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BIOEN 326 2013 LECTURE 11: BEAM DEFLECTIONS 

Also read Gere chapter 8 

Today we consider how the strains in beams accumulate over the length to change the shape of 
the beam. Specifically, we are interested in deflections of the beam. Even when every element 
remains within the proportional limit and has only small deformations, the beam may bend so 
extremely that it can bend 90 degrees or even bend into a full circle.  

  

As in the diagram above, we consider a beam with tangent angle 𝜃 at length s along the beam, 
with the neutral plane at position (𝑥, 𝑣). At length 𝑠 + 𝑑𝑠 along the curve, the neutral axis lies at 
position (𝑥 + 𝑑𝑥, 𝑣 + 𝑑𝑣) , and the tangent angle is 𝜃 + 𝑑𝜃. 

Thus, v is the deflection of the neutral plane of the beam above its initial position. We use v 
here to distinguish it from y, the height within the beam above the neutral plane.  

Now we consider geometry to determine how the deflection, v, depends on V(x), M(x), or other 
things we have already learned to calculate. We note that 𝑑𝜃 is identical to the 𝑑𝜃 that we 
considered when we asked how the curvature changes, so that 𝜅 = 𝑑𝜃

𝑑𝑠
.  

We also note that 𝜃 is the angle to the x-axis, so tan𝜃 = 𝑑𝑣
𝑑𝑥

, and 𝜃 = atan �𝑑𝑣
𝑑𝑥
�. 

Combining these gives 𝜅 = 𝑑𝜃
𝑑𝑠

=
𝑑�atan�𝑑𝑣𝑑𝑥��

𝑑𝑠
, since s is the same as x for small angles. 

Now we recall the derivative of arc tangent: 𝑑(atan 𝑥) = 1
1+𝑥2

, and we apply the chain rule twice, 
to get 

𝜅 =
1

1 + �𝑑𝑣𝑑𝑥�
2 ∙
𝑑2𝑣
𝑑𝑥2

∙
𝑑𝑥
𝑑𝑠
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Now recall that ds is the hypotenuse  and dv and dx the sides of a right triangle. Thus, 

𝑑𝑠
𝑑𝑥

=
√𝑑𝑥2 + 𝑑𝑣2

𝑑𝑥
= �1 + �

𝑑𝑣
𝑑𝑥
�
2

 

When we substitute this into the equation for 𝜅, and also substitute in 𝜅 = 𝑀(𝑥)
𝐸𝐼

 to get: 

𝑀(𝑥)
𝐸𝐼

= �1 + �
𝑑𝑣
𝑑𝑥
�
2

�
−3/2

∙
𝑑2𝑣
𝑑𝑥2

 

Which we rearrange to be a nonlinear second-order differential equation referred to as the beam 
equation: 

𝑑2𝑣
𝑑𝑥2

=
𝑀(𝑥)
𝐸𝐼

�1 + �
𝑑𝑣
𝑑𝑥
�
2

�
3/2

∙ 

To solve the beam equation, you will need two initial or boundary conditions. For example, if 
the beam is held at a solid support, you may know 𝑣(0) and 𝑑𝑣/𝑑𝑥(0), the position and angle at 
one end of the beam. Alternatively, for a beam supported at pins at two ends, you will know 
v(0) and v(L).  

If we can assume the tangent angle 𝜃(L) at the end of the beam is small, then we can make 
approximations that allow us to solve the beam equation.  For small angles, we can assume: 

𝑑𝑣
𝑑𝑥

≪ 1, 𝑠𝑜 �1 + �
𝑑𝑣
𝑑𝑥
�
2

�
3/2

~1 

Thus 

𝑑2𝑣
𝑑𝑥2

=
𝑀(𝑥)
𝐸𝐼

 

Example 1. Simple cantilever 

For the simple cantilever of previous examples, we learned 
that M(x) = xP.  

Thus, the ODE is: 

𝑑2𝑣
𝑑𝑥2

=
𝑃
𝐸𝐼
𝑥 

With initial conditions 𝑣(𝐿)  =  0, and 𝑑𝑣/𝑑𝑥(𝐿)  =  0, since there is a solid support at x = L. 

