
BIOEN 326 2013 LECTURE 24: ELASTIC YIELDING AND PHASE TRANSITIONS 

While elastic strain hardening has long been studied for biological and biomaterials, the 
functional significance and the molecular basis of elastic yielding are only recently understood.  
Indeed, the community has not settled on a name for the phenomenon, and elastic yielding is 
simply my choice. Elastic yielding usually occurs when many subunits or elements within a 
fiber or material switch to an alternative longer conformation. The combination of these many 
related conformational changes is referred to as a phase transition. The phase transition does 
not occur instantly, so elastic yielding is usually viscous as well. Rapid phase transitions result 
low hysteresis, low energy loss, and low heating upon repeated changes in stress or strain. This 
is called resilience. In contrast, slow phase transitions result in high hysteresis, which allows 
energy dissipation during rapid stretch and relaxation. Here we address the functional 
advantages of yielding, resilience and energy absorption, as well as the molecular basis of and 
elastic yielding and phase transitions. 

Functional Advantage of Elastic Yielding 

As you have seen, the geometry of an object and external load can cause nonuniform stress 
within the object. When one element is exposed to higher stress than the rest of the object, we 
refer to this as stress concentration. If the stress in this element is high enough to cause material 
failure, the stress originally supported by this element must transfer to a nearby element, which 
then fails in turn. This is called crack propagation, and leads to total failure of the object or 
device.  Even if a device or component is designed in a way to prevent stress concentration, 
small discontinuities in the material can cause stress concentration and failure.  

To picture stress concentration, cut a slit in a piece of paper (for example, by folding it and 
tearing a line.) Then, pull the paper parallel to the slit, and note that it doesn’t tear. But, if you 
pull the material perpendicular to the slit, you can see the stress concentration at the edges of 
the slit as the crack propagates through the paper: 

  
Essentially the same thing happens when you peel a piece of tape off a surface. If you pull the 
tape parallel to the surface (as in the left panel below), it is hard to remove, since the stress is 
distributed over the entire tape, but if you pull the tape at an angle from the surface (right three 
panels below), the stress is concentrated onto the edge of the adhesive surface.  
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However, stress concentration depends on the mechanical 
properties of the material as well as the geometrical 
considerations described above. Consider an idealized 
description of an adhesive tape, held to a hard surface by a 
series of parallel fibers. The 𝑖𝑡ℎ fiber supports a force 𝑓𝑖. The 
force on the tape, F, equals the sum of forces on the 
individual 𝐹 = ∑𝑓𝑖. In turn, the force on the fibers depends 
on their extension 𝑥𝑖 and mechanical properties. If the fibers 
have linear behavior (𝑓𝑖 = 𝑘𝑥𝑖), then force is highest on the 
most extended fiber at the edge of the peel (stress 
concentration), so this will be the first to break, 
redistributing force onto the neighboring fibers (crack 
propagation). If the fibers exhibit strain-hardening, the 
situation is even worse. However, if the fibers yield, many 
fibers will be exposed to the same yield force �𝑓𝑖 = 𝑓𝑦𝑖𝑒𝑙𝑑� in 
spite of varied extensions. Thus, yielding elasticity prevents 
stress concentration and crack propagation. Because of this, 
adhesives are often made of a ductile material that yields 
plastically into long fibers. However, plastic deformation is 
irreversible so these adhesives are damaged after one use. In 
contrast elastic yielding allows repeated use.  

Elastic yielding can also protect materials from tearing. In 
one study (3), simulations of a network of spectrin showed 
that when the material is pulled perpendicular to a tear, the 
individual fibers stretch until the hole re-orients to be 
parallel to the pull direction, so there is little or no stress 
concentration at the edges of the tear. Spectrin is responsible 
for most of the elastic behavior of red blood cells, so this may help prevent tearing when blood 
cells squeeze through small capillaries. The full functional significance of this elastic yielding 
remains an open area of research, but the advantages of preventing crack propagation are clear.  

Functional Advantages of Resilience and Energy Absorbtion 

Elastic yielding describes the behavior of materials when stressed slowly enough to reach 
equilibrium, so that stress is purely a function of strain, with no history dependence. However, 
the kinetics, or speed at which equilibrium is reached is also important to material behavior, 
particularly when strain or stress fluctuates rapidly. In some applications, it is important to 
transmit stress to strain rapidly within losing energy, so resilience is important. For example, 
tendons are highly resilient, because we want the stress created by our muscles to be converted 
to strain, or movement, without wasting energy or heating the tendon. Tendons in moth’s 
wings operate are very resilient even at high frequencies.  In other applications, such as 
earthquake protection, it is important to dissipate vibrational energy without permanent 
deformation.  

