
BIOEN 326 2013 LECTURE 19: BEHAVIOR OF VISCOELASTIC MATERIALS 

Today we will consider how a viscoelastic material responds to specific tests, such as the creep 
test, the stress relaxation test, and a linear load/unload, or hysteresis test. To do this, we need to 
interpret the test to identify the initial conditions and forcing function, and then use these to 
solve the differential equation for the remaining system variable. We will use Laplace 
Transforms to solve these, since they are the most straightforward for systems models like this. 
One of your learning outcomes in this course is ability to use Laplace Transforms to solve 
engineering problems, so we will not be using any other methods, and you MUST use Laplace 
Transforms to solve these problems to get credit.  We do this because Laplace transforms are 
the most versatile way to solve linear systems, and you will need to be proficient in them for 
bioen 336. You have all learned these in your ODE prereq class, but if you need a refresher on 
the use of Laplace transforms, see the essential prior knowledge notes. Here, we will jump 
straight to applying them. 

These models are used to predict how a material will respond to a particular input.  For 
example, in the hysteresis and stress relaxation tests, we will prescribe the strain and want to 
know the stress that occurs in response, so the strain is the input and the stress is the output.  In 
the creep test, we use the stress as the input and the strain as the output. This is comparable to 
determining how voltage responds to current or vice-versa in an electrical system. 

Overview of Model Solving. 

Overview of model solving process: (“ETSIE”) 

1) Equations: Identify the correct ODE model for the material, and the correct input 
function and initial conditions to represent the experimental condition or test. 

a. A stress relaxation test jumps instantly to a new nonzero constant strain, and 
measures the stress response. Thus, the forcing function is 𝜖(𝑡) =  𝜖0𝜙(𝑡), where 
𝜙(𝑡) is the step function that goes from 0 to 1 at time t = 0, and we are solving for 
𝜎(𝑡). The material was not stressed before the test started, so the initial condition 
is 𝜎(0) = 0. We do not need an initial condition for the strain, because that is 
incorporated into the forcing function, which defined it as zero.  

b. A creep test jumps instantly to a new nonzero stress, and measures the strain 
response. Thus, the forcing function is 𝜎(𝑡) = 𝜎0𝜙(𝑡), we are solving for strain, 
and the initial condition is 𝜖(0) = 0. 

c. A hysteresis test increases strain linearly to a value, then decreases again. This 
can be done with various types of cycles, such as a triangular shape (linear 
increase and linear decrease) or a sinusoidal shape.   

2) Transform the systems model, IC, and input functions and combine to obtain a single 
transformed equation. I always let 𝑋(𝑠) = 𝐿[𝜖(𝑡)], and 𝐹(𝑠) = 𝐿[𝜎(𝑡)], since strain relates 
to distance X and stress relates to force F. (I don’t want to use capital S or epsilon or 
sigma as they get confusing). 

3) Simplify: Algebraically rearrange it to express the transformed output as a ratio of 
polynomials. If you have both nonzero initial conditions and nonzero forcing function, 

1 
 



you will have an answer that is the sum of two ratios of polynomials, one for the 
particular and one for the complementary solution. 

4) Inverse Transform the solution using partial fractions, lookup tables, and/or method of 
residues. 

5) Error check:  
a. Does your equation answer the question? Did you solve for the correct system 

property as the response, in terms of things that were provided in the question, 
and not anything you introduced? It is fine to introduce a new parameter as a 
function of others to simplify the way you provide your answer, but you need to 
include this definition as part of the answer.    

b. Check the units for the equation for the response. Is it appropriate for what the 
response is supposed to be? (eg, if the response is stress, it should be Pa).  

c. Does your equation match the ODE and IC? Plug your answer back into the 
ODE. Also, find the value at t = 0.  Check that these match the problem.  

d. Identify characteristic time constants and check each time constant to make sure 
it has units of time. (e.g. if the equation includes  “𝑒𝑥𝑝(−𝑎𝑡)”, then make sure 
that 𝑎 has units of 1/sec, so the time constant 𝜏 = 1/𝑎 will have units of time.  
Another way to think of this is that the argument of an 𝑒𝑥𝑝, 𝑠𝑖𝑛 or similar 
function should be unitless. You should also ask if the time constants make 
sense. Eg, if the viscosity 𝜂 is increased, you expect the response to be slower, so 
the time constant should get bigger. This means that in  “𝑒𝑥𝑝(−𝑎𝑡)”, a should 
have the eta in the denominator so 1/a has it in the numerator. 

e. Calculate the behavior at t = 0, and 𝑡 = ∞. The first should be the IC, and the 
second the equilibrium behavior (if the forcing function is not constant). Also, 
sketch the full response, with the time constant. You may also want to sketch the 
input, and even the structure of the model. Then, ask if the relationship between 
these are logical. While you may at first struggle, your intuition and 
understanding will grow with practice. First make sure you know how a single 
viscous or elastic element should act for the input in question. Then consider 
how the response should be if these elements are in parallel vs in series. Check 
your answers against the many responses we already worked out.   Also, see the 
logic in the examples here. 
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Example 1: Stress Relaxation of Voigt 
How will a Voigt model respond in a stress relaxation test? Recall 
that the Voigt model is where the elastic and viscous elements are 
in parallel. 

