Quantum Cryptography

Marshall Roth
March 9, 2007

Overview

- Current Cryptography Methods
- Quantum Solutions
- Quantum Cryptography
- Commercial Implementation

Cryptography algorithms:

Symmetric - encrypting and decrypting key are identical (Data Encryption Standard, Rivest Ciphers)
Asymmetric - encrypting and decrypting keys differ (Elliptical Curve; Rivest, Shamir, Adleman)
Hash - no decryption by design, meant to uniquely identify a message such as a password (Message Digest)

plaintext \longrightarrow ciphertext \longrightarrow plaintext

A) Secret key (symmetric) cryptography. SKC uses a single key for both encryption and decryption.

B) Public key (asymmetric) cryptography. PKC uses two keys, one for encryption and the other for decryption.

C) Hash function (one-way cryptography). Hash functions have no key since the plaintext is not recoverable from the ciphertext.

Symmetric Key Distribution

- RC5 and others takes sufficiently long decrypt (72 bits with distributed computing ~1000 years for RC5)
- How do we securely distribute keys?
- Some methods work on simple binary addition:

$$
s=m \oplus k, m=s \oplus k=m \oplus k \oplus k
$$

- Others, such as DES, shuffle blocks of information

Asymmetric Key Distribution

- Rivest, Shamir, Adelman (RSA) use the property of factoring a large number in terms of primes is sufficiently complex with classical computers.
- Elliptical Curves make use of another sufficiently complex classical problem of calculating the discrete logarithm.
- Codes can be broken more readily than symmetric keys (72 bits sym ~ 2048 bits asym)

RSA Algorithm

- Pick two large prime numbers p and q and calculate the product $N=p q, \quad \phi=(p-1)(q-1)$
- Choose a number that is co-prime with ϕ, c
- Find a number d to satisfy $c d=1 \bmod \phi$, using a method such as Euclid's algorithm
- Using your plaintext, a, the ciphertext is encoded as b $=a^{c} \bmod N$
- To retrieve the plaintext, $a=b^{d} \bmod N$
- The numbers N and c are made public, so anyone can encrypt information, but only someone with d can retrieve the plaintext