We can solve this by integrating twice: 

𝑑𝑣
𝑑𝑥

=
𝑃

2𝐸𝐼
𝑥2 + 𝐶1 
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𝑣 =
𝑃

6𝐸𝐼
𝑥3 + 𝐶1𝑥 + 𝐶2 

Then we use the initial conditions to solve for the 
constants of integration: 

𝑑𝑣
𝑑𝑥

(𝐿) =  0 =
𝑃

2𝐸𝐼
𝐿2 + 𝐶1 , 𝑜𝑟 𝐶1 = −

𝑃𝐿2

2𝐸𝐼
 

Then  

𝑣(𝐿) = 0 =
𝑃

6𝐸𝐼
𝐿3 −

𝑃𝐿2

2𝐸𝐼
𝐿 + 𝐶2 , 𝑜𝑟 𝐶2 =

𝑃𝐿3

3𝐸𝐼
 

 

So  

𝑣 =
𝑃

6𝐸𝐼
𝑥3 −

𝑃𝐿2

2𝐸𝐼
𝑥 +

𝑃𝐿3

3𝐸𝐼
 

In particular, we can ask about the deflection at x = 0, where the force is applied, a distance L 
from the base: 

𝑣(0) =
𝑃𝐿3

3𝐸𝐼
, 𝑜𝑟 𝑃 =

3𝐸𝐼
𝐿3

𝑣 

𝑘𝑐 = 3𝐸𝐼
𝐿3

 is called the cantilever spring constant. 

Note that the beam is bending upward, since M(x) = xP is positive, and deflects upward. This 
makes sense.  

Example 2: beam supported at either end, with uniform distributed load. 

Again, we solved for the bending moment already: 

𝑀(𝑥) =
𝑞𝑥(𝐿 − 𝑥)

2
 

Now we apply the small angle beam equation: 

𝑑2𝑣
𝑑𝑥2

=
𝑞𝑥(𝐿 − 𝑥)

2𝐸𝐼
=

𝑞𝐿
2𝐸𝐼

𝑥 −
𝑞

2𝐸𝐼
𝑥2 

And integrate twice: 

𝑣(𝑥) =
𝑞𝐿

3 ∗ 2 ∗ 2𝐸𝐼
𝑥3 −

𝑞
4 ∗ 3 ∗ 2𝐸𝐼

𝑥4 + 𝐶1𝑥 + 𝐶2  

The two supports are pins so do not constrain the angle, dv/dx, but do keep the deflection of 
both ends at x = 0.  

𝑣(0) = 0 = 𝐶2 
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𝑣(𝐿) = 0 =
𝑞𝐿

3 ∗ 2 ∗ 2𝐸𝐼
𝐿3 −

𝑞
4 ∗ 3 ∗ 2𝐸𝐼

𝐿4 + 𝐶1𝐿 

Thus 

𝐶1 = −
𝑞

12𝐸𝐼
𝐿3 +

𝑞
24𝐸𝐼

𝐿3 = −
𝑞𝐿3

24𝐸𝐼
 

So  

𝑣(𝑥) =
𝑞𝐿

12𝐸𝐼
𝑥3 −

𝑞
24𝐸𝐼

𝑥4 −
𝑞𝐿3

24𝐸𝐼
𝑥 

We can check this answer: 

𝑣(0) = 0 

𝑣(𝑥𝐿) =
2𝑞𝐿4

24𝐸𝐼
−

𝑞𝐿4

24𝐸𝐼
−

𝑞𝐿4

24𝐸𝐼
= 0 

 By symmetry, we expect v(x) to have a minimum value at L/2, so we should find that 𝑑𝑣
𝑑𝑥
�𝐿
2
� = 0 

𝑑𝑣
𝑑𝑥

(𝐿/2) =
3𝑞𝐿

12𝐸𝐼
�
𝐿
2
�
2

−
4𝑞

24𝐸𝐼
�
𝐿
2
�
3

−
𝑞𝐿3

24𝐸𝐼
=

𝑞𝐿3

16𝐸𝐼
−

𝑞𝐿3

48𝐸𝐼
−

𝑞𝐿3

24𝐸𝐼
=

𝑞𝐿3

48𝐸𝐼
(3 − 1 − 2) = 0 

Thus, we are pretty sure we have not made any mistakes. 

If we had values for L, q, E and I, we would also confirm at this point that the small angle 
approximation was valid, by seeing whether 𝑣 ≪ 𝐿. 

Solve the beam deflection equation numerically. 

If we cannot assume small deflections, the beam equation rarely has an analytical solution, but 
we can calculate it numerically, for example using MATLAB ode solvers. However, we need to 
remember that when we calculate M(x), we usually need to assume that the lateral forces are 
still acting perpendicular to the beam. If the beam bends so the tangent angle 𝜃 is not close to 
zero, then what was originally a lateral force becomes a combination of a lateral force and an 
axial force, and the M(x) and V(x) calculations using the original geometry are incorrect.  

 