Equations:  

We  showed in the previous lecture that the system response is: 𝐸𝜖 + 𝜂 𝑑𝜖
𝑑𝑡

= 𝜎. 

For stress relaxation, we set 𝜖(𝑡) = 𝜖0∅(𝑡).   We need to find 𝜎(𝑡).  The IC is 𝜎(0) = 0. 

Transform:  

Let 𝑋(𝑠) = 𝐿[𝜖(𝑡)], and 𝐹(𝑠) = 𝐿[𝜎(𝑡)].  This means that 𝐿 �𝑑𝜖(𝑡)
𝑑𝑡

� = 𝑠𝑋(𝑠) − 𝜖(0). 

Therefore, the equation transforms to  𝐸𝑋(𝑠) + 𝜂�𝑠𝑋(𝑠)− 𝜖(0)� = 𝐹(𝑠). 

Recall that 𝐿�𝜙(𝑡)� = 1/𝑠, so the transform of 𝜖(𝑡) is  𝑋(𝑠) = 𝜖0/𝑠, and 𝜖(0) = 0. 

Simplify:  

We are trying to find the output 𝐹(𝑠) so we rearrange to get 𝐹(𝑠) as function of 𝑋(𝑠): 

𝐹(𝑠) = 𝑋(𝑠)(𝐸 + 𝜂𝑠)− 𝜂𝜖(0) 

We combine this to give: 𝐹(𝑠) = 𝜖0
𝑠

(𝐸 + 𝜂𝑠) − 0, which becomes 𝐹(𝑠) = 𝜖0𝐸
𝑠

+ 𝜖0𝜂 

Invert:   

This can be transformed quickly since each term is a constant times something that can be found 
in a look-up table such as http://en.wikipedia.org/wiki/Laplace_transform: 𝐿�𝛿(𝑡)� = 1 and 
𝐿�𝜙(𝑡)� =  1/𝑠. Thus,  𝜎(𝑡) = 𝐸𝜖0𝜙(𝑡) + 𝜖0𝜂𝛿(𝑡) 

Error check: 

1) The equation solves for stress, as required.  In a stress relaxation test, 
the strain is held to 𝜖0; E and 𝜂 are model parameters. 𝜙(𝑡) and 𝛿(𝑡) are 
standard defined functions. So everything on the right is given. 

 2) Units: each term has units Pa (since 𝐸 has units Pa, 𝜖0 is strain so 
unitless, 𝛿(𝑡) has units 1/sec (recall that ∫ 𝛿(𝑡)𝑑𝑡 = 1) and 𝜂 is Pa*sec).  

3) Plug back in. To do this, plug in 𝜖(𝑡) = 𝜖0𝜙(𝑡) and recall that 
𝑑𝜙(𝑡)
𝑑𝑡

= 𝛿(𝑡), so 𝐸𝜖 + 𝜂 𝑑𝜖
𝑑𝑡

= 𝐸𝜖0𝜙(𝑡) + 𝜂𝜖0𝛿(𝑡) = 𝜎(𝑡), so check yes. 

4) In this case, we have no characteristic time constant; response is instant. 

5) Sketch this to understand the behavior. Note that there is an infinitely high impulse function 
as the material is first stretched, at t = 0. This makes sense, because the viscous element must 
stretch infinitely fast in the stress relaxation test, and the stress is proportional to this speed. 
Next note that the stress is simply 𝐸𝜖0 for all t > 0. Again, this makes sense; the material is no 
longer changing shape, so the viscous element does not hold any stress, and the stress is simply 
determined by Hooke’s law over the elastic element.  
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Example 2: Creep Test of Voigt 

Equations 

In a creep test, we set 𝜎(𝑡) = 𝜎0𝜙(𝑡) which also means 𝜎(0) =  0, and we need to find 𝜖(𝑡). 
Before t = 0, the material was relaxed, so 𝜖(0) = 0. 

Transform.  

We already derive the transform of the ODE: 𝐸𝑋(𝑠) + 𝜂�𝑠𝑋(𝑠) − 𝜖(0)� = 𝐹(𝑠). 

