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Loss of coactivation function in the SRC-1
null mutants may be partially compensated
by increased expression of the closely relat-
ed coactivator TIF2. Certain clinical syn-
dromes of partial hormone resistance in
which receptors are intact might be ex-
plained by impairment of nuclear receptor
coactivators.
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Docking Phospholipase A2 on Membranes Using
Electrostatic Potential–Modulated Spin

Relaxation Magnetic Resonance
Ying Lin, Robert Nielsen, Diana Murray, Wayne L. Hubbell,

Colin Mailer, Bruce H. Robinson,* Michael H. Gelb*

A method involving electron paramagnetic resonance spectroscopy of a site-selectively
spin-labeled peripheral membrane protein in the presence and absence of membranes
and of a water-soluble spin relaxant (chromium oxalate) has been developed to deter-
mine how bee venom phospholipase A2 sits on the membrane. Theory based on the
Poisson-Boltzmann equation shows that the rate of spin relaxation of a protein-bound
nitroxide by a membrane-impermeant spin relaxant depends on the distance (up to tens
of angstroms) from the spin probe to the membrane. The measurements define the
interfacial binding surface of this secreted phospholipase A2.

Many interfacial enzymes such as phos-
pholipases are water-soluble and must
bind to the membrane-water interface in
order to hydrolyze components of the
membrane. Although the high-resolution
structures of aqueous forms of several
phospholipases and lipases are known (1),
there are no reports that reveal the posi-
tioning of an interfacial enzyme at the
membrane-water interface. The same can
be said for most membrane-bound pro-
teins. In the case of 14-kD secreted phos-
pholipases A2 (sPLA2s), such as bee
venom phospholipase A2 (bvPLA2), the
interfacial recognition surface is thought
to surround the active site slot; the latter is
a deep cavity into which a single phospho-
lipid molecule enters to reach the catalytic
residues (2) (Fig. 1). Here we describe a
high-resolution structure determination tool
based on electron paramagnetic resonance
(EPR) spectroscopy that allows peripheral
membrane proteins such as sPLA2s to be
oriented with respect to the membrane-
aqueous interface.

EPR methods have been developed
that make use of protein site-specific spin
labeling and spin relaxants for probing the
membrane penetration depth of segments
of integral membrane proteins that pass
through the membrane (3). In theory de-
veloped below, it will be shown that the

efficiency of relaxation of a protein-bound
nitroxide spin probe by a water-soluble
spin relaxant such as tris(oxalato)chro-
mate(III) (Crox) is dependent on the po-
sitioning of the membrane with respect to
the spin probe, even when the probe is
exposed to the aqueous phase. By measur-
ing the Crox-dependent relaxation of sev-
eral nitroxides placed at defined locations
on the surface of bvPLA2, both in the
presence and absence of membranes to
which the enzyme binds, it is possible to
position the enzyme on the membrane.

In order to apply this method to bvPLA2,
13 site-selectively spin-labeled enzymes were
prepared (4), 12 with the spin label located
on or near the putative interfacial recogni-
tion surface (1, 2) and 1 with the probe on
the opposite side. The ability of Crox to
relax the spin label of each bvPLA2 mutant
can be quantified by obtaining the continu-
ous-wave EPR spectra as a function of mi-
crowave irradiation power. This series of ex-
periments was carried out in the presence
and absence of 10 mM Crox for the enzyme
in the aqueous phase or bound to small
unilamellar vesicles of the nonhydrolyzable,
anionic phospholipid 1,2-dimyristoyl-sn-
glycero-3-phosphomethanol (DTPM) (5).
bvPLA2 binds tightly to such vesicles (6).
For each data set, the power dependence of
the peak to peak height of the central line of
the first derivative EPR spectrum, DY, was fit
by least squares to the power saturation roll-
over equation (3, 7)

DY 5 c
h1

S1 1
~h1!

