
BIOEN 326 2014 LECTURE 1: INTRODUCTION TO THE CLASS AND FORCES AND MOMENTS 

Class structure: 

Course Policy: 

Grading is fully explained on the course homepage and on a document that is linked there. You 
should read these as they go into much more detail than what I say today. 

Briefly, you are graded 40% on homework, 20% on the mid-term and 40% on the final exam. All 
assignments are given points, which are translated into your final grade on a 4.0 scale, so that 
75% is a B, 50% is a C, etc. I thus give 50 points worth of C problems, 25 of B and 25 of A. 

Homeworks are due Wednesdays.  

Helping vs cheating. Provide coaching, not answers to each other. Tell your peers what 
information you found important, direct them to the relevant section of the lecture notes, etc. 
Take your cues from how we provide help in office hours.  

 

What is Biomechanics of Solids and Gels? 

Solids are relatively hard materials that respond instantaneously to force with small 
deformations.  Gels are mostly liquid, but have significant cross-linking within them that 
prevent them from flowing like liquids. However, they are often quite soft so that they deform 
significantly, and often have a viscoelastic property that causes them to deform slowly instead 
of instantly. Together, solids and gels encompass most biomaterials. A biomaterial includes 
living materials, nonliving materials made of biological components, and nonbiological 
materials that are used for biological and medical applications. So we are studying a wide range 
of biomaterials – everything except what is covered in your fluids class, Bioen 325.  

Biomechanics is the study of how mechanical forces affect biology. There are two main effects of 
force. Obviously, force can deform objects, and one part of this field and this class is the study 
of these deformations. However, living materials, unlike almost every other material, can have 
an additional response to force, which is that it can remodel itself, because mechanical forces are 
coupled to biochemical reactions.  

Statics: How Do External Forces Translate to Internal Stresses? 

Regardless of whether we are asking how forces deform a biomaterial or induce a biochemical 
signal in the biomaterial, we need to first determine the force experienced at particular locations 
within the biomaterial in question.  However, in experiments or engineering applications, force 
is applied externally, so we need to calculate how the external forces on the object determine the 
stress (force per unit area) at any location within the object. This requires us to study statics, 
which uses the assumptions of equilibrium and free body diagrams to calculate internal 
stresses. In particular, you will build on your previous free body diagram skills to utilize 
internal and externally applied moments (with would induce rotation around a point if there 
were no resistance) in addition to forces (which would cause a translation of a point if no 
resistance). 
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Mechanics of Materials: How do Biomaterials Deform? 

Next, to ask how forces deform materials, we study mechanics of materials for solids and gels.  
That is, when we apply a stress on a material, what is the resulting strain (fractional 
deformation)?  Thus, we incorporate knowledge from both statics and mechanics of materials 
classes, which are common courses in mechanical engineering and materials science curricula. 
We will learn to evaluate how to calculate deformations for many shapes that are common in 
bioengineering applications, such as bars, beams, and pressurized cylinders. However, the 
nonbiological fields often make assumptions to simplify the mathematical analysis of the 
problems. While these assumptions are justified for most problems in those fields, the biological 
situation more often violates these assumptions, so we need to learn to deal with additional 
complexity. Specifically, most text books, including Gere, assume the following: 

1) Small deformations. We often assume that the geometry is not significantly changing as 
force is increased. However, biological materials often deform several-fold in their 
normal functioning range. 

2) Linear elasticity. We often assume that the ratio of strain to stress (the Young’s 
modulus) is constant as stress, or force, increases, but many biological materials are 
nonlinear. 

3) Isotropic. We often assume that the Young’s modulus is the same in all directions, but 
many biological materials (such as wood, bones, muscle, artery walls, and electrospun 
biomaterials) are anisotropic, so that they are stiffer in some directions than others 
because they are composed of oriented fibers or sheets. 

4) Pure elastic properties. We often assume that responses are instantaneous, not time-
dependent. We also assume responses are reversible, referred to as elastic, rather than 
irreversible, which is referred to as plastic.  Together, these assumptions mean that the 
deformation can be calculated from the applied force at this time, without considering 
the history of how forces were applied in the past. However, many biological materials 
are visco-elastic, so deformation is time- or rate-dependent. 

