OPTICAL METHODS IN QUANTUM DOT QUANTUM COMPUTATION

Gang Shu 2.2.2006

QC with Optical Driven Excitens
Spin-based QDQC with Optical Methods
Conclusions

Basio Concepto

QC with Optical Driven Excitens
Spin-based QDQC with Optical Methods
Conclusions

Quantum Computation and Information Do things in quantum ways: superposition and entanglement: $\varphi_1 = |1\rangle + |0\rangle$ $\varphi_2 = |11\rangle + |00\rangle$

Quantum Algorithms:

Integer factorization: Quantum Fourier Transform

Grover's algorithm: Quantum search

Quantum system simulation

... no more in the past ten years...

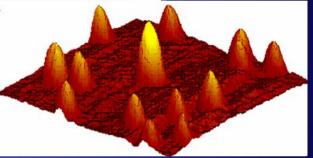
Quantum Information:

Quantum Key Distribution

Questions on Quantum Computation

Is it possible in build a general OC-like the one running this ppt?

Will this general QC run all or most of the algorithms faster than the current computers?


Quantum Dots

Semiconductor structures

Ising particles (electrons, holes)

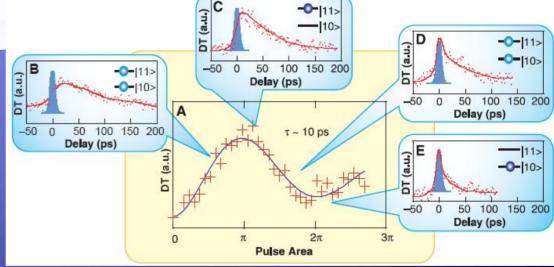
or exciton pairs)

- Integer and finite number of charge elementary particles (1~100)
- Discrete energy spectrum

Quantum Dot Structures

Core-shell structure: small material buried in another with larger band gap.

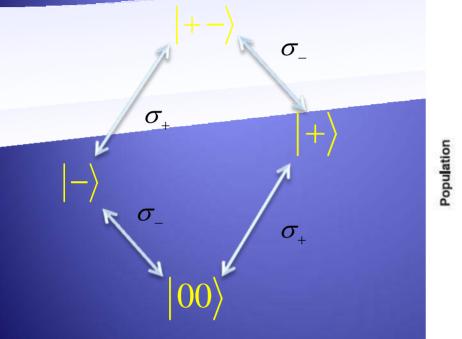

Confined two dimensional electron or hole gases.

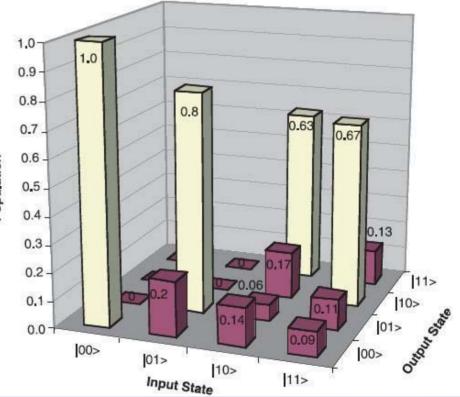

Self-assembled quantum dots: a material is grown on a substrate with a different lattice. Islands are formed by the strain and buried to QD.

Basic concepts

QC with Optical Driven Excitons
Spin-based QDQC with Optical Methods
Conclusions

Rabi Oscillations of Excitons:




C

This is essential for single qubit operations

Xiaoqin Li, et al. Science 301, 809

Two Excitons transitions in a single dot:

This implements the CNOT(CROT) two-qubit gate.

exciton quantum dots can be used to demonstrate simple quantum algorithms such as the Deutsch–Jozsa algorithm but very difficult to scale up.

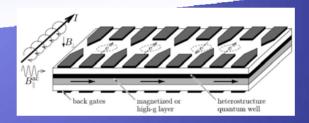
Basic concepts

QC with Optical Driven Excitons
Spin-based QDQC with Optical Methods
Conclusions

Spin-based QD QC, Non Optical Method:

Control the electron number by voltage (Coulomb blockade)

 $\Box \qquad |1\rangle = \downarrow\rangle, |0\rangle = \uparrow\rangle.000 \text{ or the electron:}$ $<math>g \mu_B B \Box kT$


Initialized by large magnetic field: or by injecting polarized electrons.

