
BIOEN 326 LECTURE 3, SEPT 30, 2013 

Linear Elasticity (Gere Ch. 1) 
When external forces are applied to an object, this creates internal stresses on any point in the 
object. We will spend much of unit 2 calculating these. However, for some simple situations, the 
internal stresses are simple to understand and calculate because they are uniform throughout 
the body, and we will consider these today.  

Normal stress and strain 
Consider a bar or block to which we apply a tensile or compressive force, F uniformly across 
opposite faces and normal (perpendicular) to the faces, as illustrated in the figure below. The 
bar has a cross-sectional area, A, and a length L. When the force is applied, the bar stretches or 
compresses by length δ.  

 
Extrinsic vs Intrinsic 

The extrinsic properties of this system are F, A, L and δ. These are things that can be directly 
measured through external observations. We can use these to measure the spring constant of 
the bar, which is also an extrinsic property: k =  F/δ.  

However, if we want to use this measurement to determine a fundamental property of the 
material making up the bar, we need to calculate intrinsic properties.  

Normal Stress 

We define the normal stress (often just called stress), σ =  𝐹/𝐴.  

Note that the units are in /𝑚2 , also called a pascal (Pa). 

We chose this example carefully so that the stress within the bar is uniform, so the equation 
above applies to any point in the bar. Thus, if we chose any element within the bar, with 
arbitrarily small length 𝑎 in all three dimensions, it will have this same stress σ .  

 
Note that the stress on opposite faces is identical at equilibrium. To understand this and other 
equivalences in this lecture, we apply the assumptions of equilibrium, which is that all forces 
and all moments must sum to zero. We can replace the uniform stress on each face with a force 
𝑓 = 𝑎2𝜎𝜎 at the centroid of that face.  To have the sum of forces in the x-direction be zero, we 
need to have these two forces be equal and opposite in direction, as shown in the figure above. 
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Sign of stress. By convention, σ < 0 for compression, and σ > 0 for tension. You can remember 
this because the sign reflects the effect the stress with have on the length (e.g. lengthens for 
tension, σ > 0, as illustrated in the figure above.)  Note that when σ > 0, the stress points in the 
positive direction on the positive face, and in the negative direction on the negative face (+/+ 
and -/-). In contrast, if σ < 0, you have compression, and stress points in the negative direction 
on the positive face and vice-versa (-/+ and +/-). So, if you multiply the signs of the direction of 
the face and the direction of the stress, you get the sign of the stress.  

Normal strain 

Now we consider the resulting deformation. We define the normal strain (often just called 
strain) on the object to be 𝜖 = 𝛿/𝐿. Note that strain is unitless and measures the fractional 
elongation. In this case of uniform stress, we also have uniform strain, and each element has the 
same strain.  

Hooke’s Law.  

If the stress and strain on a material are small enough, 𝜎𝜎/𝜖 remains constant.  

The range over which Hooke’s Law holds is referred to the regime for linear elasticity, and 
depends on the material. Even nonlinear elastic materials will display linear properties over 
sufficiently small strains.  

We define the Young’s modulus of elasticity, or elastic modulus, to be 𝐸 = 𝜎𝜎/𝜖, also in units of 
Pa. The Young’s modulus is the intrinsic form of the spring constant, just as the strain is the 
intrinsic form of the deformation, and stress of the applied force. 

Lateral strain 

When we stretch the bar in the x-direction, it usually changes size in the y-direction as well. We 
define the lateral strain 𝜖′ = ∆𝑊/𝑊, where Δ𝑊 is the change in width in a direction 
perpendicular to the applied force, and W is the original width. Lateral strain is also unitless. 
For all but some very strange materials, when 𝜖 > 0, we observe that 𝜖′ <  0. The lateral strain 
thus acts to partially maintain the volume of the material. 

Poisson ratio. 

We define the Poisson ratio is 𝜈 = −𝜖′/𝜖, as the ratio of lateral to axial strain, with the negative 
sign included so that the Poisson ratio is defined to usually be positive.  

