Superconducting Qubits

Nathan Kurz PHYS 576 19 January 2007

Outline

- How do we get macroscopic quantum behavior out of a many-electron system?
- The basic building block the Josephson junction, how do we make it a two-level system?
- Current experiments
- Where is more research necessary the DiVincenzo criteria

Background superconductivity

- Discovered somewhat accidentally in 1911, theoretically explained in 1957
- Properties
 - Charge carriers are paired electrons (fundamental charge now 2e)
 - Zero electrical resistance
 - Expel magnetic fields inside (which leads to quantization of flux - useful)
 - All electrons condense to a single state described by one wavefunction, the superconducting order parameter

The Theory you ask? Couldn't be simpler...

- Full microscopic theory in 1957 by Bardeen, Cooper and Schreiffer
- 2nd quantized Hamiltonian with 2-body interaction

$$\hat{\mathbf{H}} = \underbrace{\sum_{\mathbf{k},\sigma} \epsilon(\mathbf{k}) \hat{c}^{\dagger}_{\mathbf{k},\sigma} \hat{c}_{\mathbf{k},\sigma}}_{\mathbf{k},\sigma} + \underbrace{\frac{1}{2} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q},\sigma,\sigma'} v(\mathbf{q}) \hat{c}^{\dagger}_{\mathbf{k}+\mathbf{q},\sigma} \hat{c}^{\dagger}_{\mathbf{k}'-\mathbf{q},\sigma'} \hat{c}_{\mathbf{k},\sigma} \hat{c}_{\mathbf{k}',\sigma'}}_{\mathbf{k},\sigma}$$

• Can be solved variationally to give a ground state with paired electrons and an energy lower than the normal state by $\Delta \sim \hbar \omega_D$

$$|\psi\rangle = \prod_{|\mathbf{k}| < k_F} \frac{1 + \alpha_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k},\uparrow} \hat{c}^{\dagger}_{\mathbf{k},\downarrow}}{\sqrt{1 + \alpha_{\mathbf{k}}^2}} |0\rangle$$

Stepping back

- The problem can logically (and historically) be assaulted classically in the language of 2nd order phase transitions
- Ginzburg-Landau Free Energy

$$F[\psi] = F_N + \int d^3x \left(\alpha \, |\psi|^2 + \frac{\beta}{2} \, |\psi|^4 + \frac{1}{2m} \left| \left(\frac{\hbar}{i} \nabla - 2e\mathbf{A} \right) \psi \right|^2 + \frac{|H|^2}{2\mu_o} \right)$$

 Minimizing w.r.t. fluctuations in the order parameter we end up with a Schrödinger-like equation for ψ, which gives us a meaningful place to start talking about quantum computing

The basic building block

- Josephson tunnel junction
- With an applied bias, a tunneling current of Cooper pairs is observed

$$U(t) = \frac{\hbar}{2e} \frac{\partial \theta}{\partial t}$$
$$I(t) = I_c \sin(\theta)$$

 Behavior is characterized by Stewart-McCumber parameter, based on the macroscopic Josephson equations, and resembles a non-linearized pendulum

http://www.lne.fr/en/r_and_d/electrical_metrology/josephson_effect_ej.shtml

http://www.ifn.cnr.it/Groups/SQC/Research/JJ/jj.htm

Quantum behavior

- If one thinks about a single Cooper pair tunneling across a capacitive barrier (changing energy density from E=Q²/2C to E=(Q-2e)²/2C), the Coulomb "blockade" energy E_C=(2e)²/2C becomes apparent
- Comparing to thermal fluctation k_BT and the uncertainty principle $\Delta E \Delta t > \hbar/2$, one arrives at size, temperature and resistance restrictions on the junction

Quantum tunneling

- The single Cooper pair tunneling is observable
- Conclusion Cooper pair occupation number is a good quantum number to characterize the junction!

The environment

- There is a problem can't simply attach leads and apply currents or voltages to JJ
- Büttiker solution (1987)
 interact with JJ via a gate capacitance
- Result "isolated"
 Cooper pair box (CPB)

http://www-drecam.cea.fr/drecam/spec/Pres/Quantro/Qsite/projects/qip/box.jpg

The CPB Hamiltonian

$$\hat{H} = 4E_C \sum_p (\hat{N} - q)^2 |N\rangle \langle N| + \frac{E_J}{2} \sum_p (|N + 1\rangle \langle N| + |N\rangle \langle N + 1|)$$

- Charge states would be degenerate
- Two energy terms compete
 - Coulomb blockage potential
 - Josephson energy
- The Josephson energy comes from the delocalization of electrons across the barrier

Relevant parameters

- Gate capacitance, C_g
- Bias, U_g
- Junction capacitance, C_J
- Junction characteristics
 - Competing Energy scales ∆, E_C, E_J, k_BT

Clearing things up

- With careful definition of the phase angle because of the integer (pos. or neg. of particle number), N and θ can be shown to be canonically conjugate
- H in this representation is diagonal

$$\hat{H} = 4E_C \left(\hat{N} - \frac{U_g C_g}{2e}\right)^2 - E_J \cos\hat{\theta}$$

Now, it is apparent that the ratio E_C/E_J determines the dynamics

Energy spectrum

- At certain values of the offset charge, single Cooper pair states |0> and |1> are eigenstates of H
- More interestingly, at half integer multiples the eigenstates are |0>±|1>

Vion, D., Josephson Quantum Bits based on a Cooper Pair Box, 2004.

