Bioen 326 2013 FINAL EXAM

Rules: Closed Book Exam: Please put away all notes and electronic devices

Reminders: We give partial credit, so include equations and steps.

Equations Provided on the Exam:

$$\circ F_R = \int F_d(x) dx \text{ or } F_R = \int F_d(\vec{r}) d\vec{r}$$

$$\circ \quad x_R = \frac{\int x F_d(x) dx}{F_R}, \text{ or } x_R = \frac{\int x F_d(\vec{r}) d\vec{r}}{F_R}$$

$$\circ \quad \sigma_{av} = \frac{\sigma_x + \sigma_y}{2}$$

$$\circ \quad R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau^2}$$

$$\sigma_{x\theta} = \sigma_{av} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos(2\theta) + \tau \sin(2\theta)$$

$$\circ \quad \tau_{\theta} = -\frac{\sigma_{x} - \sigma_{y}}{2} \sin(2\theta) + \tau \cos(2\theta)$$

$$\circ \quad \sigma_{1,2} = \sigma_{av} \pm R$$

$$\sigma = \tau_{MAX} = F$$

$$\circ \quad \epsilon_x = \frac{1}{E}\sigma_x - \frac{\nu}{E}\sigma_y - \frac{\nu}{E}\sigma_z$$

$$\circ \quad \gamma_{xy} = \frac{1}{G}\tau_{xy} = \frac{2(1+\nu)}{E}\tau_{xy}$$

$$\circ \quad \sigma_x = \frac{E}{(1+\nu)(1-2\nu)}((1-\nu)\epsilon_x + \nu\epsilon_y + \nu\epsilon_z)$$

$$\circ \quad \tau_{xy} = G\gamma_{xy} = \frac{E}{2(1+\nu)}\gamma_{xy}$$

$$0 \quad e = \frac{\Delta V}{V_0} = \epsilon_x + \epsilon_y + \epsilon_z = \frac{1 - 2V}{E} (\sigma_x + \sigma_y + \sigma_z)$$

$$0 \quad \delta = \int_0^L \frac{N(x)}{E(x)A(x)} dx$$

$$0 \quad k_a = \frac{EA}{L}; F = k_a \delta$$

$$\circ \quad \delta = \int_0^L \frac{N(x)}{E(x)A(x)} dx$$

$$\circ k_a = \frac{EA}{L}; F = k_a \delta$$

$$k_t = \frac{Gl_p}{L}; T = k_t \phi$$

$$\begin{array}{ll}
\circ & \int_A y^2 dA = I \\
\circ & I = \frac{\pi}{4} r^4
\end{array}$$

$$0 \quad I = \frac{\pi}{r^4}$$

$$\circ I = \frac{H^3W}{12}$$

o
$$I = \frac{H^3W}{36}$$
, (neutral plane is at H/3 from flat edge).

$$\circ \quad \int_A \ r^2 dA = I_p$$

$$\circ \quad I_p = \frac{\pi}{2} r^4$$

$$\circ$$
 $\kappa = M/EI$

$$\circ \quad \sigma_x = N/A$$

$$\begin{array}{ll}
\circ & \sigma_{x} = N/A \\
\circ & \tau(r) = \frac{T}{l_{p}}(r)
\end{array}$$

$$\circ \quad \sigma_x(x,y) = -\frac{M(x)}{l}y$$

$$\tau_{xy}(x,y) = \frac{V(x)}{2I} \left(\frac{H^2}{4} - y^2 \right), \max \left(\tau_{xy}(x) \right) = \frac{3V(x)}{2A}$$

$$\cot \left(\tau_{xy}(x) \right) = \frac{4V(x)}{3A}$$

$$\circ \max\left(\tau_{xy}(x)\right) = \frac{4V(x)}{3A}$$

$$\cos \max \left(\tau_{xy}(x) \right) = \frac{_{3A}}{^{3A}}$$

$$\cos \max \left(\tau_{xy}(x) \right) = \frac{_{4V(x)} \left(r_2^2 + r_2 r_1 + r_1^2 \right)}{^{3A}}$$

