Elementary physics of multidimensional NMR

- Spin-magnetic field interaction (Zeeman interaction). E = γ h m Bo
- Indirect through bond coupling between spins (scalar coupling). $H_J = 2\pi J I_z S_z$. Geometry independent
- Direct dipolar interactions between spins. $H_D \sim (1 3\cos^2 \theta)I_zS_z$. Geometry dependent

1D vs 2D homonuclear NMR Spectroscopy

2D homonuclear NMR Spectroscopy

"cross-peaks" in multidimensional NMR carry structural information

Diagonal is closely related to 1D spectrum

2D contour representation: peaks outside diagonal are called cross-peaks

Nuclear Overhauser Effect SpectroscopY (NOESY)

The NOESY experiments detects interactions between spins that are close in space and dipolar coupled: the magnetization transfer mechanism is essentially the same as FRET in optical spectroscopy (fluorescence)

Nuclear Overhause Effect SpectroscopY (NOESY)

1. Excite with 90° pulse

2. During t1, spins are labeled with their Larmor frequency

3. The second 90° pulse exchanges rotates magnetization to -z

4. Magnetization is exchanged between spin I and S during the mixing time
5. The final 90° pulse makes the signal observable and signal is acquired in t2

Nuclear Overhause Effect SpectroscopY (NOESY)

When magnetization is exchanged, spin I signal contains information on spin S and viceversa (crosspeaks)

Cross-peaks appear between spins which are close in space (<5-6 A) (assignments and structure)

Nuclear Overhause Effect SpectroscopY (NOESY)

The mixing coefficients, $a_{IS} = a_{SI}$ are proportional to the NOE between these two nuclei

The NOE is related to the distance r between the two spins and the correlation time t_c (the time for reorientation of the IS vector in the molecule): structure and motion

NOE $\propto r_{\rm IS}^{-6} f(t_{\rm c}) \tau_{\rm m}$

A simple example: a small immunogenic peptide

Patterns of NOE interactions define protein secondary structure

Distance	a-helix	3 ₁₀ -hel:	ix β	β _P	turn I ^a	turn II ^a
$d_{\alpha N}$	3.5	3.4	2.2	2.2	3.4 3.2	2.2 3.2
d _{αN} (i,i+2)	4.4	3.8			3.6	3.3
$d_{\alpha N}(i,i+3)$	3.4	3.3			3.1-4.2	3.8-4.7
$d_{\alpha N}(i,i+4)$	4.2					
d _{NN}	2.8	2.6	4.3	4.2	2.6 2.4	4.5 2.4
d _{NN} (i,i+2)	4.2	4.1			3.8	4.3
d _{βN} b	2.5-4.1	2.9-4.4	3.2-4.5	3.7-4.7	2.9-4.4 3.6-4.6	3.6-4.6 3.6-4.6
$d_{\alpha\beta}(i,i+3)b$	2.5-4.4	3.1-5.1				

Observable NOE interactions (<5 A) in regular protein secondary structures

COherence transfer SpectroscopY (COSY)

The COSY experiments detects interactions (correlation) between spins that are scalar coupled: beware, it can only be understood through quantum mechanics

COherence transfer SpectroscopY (COSY)

1. Excite with 90° pulse

2. During t1, spins are labeled with their Larmor frequency

3. During t1, if spins are scalar coupled, the signal encodes this information as well

4. The second 90° pulse exchanges magnetization between spins: spin I now has memory of spin S and viceversa

5. Signal is acquired in t2

COherence transfer SpectroscopY (COSY)

When magnetization is exchanged, spin I signal contains information on spin S and viceversa (crosspeaks)

Cross-peaks appear between spins which are scalar coupled (assignments)

The cross-peak fine structure contains information on scalar coupling (structure) Structural information: scalar couplings directly gives you the torsion angles that define protein or n.a. structure

$$^{3}J_{H\alpha N} = 5.9\cos^{2}\phi - 1.3\cos\phi + 2.2$$

$${}^{3}J_{\alpha\beta} = 9.5\cos^{2}\chi_{1} - 1.6\cos\chi_{1} + 1.8$$

(Karplus, 1958)

