Bioen 3262013 MIDTERM

Covers: Weeks 1-4, FBD, stress/strain, stress analysis, rods and beams (not deflections).

Rules: Closed Book Exam: Please put away all notes and electronic devices

Reminders:

- Show equations you use to answer questions. Even if your final answer is wrong, we give partial credit for the various steps needed to solve a problem, but we can't do this if you don't write the equations you used.
- We give extra credit if you realize your final answer is wrong and explain why, even if you do not have time to go back and find and fix the error. Since this can partially or fully make up for the mistake (depending on the type of mistake), I advise that you don't go back to fix until you finish the rest of the exam. Even then, don't erase what you have, but use the extra sheet and then cross out the first once you finish successfully, or you may run out of time and have erased your points.

Equations Provided on the Exam:

The following equations are provided on this cover sheet for the exam.
o $\quad F_{R}=\int F_{d}(x) d x$ or $F_{R}=\int F_{d}(\vec{r}) d \vec{r}$

- $\quad x_{R}=\frac{\int x F_{d}(x) d x}{F_{R}}$, or $x_{R}=\frac{\int x F_{d}(\vec{r}) d \vec{r}}{F_{R}}$

○ $y_{\text {Сом }}=$

- $\sigma_{a v}=\frac{\sigma_{x}+\sigma_{y}}{2}$
o $R=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau^{2}}$
o $\quad \sigma_{x \theta}=\sigma_{a v}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos (2 \theta)+\tau \sin (2 \theta)$
- $\quad \tau_{\theta}=-\frac{\sigma_{x}-\sigma_{y}}{2} \sin (2 \theta)+\tau \cos (2 \theta)$
o $\sigma_{1,2}=\sigma_{a v} \pm R$
o $\tau_{M A X}=R$
- $\epsilon_{x}=\frac{1}{E} \sigma_{x}-\frac{v}{E} \sigma_{y}-\frac{v}{E} \sigma_{z}$
o $\quad \gamma_{x y}=\frac{1}{G} \tau_{x y}=\frac{2(1+v)}{E} \tau_{x y}$
o $\quad \sigma_{x}=\frac{E}{(1+v)(1-2 v)}\left((1-v) \epsilon_{x}+v \epsilon_{y}+v \epsilon_{z}\right)$
o $\quad \tau_{x y}=G \gamma_{x y}=\frac{E}{2(1+v)} \gamma_{x y}$
0 $e=\frac{\Delta V}{V_{0}}=\epsilon_{x}+\epsilon_{y}+\epsilon_{z}$
0 $e=\frac{1-2 v}{E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)$
o $\quad \delta=\int_{0}^{L} \frac{N(x)}{E(x) A(x)} d x$

○ $\quad k_{a}=\frac{E A}{L} ; F=k_{a} \delta$
○ $k_{t}=\frac{G I_{p}}{L} ; T=k_{t} \phi$

- $\int_{A} y^{2} d A=I$
- $\quad I=\frac{\pi}{4} r^{4}$
- $I=\frac{H^{3} W}{12}$
o $I=\frac{H^{3} W}{36}$, (neutral plane is at $\mathrm{H} / 3$ from flat edge).
- $\int_{A} r^{2} d A=I_{p}$
- $I_{p}=\frac{\pi}{2} r^{4}$

0 $\kappa=M / E I$
○ $\sigma_{x}=N / A$

- $\quad \tau(r)=\frac{T}{I_{p}}(r)$
o $\sigma_{x}(x, y)=-\frac{M(x)}{I} y$
o $\quad \tau_{x y}(x, y)=\frac{V(x)}{2 I}\left(\frac{H^{2}}{4}-y^{2}\right), \max \left(\tau_{x y}(x)\right)=\frac{3 V(x)}{2 A}$
$0 \quad \max \left(\tau_{x y}(x)\right)=\frac{4 V(x)}{3 A}$
$0 \quad \max \left(\tau_{x y}(x)\right)=\frac{4 V(x)}{3 A} \frac{\left(r_{2}^{2}+r_{2} r_{1}+r_{1}^{2}\right)}{r_{2}^{2}+r_{1}^{2}}$
\qquad
\qquad

1. (20 points) A rectangular plate has isotropic and linear materials properties, with Young's modulus $\mathrm{E}=1 \mathrm{MPa}$ and Poisson ratio $v=0.2$. If the unstressed thickness is $t_{z}=$ 1 cm . What is the change in thickness, Δt_{z}, under biaxial stress, with $\sigma_{x}=2 k P a$ and $\sigma_{y}=-3 k P a$? (Use a positive sign in your answer if the material gets thicker, a negative for thinner).

2. (20 points) An aluminum bar of solid circular cross section is twisted by an unknown torque T acting at the ends (see figure), causing it to twist by an angle of 0.4 radians. The rod is $\mathrm{L}=1 \mathrm{~m}$ long, and has a diameter $\mathrm{d}=2 \mathrm{~cm}$, and the shear modulus is G . What is the maximum value of the shear stress, $\max (\tau)$ and maximum shear strain max (γ) ?

