BIOC530 Protein NMR Sessions

Outline

<table>
<thead>
<tr>
<th>Wednesday, Nov. 19, 2014</th>
<th>Friday, Nov. 21, 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Protein NMR (RK)</td>
<td>Case Study (VV)</td>
</tr>
<tr>
<td>Practical Considerations (SD)</td>
<td>How to study binding (MS)</td>
</tr>
<tr>
<td>How to look at an NMR spectrum: 2D & 3D (KD)</td>
<td>Strategies for large proteins (MS)</td>
</tr>
<tr>
<td>How to assign a spectrum (LT)</td>
<td>New frontiers: solid-state NMR (MS)</td>
</tr>
<tr>
<td></td>
<td>Q & A (all)</td>
</tr>
</tbody>
</table>
BIOC530: NMR Unit, Part 2
Protein NMR: What can it do?

<table>
<thead>
<tr>
<th>Wednesday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro: Protein NMR...</td>
<td>Case Study (VV)</td>
</tr>
<tr>
<td>definitely NOT your one-trick pony (RK)</td>
<td>How to study binding (MS)</td>
</tr>
<tr>
<td>Practical Considerations (SD)</td>
<td>Strategies for large proteins (MS)</td>
</tr>
<tr>
<td>How to look at an NMR spectrum (KD)</td>
<td>New frontiers: solid-state NMR (MS)</td>
</tr>
<tr>
<td>How to assign a spectrum (LT)</td>
<td>Q & A</td>
</tr>
</tbody>
</table>

Protein NMR... definitely NOT your one-trick pony

1. CHEMICAL SHIFTS (i.e., frequency at which a given nucleus resonates)

Benefits: easy to measure (2D spectra), with good S/N, high accuracy, and high precision

Information content:
- Protein backbone shifts ("H\textsubscript{15}N, 13C\textsubscript{\alpha}, 13C") → secondary structure info
- 13CH\textsubscript{3} (Ile) → distinguish \(\alpha\)-helix and \(\beta\)-strand in very large proteins/complex
- As \(f(\text{pH})\), \(pK_R\) values of individual sidechains in protein
 - \(pH\)-dependent conformational change
 - tautomeric states of histidines
- As \(f([\text{ligand}])\), binding site identification (at residue-level resolution)
 - estimate exchange rate/lifetime of bound species
 - estimate \(K_D\) (but not very well!)
Protein NMR...
definitely NOT your one-trick pony

2. Nuclear Overhauser Effects (NOE), interaction bet. Nuclei w/ \(r^6 \) dependence

Benefits:
- under optimal conditions, can measure hundreds – thousands of pairwise distances that can define a 3D structure \textit{de novo}.
- Even limited NOE information can guide structure determination using sparse constraints.
- Heteronuclear NOEs (hNOEs) such as \(^1\text{H},\, ^{15}\text{N}\) provide information about dynamics in the ps - ns timescale on a residue level. (great for segmental motions)

Limitations:
- Low sensitivity experiment (not hNOE).
- Difficult/tedious to assign unambiguously to specific pairs
- Not strictly \(r^6 \), so have to use distance bins rather than explicit distances
- Practically speaking, limited to protein systems with fewer than 200 residues.

Protein NMR...
definitely NOT your one-trick pony

3. Paramagnetic Relaxation Enhancement (PRE), effect of “spin label” on NMR resonances.

Benefits:
- Measurements are made using robust 2D spectra (\(^{15}\text{N} \text{ or } ^{13}\text{C}\))
- Can be either intramolecular (especially useful for IDPs) or intermolecular
- Can be used in highly flexible systems (IDPs, fuzzy complexes, etc.)
- Effects go out to longer distances than NOEs

Limitations:
- Need to attach a paramagnetic label via a single Cys residue.
- Label is long and flexible, so data is often used qualitatively.
Protein NMR... definitely NOT your one-trick pony

4. Residual Dipolar Couplings (RDCs), information on bond vector orientation relative to external frame (external magnetic field)

Benefits:
• Measurements are made using robust 2D spectra (15N or 13C)
• Very useful for structure determination using sparse constraints.
• Can provide long-range information, so good for defining domain-domain orientations, subunit-subunit orientation.

Limitations:
• Requires partial alignment of sample in the magnetic field. Alignment media include polyacrylamide gels, phage, organic solvents.
• Spectrum can degrade due to peak broadening.

Protein NMR... definitely NOT your one-trick pony

5. Dynamics! A whole lecture of its own...

NMR Timescales

Transport, catalysis, many interesting biological processes.

Relaxation T_1, T_2, HETNOE

Saturation transfer Z-Z-exchange, NOESY

Line-shape analysis

H/D exchange
SCOTT’S SLIDES

Practical Considerations for Protein NMR

NMR SAMPLES

• Proteins < 25kDa
 reduced signal from relaxation
 spectral crowding
 methods to overcome this limitation (later!)
• 100-500μM
 >90% pure, structurally homogenous
 concentrated samples required for low sensitivity experiments
 some data can be collected at lower concentrations (20μM)
• 300-500μL
Solution Conditions

• Buffers “invisible” in experiments
 Phosphate is preferred, Tris is not

• Optimize conditions for data collection
 seeking the strongest signal
 Vary pH, ionic strength, temperature, and [protein] mutagenesis