 

 

 

 Figure 4. Yielding prevents 
tearing. Force on fibers is: red > 
yellow > blue. From (3) 
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Molecular Basis of Elastic Yielding. 

Elastic yielding can occur in materials as different in structure and stiffness as metallic crystals, 
proteins and lipid membranes. These materials all undergo a phase transition: the 
nanostructure elements within the material switches from a native phase that is shorter in 
length to an alternative phase that is longer in length.  This phase transition absorbs a lot of 
energy, and essentially buffers the force to remain near some critical force at which both phases 
are equal in energy. This is similar to how a phase transition such as melting vs freezing of ice 
acts to maintain the temperature of a bath near the phase transition (freezing point) temperature 
as energy is added or removed from the bath.  

Metallic crystals such as gold-cadmium undergo a phase transition from a crysallographically 
more ordered (Austenite), to less ordered (Martensite) phase. This phase transition typically 
allows 10% strain, compared to 0.3% tolerated by most metals within the elastic limit. These 
materials are thus very ductile, but since the phase transition is reversible, they return to their 
native shape when force is removed, so are elastic. In contrast, most metals are only ductile in 
the plastic regime. These phase transitioning 
metallic crystals are called shape memory allows 
(SMAs).  

Proteins often undergo conformational changes. 
For example, titin is a protein in muscle that is 
contains nearly 250 domains in a single 
polypeptide, each of which folds up into a globular 
folded structure that is connected to the next by a 
few amino acids, so that the intact molecule looks 
like beads on a string, as illustrated in the upper 
panel of Figure 5. When a polypeptide 
containining several domains of titin is extended 
(2), it exhibits strain-hardening behavior as the 
string of beads stretches like an entropic spring. 
However, as domains unfold one at a time, the 
force drops dramatically before increasing as a 
longer entropic spring, creating a sawtooth patten 
(Figure 5 middle panel). When the entire titin 
molecule with hundreds of domains is stretched 
(4), the longer softer entropic spring and lower 
strain rate damps out the sawtooth pattern (Figure 
5, lower panel), but the strain hardening of the 
entropic spring (between a and c), yielding due to 
unfolding (between c and d) and hysteresis due to 
the rapid strain rate relative to the rate of 
unfolding and refolding (path b-c-d versus d-e-b) 
are clearly visible. 

Figure 5. Structure and elastic behavior and 
of single titin molecules. Upper panel: 
structure. Middle Panel: force-extension 
graph for extension of a short segment of 
titin  (2). Upper panel: force-extension 
graph for extension and relaxation of an 
entire titin molecule (4). 
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Quantitative model for Elastic Behaviors due to Phase Transitions 

To understand phase transitions, we simply need to apply the molecular biophysics of 
conformational changes, which we learned previously, to each element or subunit in the 
material or fiber. We call the state that is lower in energy to be state 1, (Δ𝐺0 = 𝐺20 − 𝐺10 > 0). 
Since 𝑃2

𝑃1
= exp �− 𝛥𝐺

𝑘𝐵𝑇
�, this means that 𝑃20 < 𝑃10, so state 1 is the native state (most probable) 

without force. When we add a force, 𝑓, across the subunit, Δ𝐺(𝑓) =  Δ𝐺0 −  𝑓 ∙ Δ𝑥(𝑓), where  
Δ𝑥(𝑓) = 𝑥2(𝑓) − 𝑥1(𝑓) is the difference in length between the two states at 𝑓. If Δ𝑥(𝑓) > 0 for 
most 𝑓, then for some force, the two states will be equally likely: Δ𝐺(𝑓) =  Δ𝐺0 −  𝑓 ∙ Δ𝑥(𝑓) = 0. 
As before, we call this the equilibrium force, 𝑓𝑒𝑞, which is defined by 𝑓𝑒𝑞Δ𝑥�𝑓𝑒𝑞� = Δ𝐺0. That is, 
if the nonnative state is longer under force, then enough force will induce this state.  