2

P2
Dε (1)

where h1 5 aP0
0.5 is the microwave ampli-

tude in gauss, P0 is the power incident on
the sample, and a is the conversion effi-
ciency factor for the resonator (5) (4.5
G/W1/2). The quantities c, ε, and P2 were
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allowed to vary during curve fitting. The
parameter c is a scaling factor, and P2 is a
power parameter that depends only on the
properties of the nitroxide (7):

P2 5 R2 z R1, R1 5
1

geT1
, R2 5

1
geT2

(2)

Here, R1 and R2 are the spin lattice and
spin-spin relaxation rates (in gauss) and
are related by the electron gyromagnetic
ratio ge to the relaxation times T1 and T2
as shown (7). The parameter ε is a mea-
sure of the curvature of the power depen-
dence and is 3/2 for a homogenous line
and 1/2 for a completely inhomogeneous
line shape (7). This parameter enables us
to obtain very high-quality fits to the data,

as it absorbs the effects of inhomogeneous
broadening and partially slowed rotational
tumbling of the nitroxide.

The change in the fitted value of P2 on
addition of Crox is taken as a measure of
the effect of this metal on relaxation. The
presence of Crox increases both R1 and R2
as follows (8):

R1 5 R1
0 1 x z @Crox]

R2 5 R2
0 1 x z @Crox] (3)

where x is the relaxivity of Crox (9) and
the superscript zero refers to the absence of
Crox. The quantity DP2 is defined as the
difference in P2 values in the presence and
absence (P2

0) of Crox:

DP2 5 P2 2 P2
0 ' x~R1

0 1 R2
0! z @Crox]

(4)

Thus, DP2 is directly proportional to the
concentration of Crox in the vicinity of the
spin probe; because R2

0 .. R1
0, the term that

is quadratic in [Crox] is small and neglected
(8). DP2 is measured in the presence and
absence of DTPM vesicles, and these two
quantities are used to obtain the exposure
factor (F) as follows:

F 5
~DP2!1membrane

~DP2!2membrane
5

[Crox]1membrane
local

[Crox]2membrane
local (5)

The superscript “local” refers to the effec-
tive concentration of Crox near the spin
label and the presence of the membrane
reduces this concentration. The equality on
the right side of Eq. 5 follows directly from
Eq. 4. The quantity 1 2 F is a measure of
the ability of the membrane to shield the
protein-bound nitroxide from Crox in the
aqueous phase (there is negligible Crox in
membranes).

Power saturation rollover curves for the
mutant in which isoleucine 2 is replaced
with spin-labeled cysteine (I2C-sl) and
K66C-sl are shown in Fig. 2 along with the
fit to Eq. 1. Values of ε and P2 for all mutants
are listed in (10), and values of F are listed
in Table 1. Ideally, one would expect P2

0 to
be independent of the presence of the mem-
brane, but it is not (10, 11). K66C-sl has its
spin label on the face of bvPLA2 that is
opposite the putative interfacial recognition
surface, and, as expected, F for this mutant
is close to unity (maximum exposure; Fig. 2
and Table 1). At the other extreme are
I2C-sl, K14C-sl, and I78C-sl, which display
values of F close to zero (Fig. 2 and Table 1),
and thus the membrane confers nearly com-
plete protection from Crox relaxation on
these nitroxides. The other nine mutants
display F values of intermediate magnitude
(Table 1).

Fig. 1. bvPLA2 (gray) po-
sitioned on the mem-
brane surface (purple)
with the use of the EPR
data in Table 1 and the
theory developed in this
study. The nitrogen and
oxygen of each spin label
(N-O●) are colored blue
and red, respectively.
The distance from each
spin label to the mem-
brane is as shown in Fig.
3. Spin labels 13 and 15
are hidden from view. A
short-chain phospholipid
analog inhibitor in the ac-
tive site slot, as seen in
the x-ray structure (14), is
shown in green (1). This
inhibitor is replaced by a
DTPM molecule in these
studies. Each membrane
sphere has a radius of
2.2 Å, and thus there are
about three spheres per
phospholipid. The image
was created with MOL-
SCRIPT and Raster3D (25).