$$\circ \quad \sigma = \sigma_L = \frac{pr}{2t}$$

$$\circ \quad \sigma_C = \frac{pr}{t}$$

o
$$F_c = \frac{EI\pi^2}{L^2}$$
 (2 pins); $F_c = \frac{EI\pi^2}{4L^2}$ (solid support); $F_c \cong \frac{2EI\pi^2}{L^2}$ (pin and solid support); $F_c = \frac{4EI\pi^2}{L^2}$ (2 solid supports);

o
$$r = \sqrt{I/A}$$
; L/r is slenderness ratio

$$\circ \quad \text{Voigt } E\epsilon + \eta \frac{d\epsilon}{dt} = \sigma$$

$$\circ \quad \text{Maxwell } \sigma + \frac{\eta}{E} \frac{d\sigma}{dt} = \eta \frac{d\sigma}{dt}$$

o Voigt
$$E\epsilon + \eta \frac{d\epsilon}{dt} = \sigma$$

o Maxwell $\sigma + \frac{\eta}{E} \frac{d\sigma}{dt} = \eta \frac{d\epsilon}{dt}$
o Kelvin $\sigma + \frac{\eta}{E_S} \frac{d\sigma}{dt} = E_P \epsilon + \eta \left(\frac{E_P + E_S}{E_S}\right) \frac{d\epsilon}{dt}$

Transforms:

•
$$L[\delta(t)] = 1$$

•
$$L[\phi(t)] = 1/s$$

•
$$L[t \cdot \phi(t)] = 1/s^2$$

$$L[e^{-at} \phi(t)] = \frac{1}{s+a}$$

$$L[(1 - e^{-at})\emptyset(t)] = \frac{a}{s(s+a)}$$

$$L[\sin(\omega t) \phi(t)] = \frac{\omega}{s^2 + \omega^2}$$

$$L[\cos(\omega t) \phi(t)] = \frac{s}{s^2 + \omega^2}$$

•
$$L[\sin(\omega t) \phi(t)] = \frac{\omega}{s^2 + \omega^2}$$

•
$$L[\cos(\omega t) \phi(t)] = \frac{s}{s^2 + \omega^2}$$

o
$$k_BT = 4.1e - 21 J$$
 at room temp.

$$o f(r) = \frac{k_B T}{L_p} \left(\frac{1}{4 \left(1 - \frac{r}{L_0} \right)^2} - \frac{1}{4} + \frac{r}{L_0} \right)$$

$$o f(r) \approx \frac{3k_BT}{2L_p} \frac{r}{L_0}$$

$$\circ \quad r_{rms} = \sqrt{2L_0L_p}$$

$$r_{rms} = \sqrt{2L_0L_p}$$

$$E = \frac{\frac{d^2U}{dr^2}(r_0)}{r_0}$$

$$0 U_0[(r_0/r)^{12}-2(r_0/r)^6]$$

$$\begin{array}{ll}
r_0 \\
\circ & U_0[(r_0/r)^{12} - 2(r_0/r)^6] \\
\circ & K_{eq} = \frac{P_2}{P_1} = \exp\left(\frac{-\Delta G^0}{k_B T}\right) \\
\circ & P_2 = \frac{K_{eq}}{1 + K_{eq}} \\
\circ & \Delta G(f) = \Delta G^0 - f \cdot \Delta x(f)
\end{array}$$

$$P_2 = \frac{K_{eq}}{1 + K_{eq}}$$

$$\circ \quad \Delta G(f) = \Delta G^0 - f \cdot \Delta x(f)$$

$$\circ \quad \Delta G(f_{eq}) = 0$$

$$\begin{array}{ll}
\circ & \Delta G(f_{eq}) = 0 \\
\circ & \Delta x(f) = x_2(f) - x_1(f) \\
\circ & \Delta x_{1t}(f) = x_t(f) - x_1(f)
\end{array}$$

$$\circ K_{eq}(f) = K_{eq}^0 \exp\left(\frac{f\Delta x(f)}{k_B T}\right)$$

$$\circ k_{12}(f) = k_{12}^0 \exp\left(\frac{f\Delta x_{1t}^0(f)}{k_B T}\right)$$

continued on page _

continued on page _

1. (30 points) A beam of length L is subjected to a force F as shown in the diagram, and to a uniform load q = F/L. The cross section of the beam is rectangular with height H and width W. The beam fails at USS = U, UCS = 2U, and UTS = 3U. What is the maximum force F that the beam can withstand before failure? Assume small deflections, and the beam is slender; that is, L >> H,W.