\qquad
3. (30 points) The rod in the diagram has a circular crosssection with diameter d . It is exposed to a load P in the center and 3P at the tip as shown.
a. What is the maximum shear stress $\tau_{\text {Max }}$ in the rod?
b. what locations or locations will this stress occur?
c. If the ultimate tensile stress, compressive stress, and shear stress are all identical, and equal to U, then at what value of P will the rod fail?
\qquad
4. (30 points) In the diagram below, the cable held at an angle $\theta=\frac{\pi}{4}=45^{\circ}$ and the force on the cable is adjusted until the beam is parallel to the x-axis, as shown. The beam has a uniform distributed load with force density q over length L and the cross-section is an H by H square. Any deformations resulting from this are small. The Young's modulus is E, and the shear Modulus is G.

What is the longitudinal normal stress, σ_{x}, at position A in the diagram, at the bottom of the beam at length $L / 2$ from each end?

\qquad

1. (20 points) A rectangular plate has isotropic and linear materials properties, with Young's modulus $\mathrm{E}=1 \mathrm{MPa}$ and Poisson ratio $v=0.2$. If the unstressed thickness is $t_{z}=$ 1 cm . What is the change in thickness, Δt_{z}, under biaxial stress, with $\sigma_{x}=2 k P a$ and $\sigma_{y}=-3 k P a$? (Use a positive sign in your answer if the material gets thicker, a negative for thinner).

To find Δt_{z}, need t find ε_{z}. ($\Delta t_{z}=\varepsilon_{z} \cdot t_{z}$) ε_{z} cam be found from 3D Hooke's Low:

$$
\begin{aligned}
& \varepsilon_{z}=\frac{1}{E}\left(\sigma_{z}-v \sigma_{x}-v \sigma_{y}\right)= \\
& \sigma_{z}=0 \text {, so } \varepsilon_{z}=-\frac{D}{E}\left(\sigma_{x}+\sigma_{y}\right)
\end{aligned}
$$

Now fill in \#'s:

$$
\varepsilon_{z}=-\frac{0.2}{10^{6} \mathrm{P}_{a}}(2-3) 10^{3} \mathrm{P}_{a}=+\frac{0.2}{10^{3}}=0.2 \times 10^{-3}
$$

$$
\Delta t_{z}=0.2 \times 10^{-3} \cdot 1 \mathrm{~cm}
$$

$$
=2 \times 10^{-3} \mathrm{~mm}
$$

any of these are OK;

$$
=2 \mu \mathrm{~m}
$$ (positive sign,

$$
=2 \times 10^{-6} \mathrm{~m}
$$ or "gets thicken")

Assigned points:
Opts for correct Hooke's Law. (3pts it in wrong direction) (Stor realizing's 30 Hooke's needed, 3 or right direction) 5 pts for definition of grain: $\Delta t_{z}=t_{z} \cdot \varepsilon_{z}$ 7 pts oo r right answer after all plan ins.

If you need more room, please use one of the extra pages and indicate here: continued on page
\qquad $1<e y$
2. (20 points) An aluminum bar of solid circular cross section is twisted by an unknown torque T acting at the ends (see figure), causing it to twist by an angle of 0.4 radians. The rod is $\mathrm{L}=1 \mathrm{~m}$ long, and has a diameter $\mathrm{d}=2 \mathrm{~cm}$, and the shear modulus is G . What is the maximum shear stress, max (τ) and maximum shear strain $\max (\gamma)$?

$\tau(r)=\frac{T}{I_{p}} r$. max is when $r=\frac{d}{2}$, radius.

$$
\max (\tau)=\frac{T}{I_{p}} \cdot \frac{d}{2}
$$

$$
I_{p}=\frac{\pi}{2} r^{4}=\frac{\pi}{2}\left(\frac{d}{2}\right)^{4} \text {. so } I_{p} \text { is known. }
$$

But T is not known, so need Eqn for $-t$:

$$
\begin{array}{ll}
T=k_{t} \phi & , \phi_{\text {is known }} \\
k_{t}=\frac{G I_{p}}{L} & , L \text { isknown, } G \text { is known (but not given) }
\end{array}
$$

combine

$$
\max (\tau)=\frac{k_{t} \phi}{I_{p}}\left(\frac{d}{2}\right)=\frac{G I p \phi}{L I / p}\left(\frac{d}{2}\right)=\frac{G \phi}{L}\left(\frac{d}{2}\right)
$$

This is pure shear, so $t_{\text {max }}=\max (\bar{\tau})$.

$$
\max (\gamma)=\tau / G=\frac{\varnothing}{L}\left(\frac{d}{2}\right) .
$$

Plugin values:

$$
\begin{aligned}
& \text { join values: } \\
& \max (\gamma)=\frac{0.4}{1 \mathrm{~m}}\left(\frac{2 \mathrm{~cm}}{2}\right)=\frac{0.4(1 \mathrm{~cm})}{100 \mathrm{~cm}}=0.004 . \\
& \max (\tau)=0.004 \mathrm{G} .
\end{aligned}
$$