- Single qubit gates realized by controlled B
- Two-qubit gate (CNOT or CROT) realized with controlled spin-spin interaction $S_{I_s}(t) = J(t)\overline{S_1} \cdot \overline{S_2}$

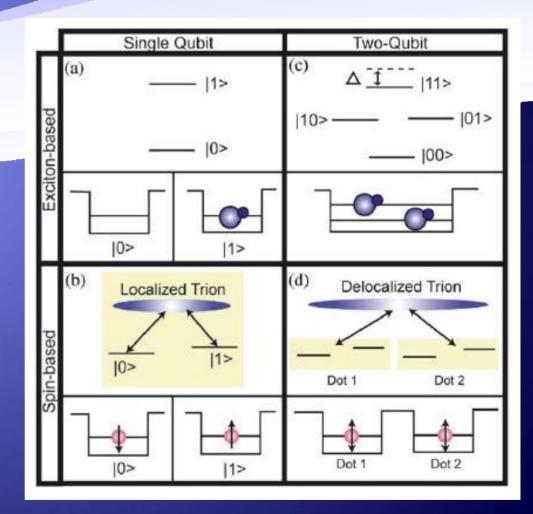
$$\int_{0}^{\tau_{s}} J(t)dt / \hbar = \pi \Longrightarrow U(t) = T \exp(i \int_{0}^{t} H_{s}(\tau) d\tau / \hbar = U_{swap}$$

Spin-based QD QC, Non Optical Method:

Readout: transfer the information form spin to charge: Spin filter + auxiliary QC with a known spin direction a reference.

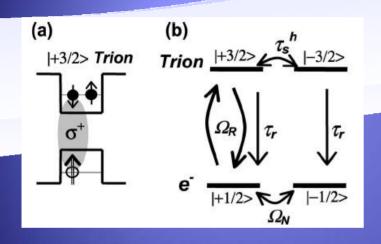
Nice point: short gate operation time: sub nanosecond while long decoherent time(~1ms)

Spin-based QD QC, Optical Method


VUS

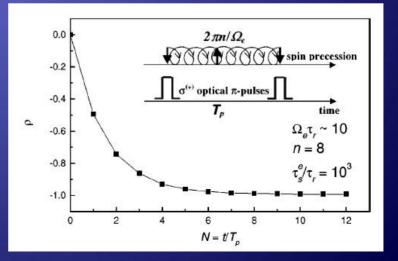
Initialized with a single electron.

The spin


as a qubit

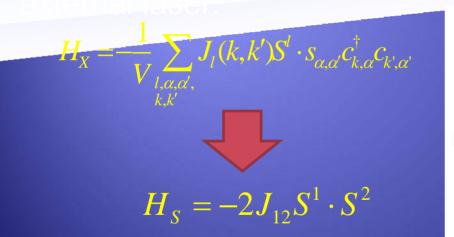
- Polarized photons exciting an extra electron to form a trion state
- Single qubit rotated by Raman process

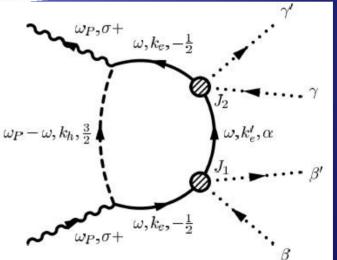
Y. Wu et al. / Physica E 25 (2004) 242-248


Optical initialization and readout

with matched polarization

 $\Omega_R = 2dE / \hbar$


Initialization: A transverse B field with a series of Optical Pi pulses



A.Shabaev etc. Phys Rev B 68,201305

Scale up: Optical RKKY effect

Two electrons in different dots interact with each other through optical excited virtual excitons in the host material. The effective interaction is controlled by the

The effective H is a spin-spin interaction which couples two electrons in different dots!

C.Piermarocchi, etc. PRL 89,167402

Basic concepts

QC with Optical driven Exciteons
Spin-Based QDQC with Optical Methods
Conclusions

Quantum dots' Advantages

- Reliable, easy to make and control
- Potential of large scale manufacture
- I could be bearing time with short operation time

Optical methods' Advantages

 use well controlled pulse laser
potential of scale up and long distance (Cavity QED + Optical driven QD)
All advantages of QD