Example

- Plaintext $a=123$
- $p=61$ and $q=53$
- $N=p q=3233$
- $\phi=(p-1)(q-1)=3120$
- Pick a coprime of $\phi, c=17$
- Find d such that $c d=1 \bmod \phi, d=2753$
- Encode with $a^{c} \bmod N$, in this case $123{ }^{17}$ mod $3233=855$
- Decode message by evaluating $b^{d} \bmod N$, in this case $855^{2753} \bmod 3233=123$
$855^{\wedge} 2753 \bmod 3233$
$=50432888958416068734422899127394466631453878360035509315554967564501$ 055628612082559978744245428110054383498654289336384930246451441.50785 17209179665478263530709963803538732650089668607477182974582295034295 04079035818459409563779385865989368838083602840132509768620766977396 67533250542826093475735137988063256482639334453092594365562429233017 51977190016924916912609150596019178760171349725439279215696701769902 13430714646897127961027716137839458696772896693423652403116932170692 6961764372652131.56658331 .58712459759803042503144006837883246101784830 7175654745472520696869259958925443667014322054695431740022855009238 36942444855973333063051607385302863219302913503745471946757776713579 54965202919790505781532871558392070303159585937493663283548602090630 63550704455658696319318011934122017826923344101330116480696334024075 04695256666987658669006224024102088466507530263955870526631933584734 81094876156227126037327597360375237388364148068948438096157757045380 08107946980066734877795883758289985132793070353355127509043994817697 9054699338121732945853544741326805698106726334828546381688504862434 58697639333466254454006619645218766694795526023086412465948239275105 77049113329025664306505229256142730389832089007051511055250618994171 23177795157979429711795475296301837843862913977877661298207389072796 7672023501139927158196427307640741898919048686074812454931.579537437 12441601438765069145868196402276027766869530903951314968319097324505 45234594477256587887692693353918692354818518542420923064996406822184 49011913571086542442652112077371223831105455431265307394075927690622 60604317113339575226603445164525976316164277459043201913452693299321 61307440.532227470 .572694812143586831976415597276496357090901215131304 1.5756920979851832104115596935784883366531 .595132734467524394067576977 78908490126915322842060949630792972471304422194243906590306142693930 29158483087368745078977086921845296741146321155667865528338164806795 45594189100695091965699085456798072392370846302553545686919235546299 57157358790622745661957217211107882865756385970941907763205097832395 71346411902500470208485604082175094910771655311765297473803176765820 58767314026891032863431850884472116442719390374041315564966995913736 51621084511374022433518599576657753969362812542539006855262454561419 25680943740212688666974410972184534221817198069911953707545542033911 96453936646179296816534265223463993674233097018353390462367769367036 0534264482173582384219251590438148524738896664244370318665419961537 91396964900303958760654915244945043600135939277133952101251928572092 5978875116019596296156902711643189463734265002363100455571800369358 05526491000090724518378668956441716490727835628100970854524135469660 844811613387806548545151761673086051080657829365241087232636672280.54 00387941086434822675009077826512101372819583165313969830908873174174 74535968684296559807185192215970046508106068445595364608922494405427 66329674592306698484868435665479850511.542844016462352696931799377644 30217657019197096751629654665130278009966560052176208139317232379013 23249468260920061996103768484716787498919369499791482471634506093712 56541225019537951668976018550875993133677977939527822273233375295602 63122665356946205566515269466369032083287680432390611549350954590934 06676402256670848337605369986794102620470905715674470565311124286290 73548864929899835609996360921411284977456614696040287029670701478179 49024828290748416008368045666685507604619225209434980471574526881813 16508591501948527635965034581536416565493160130613304074344579651083 80304062240278698042825189094716292266898016684480963645198090.510905 79651307570379245956074479752371266761011473876742144149154813591743 92799496956415653866883891715446305611805369728343470219206348999531 11429937000557751339717282549110056008940898419671319709118165542908 76109008324997831338240786961578492341986299168008677495934077593066 02207814943807854996798945399364063685722697422361858411425048372451 24465580270859179795591086523099756519838277952945756996574245578688 38354442368572236813990212613637440821314784832035636156113462870198
5142390184290974163862023205103971218498335528630868518428263461.5027 44187358639504042281512399505995983653792227285847422071677836679451 34363807086579774219853595393166279988789721695963455346336497949221 13017661316207477266113107012321403713882270221723233085472679533015 13017661316207477266113107012321403713882270221723233085472679533015 10284948700167172969517703467909979440975063764929635675558007116218 27727603182921790350290466090976266285396627024392536890256337101471 68327404504583060228676314215815990079164262770005461232291921929971 69907690169025946468104141214204472402661656275680524166861473393322 65959127006456304474160852916721670070451446497932266687321463467490 41185866760836840306190695766990096521390675205019744076776510436851 51941619318479919134924386152822036464729269446084915299958618598855 19514906630731177723813226751694566259363678610724302565980914901032 78384821401136556784934102431512482864529170314100400120163646299853 25166349056053794585089424403855252455477792240104614890752745163425 13992163738356814149047932037426337301967825405699619163520193896982 54478631309773749154478427634532593998741700138163198116645377208944 00285485000269685982644562183794116702151847721909339232185087775790 95933267631141312961939849592613898790166971088102766386231676940572 95932538078643444100512138025081797622723797210352196773268441946486 16402961059899027710532570457016332613431076417700043237152474626393 99011899727845362949303636914900881060.531231630009010150839331880116 68215163893104666659513762749892374556051100401647771682271626727078 37012242465512648784549235041852167426363169733332434674449039760017 84689726405462148024124125633843501704685320601475687862318094090012 63241969092252022679680113406073012216264404133687392600523096072366 15655496515800103474611979213076722454360367166325370860671331132581 99227975522771848648475326124302604177943090936992370938053652046462 55147267884961527773274119265709116613580084145421487687310394441054 79639308530896880365608504772144592172500126500717068969428154627563 70458638904219177398190648731908014828739058159462227867277418610111 02763247972904122211994117386204526335701759090678628159281519982214 57652796853892517218720090070389138562840007332258507590485348046564 54349837073287625935691427854318266587294608072389652291599021738887 95773647738726574610400822551124182720096168188828493894678810466847 31265541726209789056784581096517975300873063154649030211213352816084 76122990409576427857316364124880930949770739567588422963171158464569 84202455109029882398517953684125891446352791897307683834073696131409 74522985638668272691043357517677128894527881368623965066654089894394 95161912002160777898876864736481837825324846699168307281220310791935 64666840159148582699993374427677252275403853322196852298590851548110 40229657916338257385513314823459591633281445819643614596306024993617 53097925561238039014690665163673718859562772525683119989984646027216 46279764077057074616406450769779669955106160046471937608223250146934 07851137833251073753623403466269553292608613843895784099804170410417 77608463062862610614059615207066695243018438575031762939543026312673 77406936404705896063462601865911184367532529845888040849710922999195 65539701911191919188327308603766775339607722455632113506572191067587 51166812786344197572392195263333856538386240057190102564949233944519 65959203992392217400247234147190970964562108299547746193228961161266 05556588093851898611812905614274085609168765711911224763288658712755 38928438126611991937924624112632990739867854556756652453056197509891 14578114735771283607554001774268660965093305172102723066635739462334 1363804591423775996522030941855868003949675.5829711258361621890140359 54234930424749053693992776114261796407100127643280428706083531594582 305946326827861270203356980346143245697021484375 mod 3233

