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1.

(25 points) A material is crystalline, and the ionic bonds in the material can be approximated with the
bond energy function U(r) = a(r —ry)? with a = 200 N/m, and

, ro = 2% 107%m. However, this
energy function fails atr = 2.04 * 107 %m, where the bond breaks

a. Do you expect this material to be viscous, viscoelastic, or elastic? Explain briefly
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b. Whatis the approximate Young’s modulus of this material? Explain or show your calculations
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. ¢. Do you expect to see elastic or plastic deformation prior to material failure? Explain. /
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Do you expect this material to exhibit linear elasticity, strain hardening, or yielding? Explam
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At approximately what strain to you expect this material to fail? Explain or show your
calculations.
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2. (25)As shown in the figure, an adaptor protein (white)
connects through domain A to the cytoskeleton (gray).
Domain B undergoes a conformational change between an
inactive form B and active form B’. The various domains and
peptide linkers between domains have lengths xA through
xE as shown in the figure. Domain B changes length from x,
to xp" upon activation; no other domain or linker length is
affected by activation. If the cytoskeleton is not applying
mechanical force to the adaptor protein, the free energy of
domain B is G in the inactive conformation and G’ in the active conformation.

a. (12) For this adaptor protein to be a mechanotransducer, list the things that would need to be true.
(Consider how this protein must interact with other proteins or processes in the cell, and any quantitative
information, such as what values must be positive or negative. Don't list thin s that were already stated above, but do
indicate requirements about lengths regardless of whether this appears true in the figure.)
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b. (13) If these things are all true, derive an equation (in terms of only the known values above) that indicates
the fraction of time (i.e. probability) that the mechanosensor is active when the cytoskeleton applies a force

F to the adaptor protein. . Wi
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3. (50)Muscle fiber can be modeled as a stress-producing motor in parallel

and series with viscous and elastic elements as shown in the figure. In the E’m Zj W“P§

sign convention we use for this class, the contractive stress produced by A o

the motor element is considered positive since it has the same effect as f”“"““‘“’ VA {:"' W'gg
tensile stress applied to the element. This stress is independent of the § . |
strain or rate of strain of the element. That is, the element equation for the T~ E&Méw MP%MA
motor is ¢ = gy, (t), where 0,,(t) is an input function that is controlled by - N L
the nerves. Since it does not depend on system behavior, think of it like a \ {f’;;:\ 3
time-variable parameter. S

a) (15 points) Build a mathematical model from this diagram, to derive an equation for the strain of the fiber,
€, vs the external stress applied to the fiber, o.
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a. (25 points) Using the differential equation you derived above, derive an algebraic equation for the strain,
€(t), of the muscle fiber, when the muscle starts to contract at t = 0 with a- f’crreeof M, 50 0y, (t) = M (t), and
there is an external tensile stress on the fiber of a(t) = W¢(t). She s
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b. (10 points) interpret your solution for e(t) to explain the requirements on the parameters M, W, E, and n for
the muscle fiber to be able to contract in this experiment. If you didn’t get a final solution, describe the
requirement is for contraction, and explain how you would answer the question if you had a solution for e(t).
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4. (40) A beam is attached to a g
it spport st x = 0,00 )L e

free at x = L. There is a uniform

external load, q, across the 4 M,
beam. An external moment My is
applied at x =L, in the )

direction shown below. The
cross section of the beam is a
square with sides of length H, and the Young’s modulus is E. You can assume that the deflection is

small.
a) (15) Find the internal shear force, V(x) and internal bending moment, M(x) everywhere in the beam.
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b) (15) In the special case where g = %, draw the shear force and bending moment diagrams
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¢) (10) in the same special case, idenuy me values of x and y that you would need to test fcr failure.
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5. (30) A column has a weld as shown in the figure. What is the maximum force, F, that
the column can withstand? tExpress your answer in terms of the following values: P

o
8 = angle of the weld, from the vertical
L =length
d = diameter
E = the Young’s modulus L
USS,, = ultimate shear stress allowed parallel to the weld ‘
UTS,, = ultimate tensile stress allowed normal to the weld 6’
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6. (30) A thin-walled cylindrical pressure vessel of radius r
and thickness t is subjected simultaneously to an internal LA
pressure p and a compressive force F at the ends, as shown
in the figure. The material has linear elasticity with Young’s
modulus E and Poison ratio v, and you can assume small deformations. How much force F, do you
need to apply in order to produce zero longitudinal strain in the cylinder walls?
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