Flux
- Surface Composition
- Average Step Spacing

Factors We Must Deal With --
- Strain (lattice mismatch)
- Surface Structure (steps, defects, symmetry)
- Chemical Reactions (interface compounds)
- Chemical Environments (surface energy, diffusion)

First Monolayer Controls Subsequent Growth

Common Themes in our Research

- Quantify Correlations between Thermodynamics, Kinetics and Nanostructure Properties
- Develop New Materials and Methods to Fabricate Si-
- Establish a Unifying Predictive Framework for Heteroepitaxy of Dissimilar Materials
- Investigate Physics Underlying Nanostructures
- Develop New Materials and Methods to Fabricate Si-
- Establish a Unifying Predictive Framework for Heteroepitaxy of Dissimilar Materials
- Investigate Physics Underlying Nanostructures

Experimental Probes

- High Resolution Microscopy
 - Scanning Tunneling
 - Atomic Force
 - Magnetic Force
- Low Energy Electron Diffraction
- Xray Diffraction
- Photoemission Spectroscopy
 - Scanned Energy & Angle
 - Component-Resolved
- Valence Band Spectroscopy
 - Scanned Energy & Angle
- Photoelectron Diffraction
 - Scanned Energy & Angle
- Ion Scattering Spectroscopy
- SQuID Magnetometry
- Nanoscale Structure
- Average Atomic Structure
- Chemical Environments
- Electronic State Density
- Surface/Bulk
- Surface Elemental Composition
- Electronic State Density
- Surface/Bulk
- Surface Elemental Composition

Theory

UHV

How it’s done …

Substrate

Evaporation cell

Evaporation

Theory

Experimental Probes

Nanoscale Action ⇒ Macroscopic Results
Recent Fain Group Publications

Recent Olmstead Group Publications

- Laser and Electrical Current Induced Phase Transformation of In2Se3: Semiconductor Thin Film on Si(111), Applied Physics A to be published.
- Electronic structure evolution during the growth of ultra-thin insulator films on semiconductors: from interface formation to bulk-like CaF2/Si(111) films, Physical Review B 72, 041302(R) (2005).
Candidate Materials:

- **Transition Metal Doped Semiconductors**
 - Mn in GaAs: FM but only below ~100K
 - Co or Cr in TiO₂: Thin films ferromagnetic at RT
 - Mn or Cr in Ga₂Se₃: New material we propose

Device Requirements
- Ferromagnetic above room temperature
- Efficient, spin-preserving transport into silicon

Translation to Materials Requirements
- Lattice matched to silicon
- Impedance matched
- Semiconductor
- Large exchange interaction

Si-compatible III-VI Semiconductors

- Al₃S₅, Ga₃S₅ or In₃S₅ = Conventional Semiconductor + e⁻
- Wide band gap semiconductor
- Lattice matched with Si
- Vacancies plus sp³ bonding
- Reactive dangling bonds
- Unique growth morphologies
- Non-linear optical properties

III-VI Semiconductors Crystal Structure

- Hexagonal GaSe
- Cubic GaSe₃
- Hexagonal Al₃S₅ or In₃S₅
- Zinkblend
- Wurtzite
- Hexagonal Al₃S₅ or In₃S₅

Flexible Bonding Configuration: Vacancies and Lone Pairs

- Planes
- Lines
- Helices

III-VI Semiconductor Crystal Structure

- Al₃S₅, Ga₃S₅ or In₃S₅ = Conventional Semiconductor + e⁻

Flexible Bonding Configuration: Vacancies and Lone Pairs

- Flexible bonding configuration: Vacancies and Lone Pairs
- Reactive dangling bonds

Cubic Substrate: Si(001)

- Case on As-terminated Si(001) 2x1
- As remains at interface
- 2x1 LEED Pattern
- Strong Photoelectron Diffraction
- Reactive dangling bonds

- Case on pristine Si(001) 2x1
- Crystalline GaSe₃
- No LEED Pattern
- No Photoelectron Diffraction Structure

Si-compatible III-VI Semiconductors

- Al₃S₅, Ga₃S₅ or In₃S₅ = Conventional Semiconductor + e⁻
- Wide band gap semiconductor
- Lattice matched with Si
- Vacancies plus sp³ bonding
- Reactive dangling bonds
- Unique growth morphologies
- Non-linear optical properties

Flexible Bonding Configuration: Vacancies and Lone Pairs

- Flexible bonding configuration: Vacancies and Lone Pairs
- Reactive dangling bonds

Cubic Substrate: Si(001)

- Case on As-terminated Si(001) 2x1
- As remains at interface
- 2x1 LEED Pattern
- Strong Photoelectron Diffraction
- Reactive dangling bonds