Both ν and E are intrinsic properties of the material. We will see on Friday and next week how 
the molecular structure of the materials determines these properties.  

When 𝜈 = 0, there is no lateral change in size. When 𝜈 = 0.5, the material shrinks laterally in a 
way that maintains a constant volume. Except for very unusual materials, the Poisson ratio is 
between these two values, and for most materials, it has been observed that ν = ~1/3.   

  



Shear stress and strain 
Now consider instead that we apply a force tangential to a face of the block. We call this a shear 
force. We often label a shear force as V instead of F, but you should always consider the 
geometry rather than the name to differentiate shear from normal forces. 

 

 

 

 

Shear stress 

We define the shear stress to be the shear force per unit area: 𝜏 = 𝑉/𝐴. Note that the units are 
again Pa. Again, we have picked a geometry where the shear stress is uniform throughout the 
object (as long as the force is distributed uniformly on the faces of the object). Also, there is no 
normal stress, so we call this a situation of pure shear.  

We can again consider a small volume element of dimensions a in all directions, anywhere 
inside the block, and represent the shear stress as a force on the centroid of the face.  

 

 

 

 

By convention, we call the shear stress acting on the x-face in the y-direction to be 𝜏𝑥𝑦. Again, 
applying the equilibrium assumptions, we see that the shear stress on opposite faces must be 
identical to avoid having a net force in the y-direction. Like in the normal stress, a stress in the 
positive direction on a positive face (+/+) must be balanced by a force in a negative direction on 
a negative face (-/-), and so we again use the same sign convention and say that in this situation, 
𝜏𝑥𝑦 > 0. So, if you can remember the logic for the normal stress, and remember that shear stress 
is identical, you can remember the sign conventions for stress and strain.  

Now we ask about the shear stress on the y-face in the x-direction, 𝜏𝑦𝑥 , and how it relates to 𝜏𝑥𝑦. 
To do this, we again use the equilibrium assumptions but now we consider the issue of 
moments. In the case of normal strain, the force 𝑓 = 𝑎2𝜎𝜎, which acted on the centroid of the face, 
created no moment, since the line of force also went through the centroid of the element, but 
this is not true for shear stress, so we will sketch the moments. Since everything is in the same 
plane in the z-direction, I will sketch in the plane instead of in 3D.  
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This figure shows the direction of the direction and force vectors. Note that 𝑟 = 𝑎/2  is the 
magnitude of both direction vectors, and 𝑓 = 𝑎2𝜏𝑥𝑦 is the magnitude of both force vectors. The 
sign of both moments is clearly positive by the right hand rule, so they do not cancel. Therefore, 
we need to balance these moments with the forces resulting from the two 𝜏𝑦𝑥  shear stresses.  

 

 

 

 

 

 

This requires that these two forces also have magnitude 𝑓 = �𝑎2𝜏𝑥𝑦�, so 𝜏𝑥𝑦 and 𝜏𝑦𝑥  are equal in 
magnitude. They must point in the direction shown above in order to be negative in sign. 
Finally, we note that this is applying a positive force to a positive face (+/+) for one and (-/-) for 
the other, so the sign must be positive. Thus, 𝜏𝑦𝑥 = 𝜏𝑥𝑦.  

Note that there are three stresses on each face. For example, on the positive x-face, there are 𝜎𝜎𝑥𝑥, 
 𝜏𝑥𝑦, and 𝜏𝑥𝑧. This makes 18  stresses total. But, at equilibrium, sets of two normal stresses and 
four shear stresses are all the same, so there are only 6 unique stresses: are 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦, 𝜎𝜎𝑧𝑧 ,  𝜏𝑥𝑦, and 
𝜏𝑥𝑧 and  𝜏𝑦𝑧, or for planar stress, just 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦, and 𝜏𝑥𝑦.  While we derived these observations for 
cases of pure normal stress and pure shear, it is true for more complicated conditions as well.  

