Chalcogenide Semiconductor Nanostructures

Prof. Marjorie Olmstead olmstd@u.washington.edu Office B433 685-3031 Web: http://faculty.washington.edu/olmstd

Prof. Sam Fainfain@u.washington.eduOffice B437 543-8444Web: http://faculty.washington.edu/fain

<u>Labs</u>: Photoemission -- PAB B049 (Olmstead Lab) Scanning Probe Microscopy -- PAB B009 (Fain Lab) High-resolution Photoemission -- Advanced Light Source, Berkeley <u>Funded Projects:</u>

Intrinsic Vacancy Chalcogenides for Spintronic Applications

 Phase Change Materials for Nanoelectronics: A combinatorial approach to mechanistic understanding

Part 1: Nanotechnology Ph.D. Program
Part 2: Research in Olmstead and Fain Groups

<image><image> Standard Rube Standard Rube Fare Tarses <

UW Center for Nanotechnology

"Standard" Ph.D. > "Standard Job"

- Basic Research
- Perhaps Teaching (though often not part of training)
- Everything else gets learned on the job

What Do Nanotechnologists Do?

Dual Degree in Nanotechnology

- ÷ Thesis in Nanoscale Science or Technology
- Approved in quality by home department
- Approved as "nano-relevant" by NT Standards Committee
- ы Advisor + at least one other committee member in the Center for Nanotechnology
- Core course Frontiers of Nanotechnology Student joint projects across disciplines
- Discuss societal impact as well as science & technology
- ω **Research Rotation**
- ≥ 1 quarter research <u>outside</u> advisor's home department
- Þ Nano-relevant Course Work \geq 3 courses, \geq 2 of which are <u>outside</u> home department
- Ω Nanotechnology Seminar
- Attend $\ge 80\%$ of seminars, ≥ 4 quarters

NSF/NCI Graduate Training Program New Educational Strategies: IGERT

Build New Tools	NNIN/NTUF User Facility		Interact Across Disciplines	Research [REQUIRED] Build life	Interdisciplinary Coursework &	
[OPTIONAL] *Req'd	Compete Globally	International Research Rotations	-		-changing technologie individual molecules	
for Fellows		Launch New Products	Coursework	Internships &	s from	
Teach the Public	Outreach & Presentations*		Inform Public		Ethics & Societal Impac Discussions*	

"Optional" Essentials

- Communication amongst disparate groups
- Nanoscience & Nanotechnology Student Association
- Student-Run Seminar Series
- Annual Workshop
- Quarterly Symposia with Brief Presentations and Longer Social Hour (was Wednesday)
- Outreach and Recruitment for Diversity
- Individual PLUS Coordinated Efforts
- Career Planning
- Mentorship and Internship Programs
- Bring Non-academics to Campus
- Fellowship Program
- Proposal writing experience
- Bias toward Interdisciplinary Collaborations
- IGERT, UIF, hopefully more.
- User Facility
- Students are Trained Users AND become "Trainers" of Others

Nanoscale Action \Rightarrow Macroscopic Results

- Factors We Can Control --
- Temperature

Flux

Average Step Spacing

- Surface Composition
- Factors We Must Deal With --
- Strain (lattice mismatch)
- Surface Structure (steps, defects, symmetry)
- Chemical Reactions (interface compounds)
- Surface Energetics (diffusion, surface energy)

Adsorption Reaction Nucleation Coalescence Relaxation Growth

First Monolayer Controls Subsequent Growth

Common Themes in our Research

- Quantify Correlations between Thermodynamics, Kinetics and Nanostructure Properties
- Develop New Materials and Methods to Fabricate Sicompatible Quantum Nanostructures
- Establish a Unifying Predictive Framework for Heteroepitaxy of Dissimilar Materials
- Investigate Physics Underlying Nanoscale Characterization Techniques

Experimental Probes

- Technique
- High Resolution Microscopy

Nanoscale Structure

Information

- Scanning TunnelingAtomic Force
- Magnetic Force
- Low Energy Electron Diffraction Average Atomic Structure
- Xray Diffraction
- Photoemission Spectroscopy
- Photoelectron Diffraction
 Scanned Energy & Angle
- Component-ResolvedValence Band Spectroscopy
- Scanned Energy & Angle
 Ion Scattering Spectroscopy
- SQuID Magnetometry