- Case on pristine Si(001) 2x1
- Crystalline GaSe₃
- No LEED Pattern
- No Photoelectron Diffraction Structure

Si-compatible III-VI Semiconductors

- Al₃S₅, Ga₃S₅ or In₃S₅ = Conventional Semiconductor + e⁻
- Wide band gap semiconductor
- Lattice matched with Si
- Vacancies plus sp³ bonding
- Reactive dangling bonds
- Unique growth morphologies
- Non-linear optical properties
Growth on Si(001)

Zinc-blende Ga2Se3 (2.5CBL)

Nanorods

- 1 Ga-Se bilayer high
- Corrugation = Ga-Ga distance
- Rods to As dimer rows
- Lateral shift between layers

Ga2Se3 Nanoridge Structure

Current Research Direction: Dope Ga2Se3

Vacancy Ga Se
Zn
Ga
Ge
As
Se
Ga3As3
Zn3Se3
Ga2Se3

- Zincblende, with Ordered Vacancies
- Eg ~ 2.3 eV
- Lattice Matched to Si (0.1% mismatch)
- Two cation sites available for TM doping
- TM on Ga-site (TMGa)
- TM on Vacancy-site (TMV)

Vacancy Lines [110]

Spin-Polarized Density of States

\[
\text{Mn gap} \sim \text{Ga2Se3 gap}
\]

\[
\text{Cr states fill Ga2Se3 gap}
\]

\[
\text{V states fill Ga2Se3 gap and overlap CB}
\]

\[
\text{SP-DOS}
\]

\[
\text{d-states}
\]

\[
\text{TMV}
\]

\[
\text{TMGa8Se12}
\]

Vacancy Lines

Theoretical Prediction

Theoretical Prediction

Spin-Polarized Density of States

\[
\text{Mn gap} \sim \text{Ga2Se3 gap}
\]

\[
\text{Cr states fill Ga2Se3 gap}
\]

\[
\text{V states fill Ga2Se3 gap and overlap CB}
\]

\[
\text{SP-DOS}
\]

\[
\text{d-states}
\]

\[
\text{TMV}
\]

\[
\text{TMGa8Se12}
\]
Phase Change Chalcogenides

Challenges:
- Uniform stoichiometry
- Controlled nucleation
- Smaller bit size
- Ce\textsubscript{2}S\textsubscript{2}Te\textsubscript{3} (GST)

Collaborations:
- NIMS, Japan
- Micron, Boise
- PNNL, Richland

Phase Change Chalcogenides

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Phase Change Chalcogenides

- Magnetic

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K
- Hysteresis loop
- Apparent Curie Temperature 335 K

Collaborations:
- PNNL, Richland
- Micron, Boise
- NIMS, Japan
Laminar film despite 7.3% lattice mismatch

Indicating the heterointerface is discommensurate

Reverse phase change

Room Temperature Deposit

- Amorphous to Single Crystal Film
- Add Room Temperature Deposit
- Deposit 2 BL at High Temperature
- Amorphous to Polycrystalline Film

Microscopy: real space information.

- Image contrast often reflects surface chemical composition, phase, and surface dipole.

Multi-channel plate+

Lens column

Object chamber

High bias

Equipped with laser for melting and quenching

Photo Electron Emission Microscopy (PEEM)

Laminar film on Si(111)
Part 1: Nanotechnology Ph.D. Program

A combinatorial approach to mechanistic understanding

Funding Projects:
- High-resolution Photoemission - Advanced Light Source Berkeley
- Scanning Probe Microscopy - PAB B09 (Fain lab)

Labs
- Prof. Sam Fain
 Office B435 682-3945
 Web: http://faculty.washington.edu/fain

- Prof. Marjorie Olmstead
 Office B437 682-3931
 Web: http://faculty.washington.edu/olmstd

Future Directions

- Spintronics: Study role of TM impurities
 - Growth kinetics and morphology
 - Electronic structure
 - Magnetic properties (MFM shared with MSE)
- Nanostructure Phase Change Memory
 - Role of via in controlling phase stability and uniformity
 - Role of size in controlling energy budget and phase transformation
- Combinatorial Materials - Novel alloy and processing space for new materials
 - Non-volatile memory applications
 - Develop new and emerging materials
 - Physical properties (X-ray and electron microscopy)
 - Electronic structure
 - Growth kinetics and morphologies
 - Spintronics: Study role of TM impurities

Reverse phase change

Laser spot

Re-amorphized In$_2$Se$_3$

Amorphous In$_2$Se$_3$

Clean Si(111)

Reverse phase change: PEEM with laser