Deformation due to shear stress: 

In pure shear (𝜎𝜎 = 0), the size of the faces stay the same, but the object changes shape.  The 
square volume element becomes a parallelogram 

 
 

We define shear strain = 𝛾 to be the decrease in the angle between two positive faces. Note that 
when 𝜏 > 0, this means 𝛾 > 0.  

The shear strain causes a displacement of the corners of the element, which we again refer to as 
δ. If the volume element has height H, then the displacement is δ = 𝐻 tan 𝛾 . Note that when 
𝛾 > 0, the displacement is in the positive direction, so 𝛿 > 0 according to both the sketch and 
the equation above. This same calculation can be used to calculate the displacement over the 
original body, using the height of that body.   
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If the shear strain is sufficiently small, we can use the small angle assumption, which is that 
tan𝜃~𝜃 for 𝜃 ≪ 1. Thus, 𝛿~𝐻𝛾, or 𝛾~𝛿/𝐻. This is reminiscent of the equation we saw for 
normal strain: 𝜖 = 𝛿/𝐿. 

Hooke’s Law in Shear 

Analogous to the situation for normal strain, the ratio of shear stress to shear strain is constant 
within the linear range. The constant of proportionality is called the shear modulus or the 
modulus of rigidity: 𝐺 = 𝜏/𝛾 or 𝜏 =  𝐺𝛾.   Note that it is also in Pascal. 

The three materials properties, the Young’s modulus, Poisson ratio and shear modulus, are 
related by the following equation, which we accept without proof for now: 𝐺 = 𝐸

2(1+𝜈). Note that 
if 𝜈 = 0, then 𝐺 = 𝐸/2 and if 𝜈 = 0.5, then 𝐺 = 𝐸/3.  Recall that we said that 0 ≤ 𝜈 ≤ 0.5 for 
almost all materials, so 𝐸/2 ≤ 𝐺 ≤ 𝐸/3 for most materials. 

Limitations.  

Note that this entire discussion has assumed that the material is isotropic, meaning the elastic 
modulus, shear modulus, and Poisson ratio are all independent of the orientation of the 
material. If a material is anisotropic, these properties will depend on how force is applied 
relative to the orientation of fibers or other nanostructures in the material. For example, wood 
has a different Young’s modulus when you stretch it along the grain versus across the grain. In 
this case, the material also has many different shear moduli, depending on orientation. If you 
know the shear or elastic modulus for the orientation in question, you can still apply Hooke’s 
law. However, understanding the relationship between E, G, and ν for anisotropic materials is 
beyond the scope of this class.  

Another limitation is that this entire discussion has assumed that the materials are linear, and in 
fact has defined linear elasticity. However, most materials become softer (yield) or harder 
(strain hardening) above the ‘proportional limit’. Other materials are nonlinear everywhere, 
but for sufficiently small deformations, the nonlinearity can be ignored since deviations may be 
within a few percent.  Thus, one needs to determine whether linear elasticity can be assumed 
before applying equations such as Hook’s law. However, many other definitions, such as the 
definition of normal stress and strain, apply regardless of linearity. We will consider nonlinear 
materials later. Below is a stress- strain diagram for structural steel showing these behaviors. 

 



Finally, all materials fail above critical values. Different materials fail in different ways. Brittle 
materials are stiff and remain linear until they fail by sudden fracture, while ductile materials 
undergo an irreversible plastic deformation   

The yield stress (or strength) of the material is the stress at which the material becomes plastic 
and yields. The ultimate stress (or strength) of a material is the highest stress withstood by a 
material. The ultimate stress is different for compressive, tensile and shear conditions, so even 
isotropic materials have three critical values that must be considered when calculating 
conditions that will cause a device to fail mechanically: the ultimate shear stress (USS), ultimate 
tensile stress (UTS) and ultimate compressive stress (UCS).  

An important skill for a bioengineer working with materials is thus to calculate internal stresses 
from external loads, and to compare these to USS, UTS and UCS to determine what level of 
external loads will cause material failure. Of course, we then use working conditions 
significantly below these levels to ensure that the device does not fail. The working  
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