Fig. 2. Power saturation
rollover curves for I2C-sl
and K66C-sl. Curves are
shown for bvPLA2 mu-
tant in buffer with and
without Crox ([Crox] and
buffer) and bound to
membranes with and
without Crox ([Crox] 1
DTPM and DTPM). The
fit to Eq. 1 is shown by
the solid lines. The units
of DY are arbitrary.
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The key to understanding the data in
Table 1 is that the highly negative surface
electrostatic potential of DTPM vesicles
reduces the concentration of anions in
solution near the membrane relative to
their bulk concentrations. This results
from the Boltzmann equation, which says
that the concentration of Crox is a func-
tion of the electrostatic potential due to
the membrane

CCrox~r! 5 CCrox~r 5 `!expS2zCroxFc~r!
RT D

(6)
Here CCrox (r) is the molar concentration
of Crox at a normal distance r from the
membrane; c(r) is the electrostatic poten-
tial; zCrox is the charge on Crox; and F, R,
and T have their usual meanings. Poisson’s
equation describes the electrostatic poten-
tial around any set of charges, and for a
planar membrane surface of uniform
charge density, the potential depends only
on r. The final result is the Poisson-Boltz-
mann equation appropriate for a planar
charged membrane (12), which can be
written as a first-order differential equa-
tion as follows:

]c~r!
]r

5 FF8pRT
ε 9 z 1012G

O
i

Ci{exp(2Zic(r)F/RT) 2 1}G1/2

(7)

Here Ci is the bulk molar concentration of
each electrolyte of charge zi in solution, and
ε is the dielectric of bulk water (a value of
78). Given the experimental value of c(0)
5 277 6 3 mV for our system (13), Eq. 7
can be solved numerically to obtain c(r),
and CCrox (r) is obtained using Eq. 6.

Theoretical exposure factors F (r) can
be calculated as

CCrox (r)YCCrox (`)

(by analogy to Eq. 5) and compared with
experimental F values (Table 1) to obtain
the normal distance of each spin label to the
membrane. To do this, it was assumed that
the x-ray structure determined for bvPLA2 in
solution (14) is maintained for the enzyme at
the interface and that the membrane that
contacts the enzyme is a plane. Marquardt-
Levenberg regression analysis (15) was car-
ried out by varying the protein-to-membrane
distance and the Euler angles for the rotation
of bvPLA2 about its center. Several trials
were executed with systematic variation of
the initial conditions. In all cases, the anal-
ysis converged to a single bvPLA2-mem-
brane orientation. Figure 3 shows the re-
markably good fit of experimental F to cal-
culated F (16–18) and Fig. 1 shows the

derived structure. The data in Table 1 and
(10) also show that values of F are signifi-
cantly larger when the neutral spin relaxant
nickel(ethylenediaminediacetic acid) is used
instead of Crox, proving that there is a sig-
nificant electrostatic component to F.

Because the effect of Crox on the EPR
parameters was measured for bvPLA2 in
solution and bound to membranes, to a first
approximation the effect of the electrostatic
potential at each nitroxide due to the pro-
tein alone is removed from the problem
because F is the ratio (DP2)1membrane/
(DP2)2membrane. Strictly speaking, this is
true if the electrostatic potential at each
spin label of the protein-membrane com-
plex is equal to the sum of the potentials
from the membrane and protein alone. To
examine this in more detail, we numerically
solved the nonlinear Poisson-Boltzmann
equation for bvPLA2 bound to DTPM ves-
icles as given by Fig. 1 in 50 mM monova-
lent salt solution and for enzyme and vesi-
cles alone (19). The electrostatic potential
of the complex was generally similar to the
sum of the potentials due to enzyme and
vesicles alone. Very close to the membrane
[near spin labels at positions 2 and 14, for
which values of F near zero were measured
(Table 1)], however, the low-dielectric en-
zyme enhances the negative electrostatic
potential of DTPM vesicles by causing the
Faraday electric field lines to bend around it
and increase in density (20). However, this
does not affect the conclusion that these
residues are closest to the membrane. Over-
all, the results suggest that the first-order
approach of simply ignoring the nonlinear
electrostatic effects is valid.