Thus, in addition to learning to solve problems for linear isotropic materials with small 
deformations, we need to be aware of when each assumption fails and have additional tools to 
deal with these situations. To allow time to cover both statics and mechanics of materials in one 
course and also consider the special properties of biological materials, we are not able to 
address the same level of complicated problems as you would in pure statics and mechanics of 
materials classes.  Thus, if you take advanced courses that require those topics, you may need 
additional time and practice to solve some of the problems, but you should have the knowledge 
base to do so.  

Mechanobiology: Influencing Biochemistry 

The study of how mechanical forces affect biochemistry is referred to as mechanobiology, and 
the mechanism by which this occurs is referred to as mechanotransduction.  This process is only 
recently being understood, with bioengineers at the center of many new discoveries, but we are 
beginning to realize that it is pervasive. That is, many diseases and physiological processes are 
regulated mechanically. For this class, we will focus on three physiological systems:  the 
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muscoluskeletal system and the cardiovascular system. However, there are still significant 
effects of mechanical forces on cancer and other physiological and disease processes that do not 
have obvious mechanical functions.  In this course, we will learn the molecular basis of 
mechanotransduction, will have guest lectures provide expert insights on some of these 
systems, and will apply our knowledge to these problems in some of the homework and exam 
assignments.  

Evaluating Biomechanics Literature. 

Many topics covered in this course are still being advanced in research labs around the world. 
For example, the field of mechanotransduction is in its infancy. In most biological responses, we 
don’t know which molecule converts mechanical force into a biochemical signal, or how it does 
so. The study of nonlinear materials properties is still young as well, and it has only recently 
been discovered that some biological materials exhibit a behavior called elastic yielding. 
Because of this, some of what I teach you is not in the Gere or any other text book, but instead is 
gleaned from original research articles in my field. I thus think it is important to also teach you 
how to read these yourselves. Most of you have taken Bioen 215 and know how to research a 
topic, by finding relevant articles from reliable sources, and properly cite these sources. In this 
class we will go deeper into how to critically evaluate an original research article. We will ask, 
not just what are the author’s conclusions, but what is their level of certainty?  The level of 
certainty will be unique for each conclusion, and is increased by eliminating alternative 
explanations. We will learn how to identify the author’s claimed level of certainty and also to 
evaluate it ourselves. We will apply this tool on a few original research articles in the field so 
you can better see the significance of what we are learning in class.  

Brief Topics Outline:  

In Unit 1 of this course, we stick closely to Gere as we study statics and mechanics of linear 
elastic materials, but we apply these skills to biological examples at both the nano- and maco-
scale. Specifically we cover 

• free body diagrams 
• linear elasticity 
• stress analysis (changing the orientation) 
• bars 
• beams 
• cylinders and spheres 

In Unit 2 of this course, we deviate completely from Gere to study topics that are fairly unique 
to biological materials.  

• nonlinear elasticity and its molecular basis 
• viscoelasticity 
• mechanically active materials (mechanotransduction) 
• evaluating biomechanics literature 
• integration of all course material.  

Make sure you read all posted lecture notes and assigned reading! 
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Finding Forces and Moments  

This week we review what you learned in physics class about writing Force-Balance equations, 
and apply this to biomechanics problems. We need these to calculate the stresses in a structure. 
Our goal is to calculate the forces and moments applied to a structure given specific forces and 
moments applied to the structure and given support reactions that arise from places the 
structure is contacting another object.  You have probably learned to do this for forces but not 
for all aspects involving moments. However, for this course, you will only need to solve 
problems where all forces lie in a plane. 

The following should be already familiar to you. 

Forces. A force 𝐹⃑ is a vector applied to a point, as shown below. 