Need to find M(x) and V(x) to find ox & t, then Don't need to solve for support rxn if cut: M(x) + 9x = +x = 0; M(x) = - Fx - 2x2 = FFx - Fx -V(x)-9x-F=0, V(x)=-F-9x=-F-=x Allterms vogative, so extreme value at largest x:L M(L) = - FL - E= - FL - F/2 - - 3 FL Feils when 2 FL = N; or 9 FL = 2U or 3U F=2UH2W from shear or compression.

2. (30 points) A beam has length L, Young's modulus E, and a circular cross-section with radius r. What is the maximum deflection, v, of the beam in the situation below, and at what position x does this deflection occur? (you can assume small deflections)

Name		Pag
.	sume deflection	is relative to position & orient.
Mo Charles and a second a second and a second a second and a second and a second and a second and a second an		position & orient. of one and
Stall get div		
dy Mo	-7+C, but here +1 30 C, =0.	
V (C	40° 3° + Cz. this	5. Iso O,
\	$(x) = \frac{M_0^2}{E^{\frac{3}{2}}} \frac{\chi^2}{2} \text{max} \ (3)$	ð X= L
V(L) = N3 L3 I TP	
	50 Vmax = 4N3L2	2 Mo L ²

TLAZEI TENY Pholdern 2 point Summany

5 pts to find M(x) = Mo

3 to find de v/d x 2

7 to find de x (3 integrate 4 for asomption, C, & complete.

7 to find y(x)

5 to find max (v(x))

continued on page

3. (10 points). A solid metal pole with a circular cross section of radius R is anchored upright into the ground. The top of the pole is at a height H above the ground and has a small platform. A weight causing a downward force, F, is placed on the platform directly above the pole. What is the highest allowable weight without buckling the pole?

This is I solid support only) so
$$\begin{cases}
F_c = EITI^2 \\
4L^2
\end{cases}$$

here, I = TRY, L = H

O TY

FRY

- 5 for realizing /sdid

Support

(2 for Fe equation, but mans)

- 2 for right I

- 2 for L=H

- 2 for combine.

4. (40 points).

- a) Derive a differential equation (ODE) relating stress, σ , to strain, ϵ , for the muscle model diagramed here. (Also muscles weates tens te stress
- b) If the muscle creates a tensile stress of $m(t) = \frac{1}{2}$ $M\phi(t)$, the material is at rest before the test starts, and there is no external stress on the material $(\sigma(t) = 0)$, then what is the strain, $\epsilon(t)$?

5 Elements
$$r_3 = r_1(t)$$
 $r_2 = E_2 E$ $r_3 = r_1(t)$ $r_4 = r_1 dE$ $r_4 = r_1 dE$

5 to combine 1

(6)
$$M\phi(t) =$$

$$0 = M F(s) = (E_1 + E_2) \dot{X} + \frac{M}{s} + \eta s X$$

$$0 = (E_1 + E_2 + \eta s) X + \frac{M}{s}$$

$$X(E, +E_2+\eta_S) = -\frac{M}{S}$$

$$X = -\frac{M}{S(E, +E_2+\eta_S)} \cdot \frac{1}{\eta_S} = \frac{1}{S}$$

$$M = \frac{E_1 + E_2}{2}$$

$$X = -\frac{M}{E_{1} + E_{2}} \cdot \frac{E_{1} + E_{2}}{5(s + E_{1} + E_{2})} \cdot \frac{\sum_{i=1}^{N} E_{i}}{\sum_{i=1}^{N} E_{i}} \cdot \frac{$$

continued on page

continued on page

5. (20 points; molecular biomechanics). Several people have developed a fluorescent force sensing domain that can be genetically introduced into proteins to detect the amount of force applied to the proteins in vivo. The domain has two states (A and B) with different fluorescent spectra. You design such a domain in which state A and state B have the same length with no force ($x_A^0 = x_B^0$), but state A is stiffer ($\kappa_A > \kappa_B$). State A has energy $G_A^0 = 0$, and state B has energy $G_B^0 > 0$. What is the equilibrium force, f_{eq} , at which the domain is equally likely to be in either state?