To solve for the equilibrium force, we need an equation for Δ𝑥�𝑓𝑒𝑞�. In many cases, we can use 
the linear approximation, Δ𝑥(𝑓) = 𝑥20 − 𝑥10 + 𝑓 � 1

𝜅2
− 1

𝜅1
�.  This means that our equation for the 

equilibrium force is 𝑓𝑒𝑞 = Δ𝐺0

Δ𝑥0+𝑓𝑒𝑞�
1
𝑘2
− 1
𝑘1
�
, or 𝑓𝑒𝑞Δ𝑥0 + 𝑓𝑒𝑞2 �

1
𝑘2
− 1

𝑘1
� − Δ𝐺0 = 0, which can be solved 

with the quadratic formula. If the two states have similar elasticity, or are very stiff, then this 
reduces to Δ𝑥(𝑓) = 𝑥20 − 𝑥10, so 𝑓𝑒𝑞 = Δ𝐺0

Δ𝑥0
. However, it is common that state 2 is an entropic 

spring. We can estimate Δ𝑥(𝑓) using the linear spring approximation for the spring constant of 
the entropic spring, 𝜅2 = 3𝑘𝐵𝑇

2𝐿0𝐿𝑝
 if 𝑓𝑒𝑞 is sufficiently low, or the full extension approximation, 

𝑥2 = 𝐿0 if 𝑓𝑒𝑞 is sufficiently high. We can test our assumption by calculating 𝑥2�𝑓𝑒𝑞� after finding 
𝑓𝑒𝑞, and comparing this to the approximation we used to find it. If neither assumption is 
appropriate, we need to solve for 𝑓𝑒𝑞 numerically (eg iteratively or using optimization for 
𝑓𝑒𝑞Δ𝑥�𝑓𝑒𝑞� = Δ𝐺0). 

To a first approximation, when stretched 
slowly enough to avoid hysteresis, a fiber or 
molecule with N identical subunits will 
extend from 𝑁𝑥10 to 𝑁𝑥1(𝑓𝑒𝑞) between 0 and 
𝑓𝑒𝑞 according to the elasticity of state 1, but 
will then yield at 𝑓𝑒𝑞 to extend from 𝑁𝑥1(𝑓𝑒𝑞) 
to 𝑁𝑥2(𝑓𝑒𝑞). When force increases further, it 
will extend according to the elasticity of 
state 2. This idealized force-extension profile 
is illustrated in Figure 6. However, there are several things that make the actual force-extension 
profile of a yielding fiber more complicated.  

First, even if state 1 is globular and acts like a linear spring for an isolated subunit, a string of 
many subunits will act approximately like an entropic spring with a contour length 𝑁𝑥1(𝑓) and 
a persistence length of 𝑥1(𝑓). That is, it will be shorter than 𝑁𝑥1(𝑓), softer than 𝜅𝑁 = 𝜅1/𝑁, and 
will exhibit strain-hardening elasticity. This is illustrated in Figure 7. However, since 𝑟 
approaches 𝐿0 as forces increases for an entropic spring, the length will approximate 𝑁𝑥1(𝑓). 

Figure 6. Idealized force extension profile. 
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Indeed, in Figure 5, you can see the near zero force in 
the initial stages showing that very low forces are 
sufficient to extend the  including a near zero force 
while waiting to reach theif 𝑓𝑒𝑞 is sufficiently high. The 
entropic spring behavior prior to yielding is clear in 
Figure 5, middle and lower panels. However, we will 
ignore this for calculations in this class, since even 
small forces extend enough to ignore the difference.  

Second, the plateau is not flat in a protein like titin 
where the phase transition occurs independently. An 
independent phase transition means that each subunit 
undergoes the transition dependent on the force, but 
independent of the state of the neighboring subunits. Protein unfolding is usually independent 
since the subunits are already not touching each other when the string of beads is stretched. In 
this case, the average length of each subunit depends on the probability of existing in each state. 
𝑥(𝑓) = 𝑃1(𝑓)𝑥1(𝑓) + 𝑃2(𝑓)𝑥2(𝑓). The length of a polymer with N subunits is thus determined by 
a wormlike chain with a contour length 𝐿(𝑥) = 𝑁𝑥(𝑓). This means that the length increases 
gradually from 𝑁𝑥1(𝑓) to 𝑁𝑥2(𝑓) over a narrow range of force. This may explain the gradual 
increases from point c to point d in Figure 5. If we assume Δ𝑥 is independent of force, we define 
the critical force as 𝑓𝑐 = 𝑘𝐵𝑇

Δ𝑥
.  The critical force increases the equilibrium ratio by e-fold: 

