Optical Qubits

Li Wang Physics 576 3/9/2007

Q.C. Criteria

Scalability: OK Initialization to fiducial state: Easy Measurement: Problematic Long decoherence time: Good Single Qubit manipulation: Good Conversion to stationary qubit: OK Transmitting between locations: Good Entangling gates

Optical Qubit

 $|0\rangle \equiv |H\rangle \equiv \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |1\rangle \equiv |V\rangle \equiv \begin{pmatrix} 0\\1 \end{pmatrix}$

Fiducial state prepare using PBS

State characterization

Impossible to determine polarization with single measurement (Uncertainty principle)

Statistical measurements using many photons

Most measurements depend on coincidence detection – many photons are discarded

State preparation

Using optical elements like HWP and QWP to prepare a specific state
 Fidelity > 99.7%

State preparation

 Example: Hadamard gate
 HWP set to 22.5° of the polarization

Optical CNOT gate

Optical interference from different pathways (O'Brien 2003 Nature)
Ability to produced entangled states (Bell states)

Photon in C1 causes Pi phase shift in upper arm of interferometer.

Conversion to stationary qubit

 Shown using trapped Cadmium ions (Blinov 2004 *Nature*)

Non-demolition measurements

Building long distance quantum networks: Quantum repeaters
 Entanglement between photon number *n* and phase

Refractive index of the Kerr crystal is changed by intensity of the Signal beam, thus altering the phase of the Meter beam