D.G. (feg) = 0.	
LICO NO LAY (1) SULFINE SOL	e that.
$\Delta G(f) = G - X_A(f) - X_A(f)$	a = Ge
(or could define both as opposite,	~" J
same answer.	
(f) = Xg°+ 1/2 3 by definition of spring	constant.
(x _B (f) = X _B ° + f _{kB} } by definition of spring (x _A (f) = X _A ° + f _{kA} } (3) <	
SO DX(f) = X80-XA0+ f(kg-kA). + O to combine.	
X8°=X,°, So \(\D X (F) = F (\overline{F}_8 - \overline{F}_8)	A
50 need G80 - F. F(K8 - KA) = 0	(3) do combine
f2(to-ta)-GB	and the second s
9 for DX(4) .	1 Ke K.
3 for AGO	
5 der 06 = 7 0x(F)	A second
3 hombre or fen Go Kekt	
KA - KB	

6. **(40 points)** You can cast a hydrogel scaffold of cross-linked collagen fibers, where the individual fibers have a circular cross-section of radius $r=0.1\,\mu m$ and an average distance $d_{av}=10\,\mu m$ between cross-links. The Young's modulus of collagen fibers is $E_C=1$ GPa. You cast this scaffold into a cylindrical tube that is L = 100 mm long, R = 10 mm in diameter, with t = 1 mm thick walls, clip the ends, and then pump liquid inside. How much pressure P should you

use to pressurize the cylindrical tube if you want to cause an estimated 10% increase in radius of the cylinder? (*Hint: since we said 'estimated', you can make approximations if they are appropriate to this problem.*)

assume U = 0 To get estimated 10% Therease in radius, I can neglect effects of change in R&t on to, T. Fre-For, but 5 pts for P: R or REST & E = EOC. = PR : P = ECET But we are not given Eff material, That Eof Ribers, 10 - day= 10um. O. 1. ECTTP + PO.1 T & Gas Jsto combine 12 = 3,140108010-1.10-4 =0.1.3.14.10 Pa. =3,14.103 @ 3 KPa continued on page

Problem 6, cont.

you night insteduse a more accurate reison:

$$re = \frac{PR(re)}{t(re)} = \frac{PR(1+\epsilon_c)}{t}$$

$$\frac{\mathcal{E}_{C}}{1+\mathcal{E}} = \frac{\mathcal{P}_{R}}{\mathcal{E}_{C}}; \ \mathcal{P} = \frac{\mathcal{E}_{C}}{\mathcal{R}}(\frac{\mathcal{E}_{C}}{1+\mathcal{E}_{C}})$$

at the end, will have P= 3.14 x 103

for a more exact answer.

also, may have wanted to check that collagen obser is a rod, not a WLC, over day.

Lp = 1 = 10.25E-2 m = 7.5 mm 5>10 um

& yes, justified to hothere NLC.

7. (30 points) In the abstract of the del Rio paper (attached after this), the authors state that "Application of physiologically relevant forces caused stretching of single talin rods that exposed cryptic binding sites for vinculin." Analyze the appropriate level of certainty of this statement if they had only performed the magnetic tweezers experiments (Figure 3 and the accompanying text).

Note that we are saving time in your answer by not requiring the following: You do not need to discuss the atomic force microscopy experiment in Figure 4, nor the author's asserted level of certainty.

In fig 3, they show that # of photobleaching get that this is lue to Taling the have negative control w/o Talin. Vincillin is only there we are thing, but they don't show that bridge 13 sporte to Male(on (missing unhol) they don't do sontistical analysis. (But do have Zexpts, with stigle & chamble taling so maybe don't reed they don't support that 12pN 3 physiological very well-just enterpres showing indegrans can withstand lopk "without breaking! so centraining should only be moderat? (but arigue for high or low ok tor sharedon 5 pts - analyze statizs & totals (mention is one) 5 pts - note works 5pts - onote whether 12pNB phypiological to 5/ spits - top conclude con level of centrainty 15 pts - whole drywment makes sense. continued on page