Blood Vessel Mechanics

Ying Zheng, Ph.D. Department of Bioengineering

BIOEN 326

10/31/2014

Vasculature in our body

A. structure:

- 100,000 km of pipes!
- total surface area 800-1000 m²
- 60,000 miles of capillaries
- diameters from 10 μm to 2 cm
- double network connected at smallest scale (anastomosed)

B. function:

- provide nutrients, oxygen to tissues and remove waste
- self-regulation/homeostasis, tissue remodeling and healing
- cellular, molecular trafficking

C. mechanics:

- Pressure: 5 120 mmHg
- Flow: 0.03 40 cm/s

Development of the Vasculature

Chicken embryos

Yolk sac vessels just after the onset of perfusion.

Connected tube formed.

Embryo 26 hours later than in A

Hierarchical structure formed.

(le Noble, Development 2004)

Development of the Vasculature

Mouse embryos:

Normal

impaired heart function (impaired contractility *Mlc2a-/-*).

When heart function is impaired, hierarchical branching does not develop

Flow and hydraulic pressure control vascular structure

(Lucitti, Development 2007)

A Typical Artery and a Typical Vein

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Blood Vessel Structure

Pressure and blood flow

Poiseuille's relationship: $\Delta P = \frac{8\mu lQ}{\pi r^4}$

(steady, laminar, pipe flow)

Stenosis, 54%

MRI, velocity mapping in thoracic aorta

Stenosis, w/o

(Canstein , MRM, 2006, 2007)

Mechanics: vessel wall

Longitudinal stress:

Hoop stress:

$$\sigma_z = F/A$$

= Pd² / ((d+2t)² - d²)

$$\sigma_{\theta} = PD_m / 2t$$

Vessel Wall Associated Pathologies

1. Atherosclerosis

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright @The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Normal Arteriole

Vessel Wall Induced Pathologies

2. Hypertensive Vascular Disease

Vessel Wall Induced Pathologies

3. Aneurysms

What are the structural components?

ARTERY/VEIN	% H ₂ O	%	% ELASTIN	C:E RATIO
		COLLAGEN		
Aorta	70.4 ± 0.4	45.5 ± 1.7	30.1 ± 1.7	1.58 ± 0.15
Carotid	71.1 ± 0.1	50.7 ± 2.1	20.1 ± 1.0	2.55 ± 0.13
Coronary	63.2 ± 1.0	47.9 ± 2.6	15.6 ± 0.7	3.12 ± 0.12
Femoral	68.0 ± 0.3	44.5 ± 1.4	24.5 ± 1.6	1.89 ± 0.14
Mesentary	70.8 ± 0.5	38.1 ± 1.7	26.5 ± 1.7	1.51 ± 0.15
Renal	70.4 ± 0.7	42.6 ± 1.6	18.7 ± 1.8	2.46 ± 0.27
Vena cava		35.07 ± 2.1	21.0 ± 3.7	1.67 ± 0.18
Jugular vein		41.8 ± 2.8	47.1 ± 3.1	0.89 ± 0.09
Femoral vein		47.0 ± 4.7	45.3 ± 2.6	1.04 ± 0.11

(Fischer GM & Llaurado JG, 1966; Zocalo, ISRN Physiology, 2013)

Structure of aorta

Vessel wall composition – aortic elastin

Longitudinal section

Cross-sectional section

(Wolinsky, Cir Res, 1964)

Vessel wall composition – aortic elastin

Aortic wall composition - elastin

Longitudinal section

P=250 mmHg

(f)

(g)

Aortic wall composition – elastin

circumferential section

Aortic wall composition – collagen

Longitudinal section

Aortic wall composition -collagen

circumferential section

Vessel wall – Non-linear elasticity

Heterogeneity: Two-phase materials Collagen: $E = 10^9$ dynes/cm² Elastin: $E= 3x10^6$ dynes/cm²

> $\sigma = E\varepsilon$ σ Collagen alone Combined Elastin alone ε Collagen 🚽 Elastin

Vessel wall composition - Aging

Diminished windkessel effect, hardening of the artery (fragmentation and loss of elastin)

(Wagenseil and Mecham, Physiol Rev 2009)

Vessel wall function - disease

pulmonary arteries - rat smoking.

(Liu and Fung, J Biomechanics, 1992)

Vessel wall function - hypertension

Rat cerebral artery

3-order resistive vessel

(Dunn, Hypertension, 1997)

Vessel wall function - disease

Load-free extension

What causes the change of vessel structure and function?

Learn from the development: In 1893, Thomas :

Vessel lumen size depends on blood flow

Vessel length depends on longitudinal force on connective tissues

Vessel wall thickness depend on pressure

Changes by the cells

ECs:

short term -> secrete vasoconstrictor or vasodilator to constrict or relax the smooth muscle cells

long term -> generate basement membrane

SMCs:

short term -> change diameter of artery wall in response to flow change.

long term -> change of elastin/collagen content (aneurysm), SMC replication

Collagen: I, III, V \rightarrow fibril-forming, responsible for vessel strength

Mechanotransduction of ECs

Ion channels, integrins, receptor Tyr kinases, apical glycocalyx, primary cilia, heterotrimeric G proteins, PECAM1, VE cadherin

(Hahn and Schwartz, Nat Rev Mol Cell Biology, 2009)

Mechanotransduction of SMCs

What do they sense:

Transmural pressure (120/80mmHg in arteries, 30-40mmHg in capillaries)

Vascular wall strain by pulsative pressure (coronary artery, carotid artery)

Circumferential, axial wall tension; radial compression Passive or active mechanics, myogenic tone Shear stress from luminal flow

Mechanotransduction of SMCs

How do they sense:

Increased transmural pressure **VSM** membrane depolarization Activating calcium entry \longrightarrow Hyperpolarization, Vessel constriction Activation of K_{ca} channels

GCaMP2 Transgenic Mice, Ach stimulation

(Tallini, Circ Res, 2007)

Application and Vascular Engineering

Acute hypertension

Atherosclerosis – SMC proliferation, matrix calcification

Coronary bypass vein grafts – when veins becomes artery – VSM induced fibrosis (collagen deposition)

Engineered vessel grafts always lack of elastin

C Healthwise, Incorporated