The transform of the input is  𝐹(𝑠) = 𝜎0/𝑠. 

Simplify:  

Since 𝜎(𝑡) is the input and 𝜖(𝑡) is the output in a creep test, we want to rearrange to get 𝑋(𝑠) as 
function of 𝐹(𝑠): 𝑋(𝑠)(𝐸 + 𝜂𝑠) = 𝐹(𝑠) + 𝜂𝜖(0), so 𝑋(𝑠) = 1/𝜂

(𝐸/𝜂+𝑠)𝐹(𝑠) + 1
(𝐸/𝜂+𝑠) 𝜖(0). 

We then replace the initial and input conditions with the expressions indicated above: 

Thus  𝑋(𝑠) = 1/𝜂
(𝐸/𝜂+𝑠)

 𝜎0
𝑠

=  𝜎0/𝜂
(𝐸/𝜂+𝑠)𝑠

  

Invert.  

The easiest way to invert this is to remember the following Laplace transform: 𝐿[(1 −
𝑒−𝑎𝑡)∅(𝑡)] = 𝑎

𝑠(𝑠+𝑎), which  you will derive in your homework. 

To use this, we can just pull out the right coefficient to leave the “a” in the numerator : 

𝑋(𝑠) =

 𝜎0
𝜂

�𝐸𝜂 + 𝑠� 𝑠
=

 𝜎0
𝐸

𝐸
𝜂

�𝐸𝜂 + 𝑠� 𝑠
 

And then take the inverse transform, to get: 

𝜖(𝑡) =
𝜎0
𝐸 �1 − 𝑒−

𝐸
𝜂𝑡� 

Error check. 

1. Answer: we solved for strain as a function of the stress applied, as needed for creep test.  
2. The units are Pa/Pa, is unitless. 

3. Plug the solution into the ODE: 𝐸𝜖 + 𝜂 𝑑𝜖
𝑑𝑡

= 𝜎 with 𝜎(𝑡) = 𝜎0 and 𝜖(𝑡) = 𝜎0
𝐸
�1 − 𝑒−

𝐸
𝜂𝑡� 

gives 𝐸 𝜎0
𝐸
�1 − 𝑒−

𝐸
𝜂𝑡� + 𝜂 𝜎0

𝐸
�− 𝐸

𝜂
� �−𝑒−

𝐸
𝜂𝑡� = 𝜎0, or 𝜎0 �1 − 𝑒−

𝐸
𝜂𝑡� + 𝜎0𝑒

−𝐸𝜂𝑡 = 𝜎0, check. 

4. The time constant is 𝜏 = 1
𝑎

= 𝜂/𝐸. This has units of Pa*s/Pa, 
so units time, and gets bigger (slower) with more viscosity.  

5. To sketch this, note that it goes from 0 at 𝑡 = 0 to 𝜖 = 𝜎0
𝐸

 at 
𝑡 = ∞. When the viscous element doesn’t matter, this looks 
like a spring and we just have hooks law. Check. 
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If we hadn’t found that transform, we could have used other methods: 

We need to separate this into the sum of two fractions: 

𝑋(𝑠) =  𝑋𝑃(𝑠) =
𝐴

(𝐸/𝜂 + 𝑠) +
𝐵
𝑠

   

We can find A and B using the method of partial fractions, in which we multiply top and 
bottom of each term by the denominator of the other term(s), so we can add them together to 
get the original expression. We can always use this method. When we do this, we get one 
equation: 

𝐴𝑠 + 𝐵 �
𝐸
𝜂

+ 𝑠� =  𝜎0/𝜂 

But this is essentially two equations, one for the constant terms and one for the s-terms, because 
this needs to be true for all s: 

𝐵𝐸
𝜂

=
 𝜎0
𝜂

 𝑎𝑛𝑑 𝐴𝑠 + 𝐵𝑠 = 0  

This quickly gives us: 

 𝐵 =
 𝜎0
𝐸
𝑎𝑛𝑑 𝐴 = −  

 𝜎0
𝐸

 

Alternatively, we can find A and B using the method of residues, also called the Heaviside 
cover-up method. This method is easy to use here because the roots are distinct. If you don’t 
remember or haven’t seen this, see http://en.wikipedia.org/wiki/Heaviside_cover-up_method. 
You evaluate X(s) at each root after multiplying by the term that will prevent the denominator 
from going to zero when you multiply by that root:   

𝐴 =  �
𝐸
𝜂

+ 𝑠�𝑋(𝑠) 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑎𝑡 𝑠 =  −
𝐸
𝜂

  

𝐵 =  𝑠𝑋(𝑠) 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑎𝑡 𝑠 =  0 

That is: 