𝐾𝑒𝑞(𝑓 + 𝑓𝑐) = exp �−𝛥𝐺(𝑓)−𝑓𝑐Δ𝑥
𝑘𝐵𝑇

� = 𝐾𝑒𝑞(𝑓) exp(1). Since 𝑃2 = 𝐾𝑒𝑞
1+𝐾𝑒𝑞

 the polymer changes from 

27% to 73% state 2 between 
𝑓𝑒𝑞 − 𝑓𝑐 and  𝑓𝑒𝑞 + 𝑓𝑐. In contrast, 
the yielding at 𝑓𝑒𝑞 is perfectly flat 
if the phase transition is 
cooperative. A cooperative phase 
transition is one where the state 
of one subunit affects the state of 
the neighbor, so that the phase 
transition occurs preferentially at 
the ends of the polymer. In this 
case, there is a boundary between 
the section of polymer in state 1 
and that in state 2 (see Figure 8). The boundary moves forward or backwards according to 
𝐾𝑒𝑞(𝑓) but in due time, it moves all the way to the preferred state.   

However, even for the independent phase transitions, the slope of the plateau is shallow if 
𝑓𝑐 ≪ 𝑓𝑒𝑞. In this case, the fiber behavior is primarily affected by the equilibrium force, regardless 
of whether the transition is cooperative or independent. 

Quantitative model of viscoelastic behaviors due to phase transitions. 

The discussion above assumed that the material was tested in a way that we only considered 
the thermodynamic equilibrium, so we did not consider kinetics. However, phase transitions 

Figure 7. Elasticity of polymer with N 
subunits in state 1, where each 
subunit has length 𝑥1(𝑓) =  𝑥10 + 𝑓𝜅1 

Figure 8. Independent and Cooperative Phase Transitions. 
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may also cause creep, stress relaxation, and strain hardening. Here we will consider how to 
calculate these behaviors on single polymers undergoing phase transitions.   

Recall that the equilibrium constant can also be expressed as the ratio of kinetic constants, 
𝐾𝑒𝑞 = 𝑘12

𝑘21
, and that the rate constants are exponentially affected by force as controlled by the 

distance between each low energy state and the transition state: 𝑘12(𝑓) = 𝑘120 exp �𝑓𝛥𝑥1𝑡(𝑓)
𝑘𝐵𝑇

�.  

Calculating 𝛥𝑥1𝑡(𝑓) involves the same issues as calculating Δ𝑥(𝑓), in that you need to determine 
whether to use the constant estimate 𝛥𝑥1𝑡0 , the linear estimate 𝛥𝑥1𝑡0 + 𝑓 � 1

𝜅𝑡
− 1

𝜅1
� , or the full 

calculation based on nonlinear elasticity of the low energy and transition states. 

These rate constants can be used to write a differential equation for the probability of being in 
state 2:  𝑑𝑃2

𝑑𝑡
= 𝑘12(𝑓)𝑃1 − 𝑘21(𝑓)𝑃2.  Combining this with 𝑃1 = (1 − 𝑃2) gives  

𝑑𝑃2
𝑑𝑡

= 𝑘12(𝑓)− �𝑘12(𝑓) + 𝑘21(𝑓)�𝑃2 

We can use this to solve for the probability of being in state 2 if we know the initial condition 
for 𝑃2, and have an equation for 𝑓(𝑡). If there is a polymer with a large number of subunits, N, 
then we can ignore the stochastic switching between states for each subunit, and use the 
probability to calculate the fraction in state 2 over time: 𝑁2(𝑡) = 𝑁𝑃2(𝑡). From the fraction of 
subunits in each state and the lengths 𝑥1�𝑓(𝑡)� and  𝑥2�𝑓(𝑡)� we can calculate the approximate 
length of the polymer, as 𝑋(𝑡) = 𝑁𝑃2(𝑡) 𝑥2�𝑓(𝑡)� + 𝑁(1 − 𝑃2(𝑡)𝑥1�𝑓(𝑡)�. Calculating the exact 
length is complicated if one of the conformations is a linear spring as a single subunit but an 
entropic spring as a polymer of subunits, but even in that case, the effect is usually small.   

We can use this differential equation approach to predict or understand responses of yielding 
materials to various viscoelastic tests. However, for tests in which we control the length, the 
situation requires iterative solutions since we don’t know how much of this controlled length is 
used by each phase. If we control the force, we can use the differential equation to solve it, but 
this requires that we repeatedly determine 𝑟(𝑓) for worm-like chains, for which we don’t have 
an analytic equation.  In all these cases, force is changing over time, so the coefficients in the 
differential equation are not constant, so we can’t use Laplace transforms to solve them. Instead, 
we must use numerical methods to solve the nonlinear differential equations. Between these 
many issues, this is beyond the scope of this class. 