- Chemical Environments
- Local Structure
 Bond Lengths/Angles
- Symmetry
- •Electronic State Density
- Surface / Bulk
- Surface Elemental Composition
- Magnetic Properties

Recent Fain Group Publications

- S. C. Fain, Jr., C. A. Polwarth, S. L. Tait, C. T. Campbell, and R. H. French, "Simulated measurement of small metal clusters by frequencymodulation non-contact atomic force microscopy (ncAFM)" Nanotechnology 17, S121 (2006).
- J. M. K. Donev, Q. Yu, B. R. Long, R. K. Bollinger, and S. C. Fain, Jr., "Non-Contact Atomic Force Microscopy Studies of Ultra-Thin Films of Amorphous Solid Water Deposited on Au(111)," J. Chem. Phys. 123, 044706 (2005).
- S. L. Tait, L. T. Ngo, Q. Yu, S. C. Fain, Jr., and C. T. Campbell, "Growth and Sintering of Pd Clusters on α -Al2O3(0001), "J. Chem. Phys. 122, 064712 (2005).
- B. Pittenger, S.C. Fain, Jr., M.J. Cochran, J. M. K. Donev, B.E. Robertson, A. Szuchmacher, R.M. Overney, "Premelting at ice-solid interfaces studied via velocity dependent indentation with force microscope tips," Phys Rev B 63, 134102 (1 April 2001)
- S. C. Fain, Jr., K. A. Barry, M. G. Bush, B. Pittenger, and R. N. Louie, "Measuring Average Tip-sample Forces in Intermittent-contact (Tapping) Force Microscopy in Air," Appl. Phys. Lett. 76, 930-932 (14 Feb 2000).
- See http://faculty.washington.edu/fain

•

Recent Olmstead Group Publications

- Heteroepitaxial Growth of the Intrinsic Vacancy Semiconductor Al2Se3 on Si(111): Initial Structure and Morphology, submitted to Physical Review B.
- Laser and Electrical Current Induced Phase Transformation of In2Se3: Semiconductor Thin Film on Si(111), Applied Physics A to be published.
- Semiconducting chalcogenide buffer layer for oxide heteroepitaxy on Si(001), Applied Physics Letters 88 181903 (2006.
- Perovskite termination influence in oxide heteroepitaxy, Journal of Applied Physics 99 113521 (2006).
- Contrast in scanning probe microscopy images of ultra-thin insulator films, Applied Physics Letters, 88 063107 (2006).
- Electronic structure evolution during the growth of ultra-thin insulator films on semiconductors: from interface formation to bulk-like CaF2/Si(111) films, Physical Review B 72, 204336 (2005).
- Chemical passivity of III-VI bilayer terminated Si(111), Applied Physics Letters 87, 171906/1-3 (2005).
- Intrinsic vacancy induced nanoscale wire structure in heteroepitaxial Ga2Se3/Si(001), Physical Review Letters, 94, 116102 (2005) Cover photo of March 25, 2005 Issue.
- Atomically resolved imaging of a CaF bilayer on Si(111): subsurface atoms and the image contrast in scanning force microscopy, Phys. Rev. B 69, 34505 (2004).
- COPIES: http://faculty.washington.edu/olmstd

Example: Silicon-based Spintronics

Possible Solution: DMS

- Dilute Magnetic Semiconductor
- Conductance comparable to silicon channel
- Use variable electron density to control magnetism
- TM dopants add spin
- Couple spins with free carriers

figure credit: Awschalom, Flatte and Samarth, Scientific American, June 2002, p. 67-73

What material?

- **Device** Requirements
- Ferromagnetic above room temperature
- Efficient, spin-preserving transport into silicon
- Translation to Materials Requirements
- Lattice matched to silicon
- Impedance matched -- Semiconductor
- Large exchange interaction

Candidate Materials:

- **Transition Metal Doped Semiconductors**
- Mn in GaAs: FM, but only below ~ 100 K

Energy Gap (eV)

- Co or Cr in TiO₂: Thin films ferromagnetic at RT
- Mn or Cr in Ga₂Se₃: New material we propose

Si-compatible III-VI Semiconductors

- Al_xSe_y , Ga_xSe_y or $In_xSe_y =$ **Conventional Semiconductor + e-**
- Wide band gap semiconductor
- Lattice matched with Si
- Extra electron leads to:
- Vacancies plus sp³ bonding
- Structural variety
- Multiple dopant sites
- Non-linear optical properties
- Unique growth morphologies