Cross-peaks in COSY experiments occur <u>only</u> between residues that are scalar coupled; in turns, these couplings can be measured in COSY experiments

COSY and NOESY connectivities in the polypeptide unit

COSY (broken lines) and NOESY (continuous lines)

Amino acid identification from scalar coupling patterns

Different pattern of scalar couplings allows amino acid type identification in correlated spectra (COSY, 2QF-COSY, TOCSY)

This is the first step towards complete spectral assignments of a protein spectrum (at least before heteronuclear NMR)

NOE interactions, scalar couplings (and chemical shifts) can be combined to define protein secondary structure

NOE interactions (<4.5 A) and scalar coupling patterns in regular protein secondary structures

Even 2D spectra can be (and indeed are) very crowded

Realistic limit of homonuclear NMR: proteins of 100-120 amino acids; spectra of larger proteins are too crowded

3D Heteronuclear NMR

Useful nuclei such as ¹⁵N, ¹³C are rare

Isotope Spin		Natural	Magnetogyric rat	tio NMR frequency
	(I)	abundance	$\gamma/10^7$ rad T ⁻¹ s ⁻¹	MHz (2.3 T magnet)
$^{1}\mathrm{H}$	1/2	99.985 %	26.7519	100.000000
$^{2}\mathrm{H}$	1	0.015	4.1066	15.351
¹³ C	1/2	1.108	6.7283	25.145
^{14}N	1	99.63	1.9338	7.228
^{15}N	1/2	0.37	-2.712	10.136783
¹⁷ O	5/2	0.037	-3.6279	13.561
¹⁹ F	1/2	100	25.181	94.094003
²³ Na	3/2	100	7.08013	26.466
³¹ P	1/2	100	10.841	40.480737
¹¹³ Cd	1/2	12.26	-5.9550	22.193173

• Isotopically labelled proteins can be prepared straightforwardly in *E. coli* by growing cells in minimal media (e.g. M9) supplemented with appropriate nutrients (¹⁵NH4CI, ¹³C-glucose)

• Metabolic pathways can be exploited and appropriate auxotrophic strains of *E. coli* can also be used for selective labelling: e.g. use acetate instead of glucose and obtain selective labeling of certain side chain CH₃

 Isotopic labelling of protein expressed in eukaryotic cells is expensive but can be done (post-translational modifications can be studied but you need \$\$\$\$)

Heteronuclear NMR exploits 1-bond scalar couplings

 1-bond couplings are large (20-150 Hz) compared to HH couplings (1-10 Hz)

• They are independent of conformation: no structural insight but wonderful for assignments

The basic building block of Heteronuclear NMR (INEPT)

- Polarization of ¹³C and ¹⁵N is low: start with ¹H polarization
- Use 1-bond scalar couplings to transfer magnetization from ¹H to the nucleus of interest
- Delay Δ must be set to 1/4J for optimal transfer: in the absence of relaxation, magnetization transfer is 100% efficient

The basic building block of Heteronuclear (INEPT-1D)

The basic building block of 2D Heteronuclear NMR (HSQC)

- Polarization of ¹³C and ¹⁵N is low: start with ¹H, transfer to ¹H with INEPT (sensitivity increases by the ratios of γ , e.g. 10 for ¹⁵N)
- Label magnetization with ¹⁵N Larmor frequency in t1 and record ¹⁵N evolution in the first dimension

 Go back to ¹H for detection with a reverse INEPT, i.e. from ¹⁵N to ¹H and record ¹H evolution in the direct dimension (high s/n)

HSQC is the building block and foundation for very many heteronuclear NMR experiments

- Measurements of relaxation properties (motion)
- Spectral assignments

3D versions of NOESY and COSY spectra (structure)

The most important experiment for protein structure determination: 3D NOESY HSQC

• Measurements of ¹H-¹H distances (as in 2D NOESY)

• Resolution is spread in a third dimension (usually ¹⁵N but also ¹³C; for nucleic acids mostly ¹³C; for protein/nucleic acid complexes you can observe only the protein, only the RNA or only the contact from one to the other)

Protein and nucleic acid 3D structure generation from NMR

Typical protocol for 3D structure generation from NMR data (with 3D data)