However, if we perform a creep test, or any other experiment where the force is changed with a 
step function after being held at one force long enough to stop changing length, the force is a 
constant, so the transition rates are constant with respect to time, so we can use Laplace 
Transforms to solve the differential equations. In the homework, you will use this approach to 
demonstrate that a material will exponentially approach the new length at the sum of the two 
rates. For example, if we stretch a material to induce the phase transition to state 2, and then 
remove force, it will recover to the length that corresponds to 𝑃20 at a rate 𝑘120 + 𝑘210 . An 
exponential decay or approach has reached 99% of its final value by 5 time constants, so the 
transition is essentially complete by 𝑇 = 5

𝑘12(𝑓)+𝑘21(𝑓). 
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We can use this fact to estimate how slow a polymer must be stretched to avoid hysteresis; For 
any force, we can estimate the strain at that force from the equation above for 𝑁𝑥(𝑓), and the 
time needed to reach equilibrium from the equation above for T, and divide to get a strain rate. 

Materials properties. 

The discovery that some fibers exhibit elastic yielding is still very new.  In most cases, much of 
the research performed on this topic is at the nanoscale level of single fibers, and the role in 
macroscopic (or even microscopic) behaviors still remains to be determined.  Estimating the 
tangent Young’s modulus from the force-extension of the fibers is not accurate, because at larger 
strains, the yielding of single fibers is off-set by the many mechanisms for strain-hardening 
including orientation of fibers, and the strain-hardening that occurs before or after yielding. For 
these reasons, it is hard to predict whether the 
yielding or strain or hardening behaviors will 
dominate the elastic properties of the 
materials.  However, even if the material does 
not exhibit yielding, yielding of the fibers may 
protect these materials from crack propagation.  

Fibrin is one of the few proteins for which 
people have performed force microscopy of 
individual molecules and thin fibers, and also 
the elastic properties of a network, or material. 
Fibrinogen is the most abundant protein in the 
blood and is composed of both a long section 
of alpha helices and a few globular domains. When initiated by a clotting cascade, fibrinogen 
polymerizes into thin fibrin fibers through covalent end-to-end interactions, then to thicker 
fibers through lateral interactions, and finally a  cross-linked network referred to as the fibrin 
clot. Force experiments on individual fibers or monomers show that they yield when the alpha 
helices extend and the globular domains unfold. The material (a clot) exhibits the nonlinear 
behavior shown by the blue curve in the figure on the right (5). Note that the initial behavior is 
nearly linear, followed by strain hardening, with the yielding behavior barely or not at all 
visible.  A multi-scale model of a network of fibers that each behave like a single fibrin fiber 
nearly reproduced this behavior, as shown by the black line (5).  

Examples of yielding fibers 

Unfolding domains 

Titin is not the only protein that exhibits unfolding under force. The extracellular protein 
fibronectin also has many “type 3” domains that unfold under force, allowing fibronectin fibers 
to elongate up to four-fold their native length when pulled by contracting cells. Fibronectin 
fibers are laid down by fibroblasts during wound repair and form a matrix for cells to invade as 
part of the healing process, much as tissue scaffolds are used in tissue engineering. Indeed, most 
extracellular proteins and adhesive molecules have domains like this that may unfold under 
force, although most have not been studied for their mechanical properties.  
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Alpha helical proteins.  

Some structural proteins are primarily composed of alpha helices that do not fold up into a 
globular structure but instead form long fibers. Often, three alpha helices wrap around each 
other to form a coiled coil with two alpha helices, or even three. This is distinct from the 
collagen triple helix, which is not an alpha helix because each polypeptide is nearly extended 
before coiling around each other. If an alpha helix is stretched, it undergoes a cooperative phase 
transition at an equilibrium force from helical coil to extended as the amino acid at either end of 
the helix breaks the hydrogen bonds characteristic of an alpha helix.  

Alpha helical proteins include nearly all intermediate filaments, which make up the third class 
of cytoskeletal proteins. Until recently, the role of these filaments was not understood, since 
they seemed so much softer than actin filaments and microtubules, which are the best 
understood cytoskeletal proteins. However, it has recently been recognized that they may play 
a large role in preventing tearing.  Another protein with a similar role is spectrin, which forms a 
network just inside the membrane of red blood cells.  Many of the proteins that connect the 
adhesive anchors like integrins and cadherins to the cytoskeleton are also alpha helical. 