III-VI Semiconductor Crystal Structure

Cubic Substrate: Si(001)

Hexagonal Plane Lattice Spacing (Å)

- GaSe on pristine Si(001) 2x1
- Se-Si Reaction
- Amorphous Layer
- No LEED Pattern
- No Photoelectron Diffraction Structure
- GaSe on As-terminated Si(001) 2x1
- As Remains at Interface
- Crystalline Ga_xSe_y
- 2x1 LEED Pattern
- Strong Photoelectron Diffraction

S. Meng Thesis (UW) 2000.

Determine E(k) inside crystal

Experimental Bands

Cr-doped = Magnetic

- Ferromagnetism at both 2K and 300 K Hysteresis loop
- Apparent Curie Temperature 335 K

Phase Change Chalcogenides

250x250 nm²

20x20 nm²

- Amorphous Crystalline Phases
- Different reflectivity
- Different resistivity
- $Ge_2Sb_2Te_5$ (GST)
- used in commercial DVD, CD-RW
- 20% cation sites = vacancy
- Challenges

Collaborations:

PNNL, Richland

Micron, Boise

NIMS, Japan

- Smaller bit size
- Uniform Stoichiometry Controlled nucleation

Part 1: Nanotechnology Ph.D. Program Part 2: Research in Olmstead and Fain Groups	 <u>Labs</u>: Protoemission PAB 6049 (Omstead Lab) Scanning Probe Microscopy PAB 8009 (Fain Lab) High-resolution Photoemission Advanced Light Source, Berkeley <u>Funded Projects</u>: Intrinsic Vacancy Chalcogenides for Spintronic Applications Phase Change Materials for Nanoelectronics: A combinatorial approach to mechanistic understanding 	Office B437 543-8444 Web: http://faculty.washington.edu/fain	Prof. Sam Fain fain@u washington.edu	Nanostructures	Chalcogenide Semiconductor	He lamp, 5. teVImage lampImage lampIm	Reverse phase change: PEEM with laser
<i>Graduation with</i> "Ph.D. in 'Home Department' and Nanotechnology"	Interdisciplinary Course Work Research Thesis in Nanoscale Science and/or Nanotechnology Frontiers in Nanotechnology Nanotechnology Seminar Options: Competition for Graduate Student Awards in Nanotechnology (funded by NSF-IGERT and the UW) Hands-on Training and Research in the Nanotech User Facility Membership in Nanotech Student Association Mentoring Program Industrial Internship and Research at PNNL	Optional Degree Program in "Nanotechnology" Requirements: Laboratory Rotations	Nanotechnology Ph.D. PhysiokeBiophys Fulfillment of all Doctoral Requirements of Home Department	Admission into a "Home" Department Admission into a "Home" Department Arts&Sciences Engineering Medical School Phys & Chem Biot ChemE, Eit, Biot Ben, Beit, Genome Science,	University of Washington Incoming Graduate Students	 Spintronics: Study role of TM impurities Growth kinetics and morphology Electronic structure Magnetic properties (MFM shared with MSE) Manostructure Phase Change Memory Role of via in controlling phase stability and uniformity Role of size in controlling energy budget and phase transformation Combinatorial Materials Novel selenide materials Bxplore alloy and processing space for new materials Non-volatile memory applications Magnetic properties (MFM Senter Allow and processing space for new materials Non-volatile memory applications Magnetic properties (MFM Senter Allow and processing space for new materials) Non-volatile memory applications Magnetic properties (MFM Senter Allow and processing space for new materials) Magnetic properties (MFM Senter Allow and processing space for new materials) Magnetic properties (MFM Senter Allow and processing space for new materials) Magnetic properties (MFM Senter Allow and processing space for new materials) Magnetic properties (MFM Senter Allow and processing space for new materials) Magnetic properties (MFM Senter Allow and processing space for new materials) Magnetic properties (MFM Senter Allow and processing space for new materials) Magnetic properties (MFM Senter Allow and processing space for new materials) Magnetic properties (MFM Senter Allow and processing space for new materials) Magnetic properties (MFM Senter Allow and processing space for new materials) Magnetic properties (MFM Senter Allow and processing space for new materials) Magnetic properties (MFM Senter Allow and processing space for new materials) Magnetic properties (MFM Senter Allow and processing space for new materials) Magnetic properties (MFM Senter Allow and processing space for new materials) Magnetic properties (MFM Senter Allow an	Future Directions