A clear result of the present study is that
bvPLA2 sits on the membrane surface rather
than digging into the membrane. This is
consistent with monolayer pressure studies

showing poor penetration of sPLA2 into an
anionic phospholipid monolayer at the air-
water interface (21). The opening to the
active site slot of bvPLA2 faces the mem-
brane (Fig. 1); however, this opening is not
firmly against the membrane. This result is
unequivocal as several diagnostic spin labels
(at positions 51, 53, 82, 85, and 92) are
clearly not as close to the membrane as those
at positions 2 and 14 (Table 1). This implies
that the alkyl chains of a long-chain phos-
pholipid bound in the active site slot of the
enzyme at the interface are partly in contact
with the interior of the bilayer, with the
hydrophobic walls of the active site slot, and
with solvent water [because these experi-
ments were done in the presence of CaCl2, a
molecule of DTPM occupies the active site
of bvPLA2 at the interface (22)].

The surface of bvPLA2 that contains the
opening to the active site slot contains eight
cationic residues and only one anionic resi-
due. bvPLA2 and other sPLA2s bind more
tightly by orders of magnitude to anionic
vesicles than to zwitterionic ones, and it has
been hypothesized that these surface cations
drive interfacial binding by means of electro-
statics. However, our recent study shows that
these cationic residues, individually and col-
lectively, are not very important for interfa-
cial binding, because mutating them to glu-
tamates has virtually no effect on the binding
of bvPLA2 to anionic vesicles (23). The
present study shows that the membrane con-
tact surface of bvPLA2 corresponds to a
prominent patch of hydrophobic residues
found on all sPLA2s and that all basic resi-
dues except K14 are not in close contact with
the membrane [see figure 1 of (23)]. The
hydrophobic residues are not deeply inserted
into the hydrophobic interior of the bilayer
but somehow provide a microinterfacial en-
vironment that drives interfacial binding to
the “polar” phospholipid headgroups (23).

Table 1. Exposure factor F for spin-
labeled bvPLA2s.

Mutant F*

I2C-sl 0.01 6 0.04
N13C-sl 0.38 6 0.03 (0.78 6 0.04)†
K14C-sl 0.03 6 0.02
S15C-sl 0.17 6 0.02 (0.32 6 0.03)†
R23C-sl 0.33 6 0.02
F24C-sl 0.25 6 0.13
T51C-sl 0.30 6 0.03
T53C-sl 0.30 6 0.01
K66C-sl 0.85 6 0.08
I78C-sl 0.01 6 0.01
F82C-sl 0.27 6 0.12
K85C-sl 0.58 6 0.13
D92C-sl 0.44 6 0.03

*Calculated according to Eq. 5 with the use of the exper-
imental EPR data (10). †Numbers in parenthesis
were obtained with the use of 10 mM nickel(ethylenedia-
minediacetic acid) instead of Crox.

Fig. 3. Regression analysis of the bvPLA2-mem-
brane orientation. The solid line shows calculated
values of F as a function of the distance from the
spin label to the membrane (r), and the circles are
the experimental F as a function of the modeled
distance from the spin label to the membrane for
each residue.
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The nature of these interactions remains to
be understood. It is interesting to note that
interfacial binding of cellulases to the “hy-
drophilic” surface of microcrystalline cellu-
lose is driven by hydrophobic residues, in-
cluding tryptophans on a cellulose-binding
domain (24). Finally, the structure shown in
Fig. 1 provides a physical basis for the kinetic
data that indicate that the interfacial recog-
nition and catalytic sites are distinct (22).

