A Comparison of Two CNOT Gate Implementations in Optical Quantum Computing

> Adam Kleczewski March 2, 2007

Why Optical?

- Photons do not interact easily with the environment
- The transition to quantum networks and quantum communication is easy
- Optical equipment is easy to come by

Two ways to encode information on a photon

- Polarization
 - |0>=|H> |1>=|V>
- Spatial Location dual rail representation

Converting between the two encoding methods is easy.

GJ JLO'Brien, AG White, TC Ralph, D Branning - Arxiv preprint quant-ph/0403062, 2004 - arxiv.org

Single Qubit Gates

Phase shifts

Go to the dual rail representation and add a piece of glass to one rail.

Hadamard

Nothing but a beamsplitter!

 $P = \begin{pmatrix} e^{i\Delta} & 0 \\ 0 & 1 \end{pmatrix}$

Why is a beamsplitter a Hadamard gate?

- An AR coating ensures all reflection: happen on the same face
- Going to a higher index of refraction causes a sign flip

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} a+b \\ a-b \end{pmatrix}$$

Nielson and Chuang use a different sign convention here.

- Phase shifters and Hadamards are enough to do any single qubit operation
- But what about two qubit gates?

Photons do not interact so how can we get entaglement?

The Kerr Effect

 In linear media the polarization of the material is proportional to the electric field

$$P = \chi^{(1)} E$$

 Some materials have significant higher order terms

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \cdots$$

The Kerr Effect

- The Kerr effect depends on the third order term
- It causes the index of refraction of a material to change depending on the intensity of the electric field present in the material

The Kerr Effect

- This leads to interactions of the form
- If the material is length
 L we have phase shifts
 given by
- If we choose chi*L=pi we have

 $H_{Kerr} = \chi a^{\dagger} a b^{\dagger} b$

$$K = e^{i\chi La^{\mp}ab^{\mp}b}$$

$$K = e^{i\pi a^{\mp}ab^{\mp}b}$$

- 2 photons in the Kerr medium causes a 180 degree phase shift. 0 or 1 photons do nothing
- Now build this gate

Conditional Sign Flip

This gate has the following matrix representation

Now we can build a CNOT

$$U_{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}_{I \otimes H}$$

Schematically this would look like...

Or can we?

- In most materials the third order susceptibility is on the order of 10⁻¹⁸ m²/W
- These interactions are extremely unlikely in the single photon regime
- Some techniques can enhance the nonlinearity significantly (~10^-2)

It was shown in 2001 that entanglement could be created using linear optics and projective measurements.

(E. Knill, R. Laflamme, and G.J. Milburn, Nature 409, 46 (2001).)

How exactly does this work?

This method was demonstrated experimentally in 2003 so lets look at what they did

"Demonstration of an all-optical quantum controlled-NOT gate"

O'Brien, Pryde, White, Ralph, Branning Nature **426**, 264-267 (20 November 2003)

Without a Kerr medium how do we get photons to interact?

Photon Bunching

$$a^{\scriptscriptstyle +} \rightarrow \sqrt{\frac{1}{2}} (c^{\scriptscriptstyle +} + d^{\scriptscriptstyle +}) \quad b^{\scriptscriptstyle +} \rightarrow \sqrt{\frac{1}{2}} (c^{\scriptscriptstyle +} - d^{\scriptscriptstyle +})$$

$$\begin{split} &|11\rangle_{ab} = a^{+}b^{+}|00\rangle_{ab} \\ &\to \frac{1}{2}\left(c^{+} + d^{+}\right)\left(c^{+} - d^{+}\right)|00\rangle_{cd} = \frac{1}{2}\left(\left(c^{+}\right)^{2} - \left(d^{+}\right)^{2}\right)|00\rangle_{cd} \\ &= \sqrt{\frac{1}{2}}\left(|20\rangle_{cd} - |02\rangle_{cd}\right) \end{split}$$

- Clearly this gate does not succeed 100% of the time.
- But what happens when it does?