Membrane tethers.  

Most adhesive proteins are integral membrane proteins 
that are attached to the cytoskeleton on their cytosolic 
side, but they can often detach from the cytoskeleton 
during cell adhesion under force. When this happens, 
the protein remains anchored in the lipid bilayer, and 
pulls a column of lipid called a membrane tether when 
the adhesive protein is pulled, as during blood cell adhesion in strong arterial flow. (1). The 
phase transition in this case is the switch of each phospholipid molecule from its preferred flat 
curvature in the cell membrane to the unfavorable highly curved state inside the membrane 
tether, which has a circular cross-section with a small radius. The energy difference between the 
two states depends on the phospholipid composition of the membrane.  Membrane tethers 
appear to be critical for cell adhesion in flow, by buffering the force on the adhesive molecules.  

Bacterial fimbriae.  

Most gram negative bacteria express adhesive molecules 
on the tips of helical fimbriae. While alpha helices are 
secondary structural motif, these fimbriae form a helical 
coil in their quaternary structure, which refers to the 
interactions between domains or subunits.  (The figure 
below is from Thomas 2008, Annual Review of 
Bioengineering 10 p. 39).  Many different adhesive organelles have been tested and shown to 
exhibit elastic yielding with strains of up to 10. The universal nature of this motif suggests that 
the structure has a functional role, which the Thomas Lab suggests is to hold force near 𝑓𝑒𝑞.  

DNA helix. 

DNA undergoes a phase transition to uncoil the helix, which allows a fractional lengthening. 

Membrane tether. (1) 

Bacterial fimbriae. (1) 
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Summary. 

• The functional role of elastic yielding is prevention of stress concentration and crack 
propagation. This helps prevent adhesive failure and material tearing.  

• Elastic yielding is caused by phase transitions.  
• The equilibrium force 𝒇𝒆𝒒 is the force at which this phase transition occurs when the 

material is pulled slowly enough to avoid hysteresis. 𝑓𝑒𝑞 is related to the free energy 
difference between the two states in standard (no force) conditions, and the difference in 
length between the two states as a function of force: 𝑓𝑒𝑞 = Δ𝐺0/Δ𝑥�𝑓𝑒𝑞�. Depending on 
the form of the equation for Δ𝑥(𝑓), this may have a simple analytical solution or may 
require an iterative numerical solution. 

• A cooperative phase transition occurs when subunits stabilize the structure of 
neighbors, and is typical for helices and alloys. This results in a flat plateau at 𝑓𝑒𝑞, so that  
the overall length is 𝐿(𝑓) = 𝑁𝑥1(𝑓) if 𝑓 < 𝑓𝑒𝑞, and 𝐿(𝑓) = 𝑁𝑥2(𝑓) if 𝑓 > 𝑓𝑒𝑞. 

• An independent phase transition occurs when subunits do not interact with neighbors, 
and is typical for folding proteins or polymers. This results in a gradual plateau centered 
around 𝑓𝑒𝑞 and extending for several times 𝑓𝑐 = 𝑘𝐵𝑇

Δ𝑥�𝑓𝑒𝑞�
 on either side, so that the overall 

length at 𝑓 is 𝐿(𝑡) = 𝑁𝑃2 𝑥2(𝑓) + 𝑁𝑃1𝑥1(𝑓). 
• The viscous properties of phase transitions are determined by the kinetic rate constants, 

according to the differential equation 𝑑𝑃2
𝑑𝑡

= 𝑘12(𝑓) − �𝑘12(𝑓) + 𝑘21(𝑓)�𝑃2 and the 
equation for length, 𝐿(𝑡) = 𝑁𝑃2(𝑡) 𝑥2�𝑓(𝑡)� + 𝑁(1 − 𝑃2(𝑡)𝑥1�𝑓(𝑡)�. At a constant force, 
the material creeps at time constant �𝑘12(𝑓) + 𝑘21(𝑓)�−1. 

• Materials made up of yielding fibers may not clearly show the yielding behavior at the 
macroscale but can still benefit by avoiding stress concentration and crack propagation, 
which occur at the nanoscale.  

• Examples of yielding materials include alloys that change crystalline structures, 
uncoiling helices of all types (alpha helical proteins, bacterial fimbriae, DNA), unfolding 
proteins, and changing curvative of lipid membranes.   
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