The docking technique described in this
study should be useful for determining the
relative position of any macromolecule of
virtually any size and of known three-di-
mensional structure with respect to any sur-
face with known electrostatic properties, as
long as there are no gross conformational
changes in the structures of the components
when they bind to each other. However,
useful membrane proximity data should also
be obtainable for flexible membrane-bound
peptides.
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Immunological Origins of Binding and Catalysis
in a Diels-Alderase Antibody

Floyd E. Romesberg,* Ben Spiller,* Peter G. Schultz,†
Raymond C. Stevens†

The three-dimensional structure of an antibody (39-A11) that catalyzes a Diels-Alder
reaction has been determined. The structure suggests that the antibody catalyzes this
pericyclic reaction through a combination of packing and hydrogen-bonding interactions
that control the relative geometries of the bound substrates and electronic distribution
in the dienophile. A single somatic mutation, serine-91 of the light chain to valine, is
largely responsible for the increase in affinity and catalytic activity of the affinity-matured
antibody. Structural and functional studies of the germ-line precursor suggest that
39-A11 and related antibodies derive from a family of germ-line genes that have been
selected throughout evolution for the ability of the encoded proteins to form a polyspe-
cific combining site. Germ line–encoded antibodies of this type, which can rapidly
evolve into high-affinity receptors for a broad range of structures, may help to expand
the binding potential associated with the structural diversity of the primary antibody
repertoire.

The immune system solves the problem of
molecular recognition by generating a large
library of structurally distinct antibodies
and amplifying those with the requisite
binding affinity and specificity in an affin-
ity-based selection. By programming this
system with chemical information about a
reaction mechanism—for example, the
structure of a putative transition state—one
can examine the evolution of both binding
energy and catalytic function (1). Function-
al and structural analysis of this process can
provide insights into both the molecular
basis for the remarkable efficacy of this
combinatorial system and the mechanisms

by which binding energy can be used to
lower the activation energies of reactions
(1–5). We now describe one such study of
the antibody 39-A11 (6), which catalyzes a
Diels-Alder reaction, a widely used and
mechanistically well studied reaction in or-
ganic chemistry, but one that is rarely found
in biological systems. The three-dimension-
al x-ray crystal structures of the 39-A11
Fabzhapten complex and of the germ-line
precursor have been determined, and the
immunological origins of this and related
antibodies have been characterized.

Antibody 39-A11 was generated to the
bicyclo[2.2.2]octene hapten 4, a mimic of
the boatlike transition state of the Diels-
Alder reaction. This antibody catalyzes the
cycloaddition reaction of diene 1 and dieno-
phile 2 to give the Diels-Alder adduct 3
(Scheme 1) (6). Structurally related haptens
have been used to generate other antibodies
that catalyze Diels-Alder reactions, suggest-
ing that this is a relatively general design
strategy (7, 8). Antibody 39-A11 was
cloned and expressed as a humanized chi-

meric Fab (9), and the structure of the
complex of the recombinant 39-A11 Fab
fragment and hapten 4 was determined at
2.4 Å resolution (Fig. 1 and Table 1).

Well-defined density for the hapten was
observed in the 1Fo 2 1Fc omit map (Fig.
1). The hapten is bound in a cleft ;9 Å
wide and ;12 Å deep, with ;194 Å2 of the
hapten surface (79% of the total solvent-
accessible surface excluding the linker arm)
buried within the Fab. There are 89 van der
Waals interactions and two hydrogen bonds
between the hapten and antibody, with
most of these contacting the heavy chain.
The bicyclo[2.2.2]octene moiety of hapten
4, which corresponds to the cyclic 412 p
electron system of the transition state, is
buried in a hydrophobic pocket, free of
solvation. The walls of this cavity consist of
the side chains of residues PheH100b [anti-
body nomenclature described in (20)],
AsnH35, TrpH47, ValL91, ProL96, GlyH33,
TrpH50, AlaH95, and ArgH100 (where H and
L represent heavy and light chains of the
antibody, respectively). The carbonyl oxy-
gen of the carbamate moiety at the bridge-
head position of 4 (the C1 substituent in
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