𝐴 =
 𝜎0𝜂
𝑠

 @ 𝑠 =  −
𝐸
𝜂

, 𝑠𝑜  𝐴 = −
 𝜎0𝜂
𝐸
𝜂

= −
𝜎0
𝐸

     

𝐵 =  
 𝜎0/𝜂

(𝐸/𝜂 + 𝑠)  @ 𝑠 =  0, 𝑠𝑜 𝐵 =
 𝜎0𝜂
𝐸
𝜂

=
𝜎0
𝐸

  

Reassuringly, the two methods gave the same answer, and we plug these back in: 

𝑋(𝑠) =
−𝜎0𝐸

(𝐸/𝜂 + 𝑠) +
𝜎0
𝐸
𝑠

   

Now take the inverse transform, recalling that 𝐿−1 � 1
𝑠+𝑎

� = 𝑒−𝑎𝑡 and 𝐿−1 �1
𝑠
� = ∅(𝑡): 

𝜖(𝑡) =
𝜎0
𝐸 �1 − 𝑒−

𝐸
𝜂𝑡� 
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Nonzero initial conditions 

We may also ask what happens to the material when we remove the stress in a creep test, after 
waiting until the strain had reached equilibrium.  This means that the initial condition will be 
𝜖(0) = 𝜎0

𝐸
, since that was the value in the previous calculation at infinite time. Thus, we have 

nonzero initial conditions, so we need to keep the initial condition in the equation: 

𝑋(𝑠) =
1/𝜂

(𝐸/𝜂 + 𝑠)𝐹
(𝑠) +

1
(𝐸/𝜂 + 𝑠) 𝜖

(0) 

 

Recall that a linear response can be separated into the Particular solution that is the response to 
just the inPut, and the Complementary that is just the response to the Initial Conditions. Thus, 
the equation above can be solved as two separate equations: 

𝑋𝑃(𝑠) =
1/𝜂

(𝐸/𝜂 + 𝑠)𝐹
(𝑠) 

𝑋𝐶(𝑠) =
1

(𝐸/𝜂 + 𝑠) 𝜖
(0) 

We can also write this as 𝑋𝑃(𝑠) = 𝐻(𝑠)𝐹(𝑠), where 𝐻(𝑠) is the system response: 

𝐻(𝑠) =
1/𝜂

(𝐸/𝜂 + 𝑠) 

This time, however, the stress is zero, so 𝐹(𝑠)  =  0, so the particular solution is 0. Thus, 

𝑋(𝑠) =  𝑋𝐶(𝑠) =
1

(𝐸/𝜂 + 𝑠) 𝜖
(0) =

𝜎0/𝐸
(𝐸/𝜂 + 𝑠)  

This can be recognized at the transform of the exponential decay, so: 

𝜖(𝑡) =
𝜎0
𝐸
𝑒−

𝐸
𝜂𝑡  

This time, the equilibrium strain is zero, which makes sense because we have removed all 
stress. The initial value is indeed the initial condition, and the characteristic time is the same.  
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Response of the three models to Creep and Stress Relaxation tests: 

The derivations of the response of the Maxwell and Kelvin models are left to the reader or as 
homework, but here we summarize the different behaviors of the three models: 

Stress relaxation test: 

Voigt:  𝜎(𝑡) = 𝐸𝜖0∅(𝑡) + 𝜖0𝜂𝛿(𝑡) 

Maxwell:  𝜎(𝑡) = 𝐸𝜖0𝑒
−𝐸𝜂𝑡 

Kelvin:   𝜎(𝑡) = 𝜖0𝐸𝑝 + 𝜖0𝐸𝑠𝑒
−𝐸𝑠𝜂 𝑡 

 

 
Creep Test: 

Voigt:  𝜖(𝑡) = 𝜎0
𝐸
�1 − 𝑒−

𝐸
𝜂𝑡�𝜙(𝑡) 

Maxwell:  𝜖(𝑡) = 𝜎0
𝐸

+ 𝜎0
𝜂
𝑡  

Kelvin:  𝜖(𝑡) = 𝜎0
𝐸𝑝
−  𝜎0𝐸𝑠

𝐸𝑝�𝐸𝑠+𝐸𝑝�
𝑒−𝑎𝑡, or 𝜖(𝑡) = 𝜎0

𝐸𝑝
(1 − 𝑒−𝑎𝑡) +  𝜎0

𝐸𝑠+𝐸𝑝
𝑒−𝑎𝑡  where 𝑎 = 𝐸𝑠𝐸𝑝

𝜂�𝐸𝑠+𝐸𝑝�
 

 

 

𝜏 = 𝜂/𝐸𝑆  

𝜏 = 𝜂�𝐸𝑠+𝐸𝑝�
𝐸𝑠𝐸𝑝
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