Points assigned:
2 pts for each Eqn $(2 \times 7=14)$
3 pts for pinging in to get each correctanswen $(2 \times 3=6$,
\qquad
3. (30 points) The rod in the diagram has a circular crosssection with diameter d. It is exposed to a load P in the center and 3 P at the tip as shown.
a. What is the maximum shear stress in the rod?
b. what locations or locations will this stress occur?
c. If the ultimate tensile stress, compressive stress, and shear stress are all identical, and equal to U, then at what value of P will the rod fail?
Uniaxial stress, so $\sigma_{x}=N(x) / A(x)$

$$
A(x)=\pi r^{2}=\pi\left(\frac{d}{2}\right)^{2}=\frac{\pi}{4} d^{2} \text { for all } x
$$

$N(x)=+4 P$ from 0 to $L / 2,+3 P$ from $L / 2$ to L

$N=4 P$ is greater, so

$$
\begin{array}{ll}
=4 \rho \text { is prater, so } & \text { (a) } \\
\sigma(x)=\frac{4 P}{\pi / \text { od } d^{2}} & \frac{16 P}{\pi d^{2}} ; \tau_{\max }=\frac{\left(\frac{\sigma_{x}-0}{2}\right)^{2}+0^{2}}{}=\frac{\sigma_{x}}{2}=\frac{8 P}{\pi d^{2}}
\end{array}
$$

(b) This occurs at every point from 0 to $4 / 2$
since diagram to get $4 P$ is for ann x there.
(c) $U T S=U C S=U S S=U_{j}$ will f_{2}) at lowest P that causesone

Paints assigned:
(a) 15 pts
(\$3 for correct $N(x)$
2 for " $A(k)$
5 for σ_{x} from N, A 5 for $\tau_{m a x}$ from σ_{x}
the logic here is right; select lowest P , but the math is wrong; we should have circled the other one since $1 / 16$ is less than $1 / 8$. Since logic is right, this answer should have gotten 3 or 4 of the 5 points. If you cicled wrong one with no logic, no points. I you circled right one with no logic, 5 points.
(b) Spots for correct location

Bioen 326 Midterm 2013
4. (30 points) In the diagram below, the cable held at an angle $\theta=\frac{\pi}{4}=45^{\circ}$ and the force on the cable is adjusted until the beam is parallel to the x-axis, as shown. The beam has a uniform distributed load with force density q over length L and the cross-section is an H by H square. Any deformations resulting from this are small. The Young's modulus is E , and the shear Modulus is G .

What is the longitudinal normal stress, σ_{x}, at position A in the diagram, at the bottom of the beam at length $L / 2$ from each end?

F_{C} Use FBD to find support Rains:

\qquad
[4pts to find $\sigma_{X A}$]

$$
\begin{aligned}
& N(x)=\frac{q L}{2} \\
& A(x)=H^{2} \\
& \sigma_{x A}=\frac{N(x)}{A(x)}=\frac{q L}{2 H^{2}}
\end{aligned}
$$

[Gets to find $M\left(\frac{C}{2}\right)$, bending moment @A] cut © $\frac{L}{2}$

write $\sum M_{z}=O$ (c) $\frac{L}{2}$:

$$
M\left(\frac{L}{2}\right)-\frac{L}{2}\left(\frac{q L}{2}\right)+\frac{L}{4}\left(\frac{q L}{2}\right)=0
$$

$$
M\left(\frac{L}{2}\right)=\frac{9 L^{2}}{4}-\frac{g L^{2}}{8}=\frac{9 L^{2}}{8}
$$

[Spots to find σ_{x} at A from $\left.M\left(\frac{c}{2}\right):\right]$

$$
\begin{aligned}
& \text { pts to find } \left.\sigma_{x_{L}} \text { at A from } M\left(\frac{L}{2}\right):\right] \\
& \left.\sigma_{x_{L}}=-\frac{M(x)}{I} \text { y for bending. } I=\frac{H^{3} w}{12} \text {, but } W=H\right) \frac{H^{4}}{12} \\
& y=-H / 2
\end{aligned}
$$

So $\sigma_{x_{L}}=-\frac{q L^{2}}{8} \cdot \frac{12}{H 4}\left(-\frac{H}{2}\right)=\frac{12 q L^{2}}{16 H^{3}}=\frac{3 q L^{2}}{4 H^{3}}$
Now, wrap up combined loading:

$$
\sigma_{x}=\sigma_{x A}+\sigma_{x L}=\frac{q L}{2 H^{2}}+\frac{3 q L^{2}}{4 H^{3}} \quad \begin{aligned}
& \text { bothare units } \\
& \frac{q}{m}=\frac{N / m}{m}=\frac{N}{m^{2}}=P_{a}
\end{aligned}
$$

\qquad