Charge state mixing

- Operate near a gate bias which allows for only two states
- Energy separation at the microwave level

Nakamura, ITP conference on Nanoscience, 2001.

Reduced Hilbert Space

 If the energies in the system restrict the box to the lowest two charge states, the Hamiltonian becomes

$$\hat{H} = 4E_C (n_g - 1) \sigma_z - \frac{E_J}{2} \sigma_x$$
$$\sigma_x = |0\rangle \langle 1| + |1\rangle \langle 0|$$
$$\sigma_z = |0\rangle \langle 0| - |1\rangle \langle 1|$$

 Control is achieved by manipulating the Josephson energy

Bouchiat, et. al., Physics Scripta T76, 1998.

Splitting the box – the real scheme

- Have to gain some degree of control over E_J
- Solution thou shalt split the box in twain Clark, Proc. IEEE 77, 1208 (1989)
- Now, the flux determines Josephson Energy

 $\mathsf{E}_{\mathsf{J}}(\Phi_{\mathsf{ext}}) = \mathsf{E}_{\mathsf{J}}\mathsf{cos}(\pi\Phi_{\mathsf{ext}}/\Phi_{\mathsf{o}})$

Vion, D., Josephson Quantum Bits based on a Cooper Pair Box, 2004.

Where are we?

- We have a macroscopic state with quantized excitations
- By manipulating Coulomb and Josephson energy scales, we can operate in an effective two-state regime
- By adding a second junction, we can manipulate the coupling between the states
- Sounds like the mid-90's

DC vs. microwave control

Vion, D., Josephson Quantum Bits based on a Cooper Pair Box, 2004.

 At the left, an approach shown in 1999 to be successful by Nakamura, and at the right, the approach developed by Devoret with "Quantronium"

First coherent control

- Published in Nature, 1999 by Nakamura at NEC labs, Japan
- The circuit starts out in the ground state, with the control parameter far to left. A DC pulse brings the two states into resonance for a time ∆t. Afterwards, the system is allowed to decay.

Nakamura, Y., et. al., Nature 398, 768.

Rabi oscillations

- Junction can be tuned with an external flux
- The magnitude of the Josephson energy determines in what regime the circuit operates
- Large source of decoherence is quantum fluctuations in the offset charge

Nakamura, Y., et. al., Nature 398, 768.

Quantronium (2001)

- Tries to escape the charge fluctuation by not using it for readout
- Rather relies on supercurrent

$$\hat{I} = \frac{2e}{\hbar} \frac{\partial \mathbf{H}}{\partial \theta}$$

which has different sign in each of the charge states

Benenti, G. and G. Casati, Europhysics News (2005) Vol. 36 No. 1

Decoherence time from Ramsey fringe measurement

- Fits to a decaying exponential oscillation give a decoherence time of ~500 ns
- With energy separations on the typical 1-10GHz scale, this corresponds to several thousand bit flips before dephasing (has since improved)

http://www-drecam.cea.fr/drecam/spec/Pres/Quantro/Qsite/projects/qip/ramsey.gif

Decoherence sources

- 1/f noise due to offset charge fluctuations that arise from biasing to operate at the degeneracy point
- Voltage fluctuations from gate impedance
- Magnetic flux noise
- Readout back action
- Internal noise in the tunneling gate due to imperfections

Decoherence continued

- Times are approaching microseconds
- Decoherence quality factor (Q= $2\pi T_{dec}\omega_{01}$) approaching 10^5
- Either increase speed (smaller junctions) or decrease noise (cleaner junctions, quieter electronics, ?)

The last ingredient – two qubit gates

- Couple capacitively (a) or inductively (b)
- Both have their own difficulties, the first arising from the difficulty of controlling capactiance, the second from stray flux

C-NOT gate

- Operate both qubits at the degeneracy point (gate offset charge of ¹/₂)
- Manipulations are made by adjusting fluxes in the interbit term of the Hamiltonian

$$H = -E_{J1}^* \,\sigma_x^{(1)} - E_{J2}^* \,\sigma_x^{(2)} + \chi \,\sigma_x^{(1)} \,\sigma_x^{(2)}$$

 The four eigenvalues change with the changing coupling, but the states do not → viable two-bit gate operated by microwave pulses

Experimental verification

- Qubit 1 is prepared in a pure state far from the resonance point
- Proper biasing brings all four states to the degeneracy point, where the superposition of all four states evolves for a certain time
- On decay, the probe current will determine the coefficients of the superposition

Yamamoto, T. et. al., Nature 425 (2003).

Now where are we?

- 1. Viable qubit Charge states
- 2. Initialization success rates of >90%
- 3. Long decoherence time mediocre ($Q \sim 10^5$)
- 4. Universal set of gates only recently and with low fidelity
- 5. Readout charge states or critical current
- 6. Covert to flying qubits X
- 7. Transmit flying qubits X

Current research

- Nakamura NEC Japan CPB
- Devoret Yale Quantronium
- Esteve, Bouciat Saclay, France Quantronics
- Kouwenhoven Delft CPB with persistent current readout
- Schoelkopf Yale CPB
- Simmonds NIST Boulder CPB
- Nori Michigan Theory
- Schon Karlsruhe Theory
- Bruder Basel, CH Theory