Use a slightly different schematic

 Trace all paths to each output to get a system of operator equations

$$V_{Co} = \sqrt{\frac{1}{3}} \left(\sqrt{2}C_H - V_C \right)$$
$$C_{Ho} = \sqrt{\frac{1}{3}} \left(\sqrt{2}V_C - C_H \right)$$
$$C_{Vo} = \sqrt{\frac{1}{3}} \left(\sqrt{2}T_H - C_V \right)$$
$$T_{Ho} = \sqrt{\frac{1}{3}} \left(\sqrt{2}C_V + T_H \right)$$
$$T_{Vo} = \sqrt{\frac{1}{3}} \left(\sqrt{2}V_T + T_V \right)$$
$$V_{To} = \sqrt{\frac{1}{3}} \left(\sqrt{2}T_V - V_T \right)$$

Now take any two input operators and act on the vacuum.

$$\begin{aligned} |HH\rangle &= |1010\rangle |00\rangle >= C_H T_H |0000\rangle |00\rangle \\ &= \frac{1}{3} \Big(\sqrt{2} V_{Co} - C_{Ho} \Big) \Big(\sqrt{2} C_{Vo} - T_{Ho} \Big) 0000\rangle |00\rangle \\ &= \frac{1}{3} \Big(\sqrt{2} |1000\rangle |10\rangle + |1010\rangle |00\rangle + 2 |0100\rangle |10\rangle + \sqrt{2} |0010\rangle |10\rangle \Big) \end{aligned}$$

But only one of these terms makes sense!

$$=\frac{1}{3}|1010\rangle|00\rangle=\frac{1}{3}|HH\rangle$$

Lets try another

$$|VV\rangle = |0101\rangle|00\rangle = C_V T_V |0000\rangle|00\rangle$$

= $\frac{1}{3} \left(\sqrt{2}T_{H_0} - C_{V_0} \right) \left(\sqrt{2}V_{T_0} + T_{V_0} \right) 0000\rangle|00\rangle$
= $\frac{1}{3} \left(-|0101\rangle|10\rangle - \sqrt{2}|0011\rangle|00\rangle + \sqrt{2}|0100\rangle|01\rangle + 2|0010\rangle|01\rangle \right)$

Again only one of these terms makes sense.

$$= -\frac{1}{3} |0101\rangle |00\rangle = -\frac{1}{3} |VV\rangle$$

This is what is meant by projective measurements.

Linear Conditional Sign Flip

Now we are in familiar territory

Simply mix the target qubit with a 50/50 beam splitter

$$U_{LinearCNOT} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{9} & 0 & 0 & 0 \\ 0 & \frac{1}{9} & 0 & 0 \\ 0 & 0 & \frac{1}{9} & 0 \\ 0 & 0 & 0 & -\frac{1}{9} \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{9} & 0 & 0 & 0 \\ 0 & \frac{1}{9} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{9} \\ 0 & 0 & \frac{1}{9} & 0 \end{pmatrix}$$

Linear Optical CNOT Gate

Experimental Results

Sources of Error

- Lack of reliable single photon sources and number resolving photon detectors
- Timing/Path Length errors Photons must arrive at BS's and detectors simultaneously
- BS ratio errors The beam splitters are not exactly 50/50 or 30/70
- Mode matching The photon wave functions do not completely overlap on the BS's
- Path Length Errors

Simplification

In 2005 a Japanese group simplified the setup to the following. They only had 2 path lengths to stabilize instead of 4

PRL 95, 210506 (2005)

More Results

They achieved the following results. But the gate was still only successful in 1/9 attempts

(a)	$\langle 0_z 0_z $	$\langle 0_z 1_z $	$\langle 1_z 0_z $	$\langle 1_z 1_z $
$ 0_z 0_z\rangle$	0.898	0.031	0.061	0.011
$ 0_z 1_z\rangle$	0.021	0.885	0.006	0.088
$ 1_z 0_z\rangle$	0.064	0.027	0.099	0.810
$ 1_z 1_z\rangle$	0.031	0.096	0.819	0.054

How much better can we do?

- Sure these gates have 80-90% fidelity...WHEN THEY WORK!
- Can we improve on 1/9
- In 2005 it was shown that the best that can ever be done is a success rate of 1/4

J Eisert Phys. Rev. Lett. 95, 040502 (2005)

Linear or Non-Linear? That is the question.

- If nonlinear interactions can be made to occur with near unit probability nonlinear may be the best option
- Linear optics is much easier right now
- The nonlinear approach may never come close to the 1/9 success rate of linear optics.