Enter Shor's Algorithm

- Let $f(x)=b^{x} \bmod N$, if we can find some r that $f(x)=f(x+r)$, then we can find a number d^{\prime} such that $c d^{\prime}=1 \bmod r$
- The value d' works like the decoding value we calculated from $c d=1 \bmod \phi$
- In addition, using different values for $b<N$, we can determine the prime components of N

What's the quantum algorithm?

- Initialize $\log _{2} N$ qubits an equal superposition state (input qubits)

$$
|\psi\rangle=\frac{1}{2^{n / 2}}(|000 \ldots . .000\rangle+|000 \ldots 001\rangle+\ldots+|111 . . .111\rangle)
$$

- Using $\log _{2} N$ more qubits, enact $f(\psi)$ on them while retaining the state ψ in the input state (output qubits)
- Apply the quantum fourier transform on the ψ portion of the circuit
- Measure the input and output qubits $\left(y, f\left(x_{0}\right)\right)$, with high probability you will measure an of $f\left(x_{0}\right.$ $+(y / N) r)$ where y / N is close to an integer

So we've broken it, now what?

- In general symmetric keys are harder to crack but tough to distribute, while asymmetric keys are easy to distribute but easier to crack
- Start thinking about using quantum systems to implement cryptography
- Restrictions on polarization bases measurements ($\left.\uparrow \rightarrow \searrow \swarrow \sigma^{+} \sigma^{-}\right)$
- Restrictions on state duplication
- Very easy to create state perturbation

BB84 (Bennett and Brassard)

- We have two parties, Alice and Bob who want to securely distribute their symmetric key over a public channel

BB84

- Alice randomly chooses one of two orientations from two bases to measure in: (for spin $1 / 2$ situation analogous to z-basis, and x-basis)
Alice then assigns the value of 0 and 1 in each basis (up-z and up- $x=0$, down-z and down- $x=1$)
- Alice sends a state from one of the four bases at random, and Bob selects (with his own random generator) a basis (x or z) to measure in
- If they choose the same basis, they will agree with 100\% probability, if they choose a different basis they will have no way of correlating the results (error rate $\sim 25 \%$)

BB84

- In order to verify the transmitted information, Alice and Bob decide which bits can be kept and which bits will need to be retransmitted
- The correlated measurements will only be in compatible bases (both x or z)
http://monet.mercersburg.edu/henle/bb84/demo.php

Eavesdropping

Multiple Photon Attack

- Eve can attack an optical channel by measuring multiple photon signals with a PBS and recreating the signals

2/3 of the time Eve can recreate the original state and send it to Bob, the rest of the time she introduces an error rate of $1 / 6$

Eavesdropping Thresholds

Commerical Quantum Crypto Systems

- Magiq: Currently have an implementation of a secure quantum network, the QPN 7505
- Works on a single photon source, and can transmit up to about 75 km with reasonable loss

Price? \$97000

Single Photon Manipulation

Entanglement occurs in the timefrequency domain, there is a high probability that a single photon is produced, and low probability of multiple photons

Single Photon setup

Fidelity Considerations

- The system tries to maximize G, the probability of transmitting a secure bit with a single initial pulse
- This attenuates about 10dB for every 50 km of transmission

Eavesdropping!

Other systems

- Id quantique:

Vectis - Their crypto system, uses typical QKD and AES (Advanced Encryption Standard)
Quantis - Random number generator, based on standard 50/50 polarization probabilities (4 Mbit/s number generation) PCI hardware

- Toshiba Research - Cambridge, QKD and single photon emission with quantum dots

Sources

- "Quantum Cryptography"; Gisin, Ribordy, Tittel, Zbinden; 2002
- "Secure Communication with single photons"; A. Trifonov; 2005
- "An Overview of Cryptography"; Gary Kessler; 2007
- "Applications of Quantum Cryptography in Government Classified, Business, and Financial Communications"; Audrius Berzanskis; 2005
- "Quantum key distribution over 122 km of standard telecom fiber"; Gobby, Yuan, Shields; 2004