• For binding experiments, material must be in matching solutions

1D 1H Spectra

• “Quick” experiments ~15 minutes
• Natural abundance
• Is your protein folded?
• Mutagenesis
• New Constructs
• Sample quality
• Degradation can often be observed
THIS PROTEIN IS FOLDED

NH Dispersed

Shifted Methyl

THIS PROTEIN IS NOT

10 watergate
100um Shave
NaF, 150nm NaCl pH 6
300K
Isotopic Labeling

- Multi-dimensional NMR (2D, 3D) has many advantages over 1D NMR
- ^{15}N, ^{13}C, proteins
 Purified from bacteria grown in minimal media with $^{15}\text{N-NH}_4\text{Cl}$ (20$/L) and/or $^{13}\text{C-glucose}$ (100-200$/L)
 Other metabolic precursors may be used
- Deuteration
 Reduced relaxation (more robust signal)
 grown in D_2O media (up to 1000$/L)$
Add one dimension for better resolution and more information

1D

Stacked Plot

2D

Add one dimension for better resolution and more information

1D

Stacked Plot

2D

intensity

1H (ppm) 15N (ppm)
Add one dimension for better resolution and more information

1D

2D

$(^1\text{H}, ^{15}\text{N})$-HSQC: the simplest heteronuclear 2D spectrum

- Essentially, 1 peak/residue:
 1. amide NH
 2. Asn & Gln NH$_2$
 3. Trp indole NH
 4. His imidazole NH
 5. (Arg NH, Lys NH$_3$)

- “fingerprint” of protein

- BUT...chemical shifts of NH resonances are sensitive to:
 1. pH
 2. temperature
 3. (ionic strength)
 4. other (ligand binding, etc.)
\[(^1H^{15}N)\)-HSQC vs. \[(^1H^{13}C)\)-HSQC\]
3D spectra: increased dispersion and information

"triple resonance"

3D NMR data set

“walk” through ^{15}N dimension
NMR Assignments – A simple example

34 Residue peptide: **STDST PMFEY ENLED NSAFW MWLFA TDIPV TTDD**

Backbone triple resonance experiments (need 1H, 13C, 15N sample)

- HNCA
- HN(CO)CA
- HN(CA)CO
- HNCO
- HNCA CB
- HN(CO)CAB

Intra/Inter-residue

- i and $i-1$ peaks

Inter-residue

- $i-1$ peaks
3D spectra for backbone assignments

Backbone Assignments – Step 1: Pick the peaks

34 Residue peptide: STDST PMFEY ENLED NSAFW MLFA TDIPV TTDD
34 Residue peptide: STDST PMFEY ENLED NSAFW MWLFA TDIPV TTDD
Backbone Assignments

HN(CO)CA HNCA

(pk #4) (pk #5)

(possibly) C-term D134

Look for strip with Cα peak at this shift

Have to start somewhere ...

34 Residue peptide: STDST PMFEY ENLED NSAFW MWLFA TDIPV TTDD

Backbone Assignments

HN(CO)CA HNCA

(pk #6) (pk #7) (pk #8)

Close but i-1 not i peak

34 Residue peptide: STDST PMFEY ENLED NSAFW MWLFA TDIPV TTDD
34 Residue peptide: STDST PMFEY ENLED NSAFW MWLFA TDIPV TTDD
Backbone Assignments

34 Residue peptide: STDST PMFEY ENLED NSAFW MWLFA TDIPV TTDD

Chain stops here

Backbone Assignments

Alanines have distinctive Cβ shifts

Look for i-1 peaks

So do Thr & Ser

Peak is A118 if the previous strip looks like a Ser

Peak is A125 if the next strip looks like a Thr

34 Residue peptide: STDST PMFEY ENLED NSAFW MWLFA TDIPV TTDD
Backbone Assignments

Keep finding the connections

Repeat for remaining sections ...

34 Residue peptide: STDST PMFEY ENLED NSAFW MWLFA TDIPV TTDD

Backbone Assignments: HN, N, Ca, Cb, C'

34 Residue peptide: STDST PMFEY ENLED NSAFW MWLFA TDIPV TTDD

Backbone amides all assigned
Also know: Ca & Cb shifts

Trivial to add the C' shifts:
HNCO
Side chain assignments

13C-HSQC

- Ca & Cb are known
- Don't know Ha, Hb, ...

β/γ CH$_2$

Cβ (Ser & Thr)

CH_3

Ca & Cb are known

HN

$\text{15N-TOCSY (flattened)}$

- Methyls
- Hβ/γ
- Ha
- Amides on diagonal
- Side chain protons
Side chain assignments

HNCACB

15N-TOCSY

![Graph showing side chain assignments and NMR spectra](image)

13C-CHSQC

T102

Ca

Hb

Ha

Side chain assignments

HNCACB

15N-TOCSY

![Graph showing side chain assignments and NMR spectra](image)
Side chain assignments

Don’t explicitly have Cg but Hg shift is enough to assign for this peptide

Cβ’s would be sufficient to assign the alanines for this peptide
Side chain assignments: Ha, Ca, Hb, Cb, Hg, Hd ... Cg, Cd inferred

For this peptide:
Can unambiguously assign pretty much everything except some CH2γ groups & the aromatics (not shown)

More Experiments required for larger systems:

13C-NOESY
HCCH-TOCSY & HCCH-COSY
CmCgCbCaHN And other tricks as necessary