 

 
Moments.  A force 𝐹⃑ causes a moment at any point O that is not in-line with the force, because 
such a force would tend to rotate the object around the point O (see panel A above). If 𝑟 is the 
vector between the point O and the point at which the force is applied, then 𝑀��⃑  =  𝑟  ×  𝐹⃑ is the 
moment. Recall that the cross product is perpendicular to the plane of the two vectors involved. 
In both examples above, 𝑟 and 𝐹⃑ are in the x-y plane so the moment is along the z-axis (𝑀𝑧). 
Specifically, 𝑟  × 𝐹⃑ = 𝑟𝐹𝑠𝑖𝑛𝜃 ∙ 𝑛�⃑ , where 𝑛�⃑  is the unit vector in the positive direction 
perpendicular to the plane of the two vectors. Thus, the sign of the moment is determined by 
the sign of 𝑠𝑖𝑛𝜃 where 𝜃 is the angle from 𝑟 to 𝐹⃑. (𝜃 = 𝜃𝐹 − 𝜃𝑟).  In the panel A above, 𝜃 > 0 so 
𝑠𝑖𝑛𝜃 > 0, while in panel B, , 𝜃 < 0 so 𝑠𝑖𝑛𝜃 < 0.   You may have learned to find the sign of the 
cross product or moment with the right-hand rule, which has you align the side of your right 
palm with 𝑟 and your fingers with 𝐹⃑, to see which way your thumb points when you do this.  
Panels C and D show this rule providing the positive and negative values corresponding to the 
panels A an B respectively.              

 

 
 

C 

B 

A 
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Known forces. Known forces may be concentrated at a point or may be distributed over a 
region. In the latter case, we can replace the distributed load with a resultant force at a specific 
point. 

• Concentrated load is a defined load applied in a defined direction at an 
idealized point.  Examples are a tendon attached to a bone, a microtubule 
attached to the chromozone at the kineticore, or a weight hanging from a 
rope attached to a specific point on an object. (Units are N) 
 

• Linearly distributed load is a load distributed across the surface along a length of an 
object, such as a concrete pad lying on a beam. (Units are N/m). If you 
can define the force density 𝐹𝑑(𝑥) along a distance x, then the linearly 
distributed load can be idealized as a resultant force 𝐹𝑅 = ∫ 𝐹𝑑(𝑥)𝑑𝑥, 
acting on the x-position of the centroid of a two-dimensional shape 
that has x as one dimension and 𝐹𝑑(𝑥) as the other. That is, acting on 
𝑋𝑅 = ∫ 𝑥𝐹𝑑(𝑥)𝑑𝑥

𝐹𝑅
.  

 
• A surface distributed load is the same idea, but over a two-dimensional surface. In this 

case, 𝐹𝑅 = ∫ ∫ 𝐹𝑑(𝑥,𝑦)𝑑𝑥𝑑𝑦, and it is applied at the centroid of the surface, 𝑋𝑅 =
∫ ∫ 𝑥𝐹𝑑(𝑥,𝑦)𝑑𝑥𝑑𝑦

𝐹𝑅
 and 𝑌𝑅 = ∫ ∫ 𝑦𝐹𝑑(𝑥,𝑦)𝑑𝑥𝑑𝑦

𝐹𝑅
. This time 𝐹𝑑 has units N/m2.  

 
• Body force is a load distributed over the volume of the whole body, not a surface. For 

example, consider an object with total mass 𝑚, distributed over its bulk. The 
gravitational force distributed over the body can effectively be replaced by a single force 
𝑚𝑔, acting on the center of mass (COM). This is the same thing, in three dimensions, 
and it can be abbreviated 𝐹𝑅 = ∫ 𝐹𝑑(𝑟)𝑑𝑟, and 𝐹𝑑 has units N/m3. If the density is 
constant, then the COM is the centroid of the three-dimensional object.  
 

• Center of Mass. Practical steps for calculating the center of mass: 
o If the object is symmetrical in any direction, the COM lies on the axis of 

symmetry. Therefore, it is in the center of a circle, square or rectangle.  
o See the appendix in your text book for equations for specific shapes. 
o If the object can be described by a discrete number of simple shapes for which 

you can calculate the COM of each, then the COM can be determined by 
combining these: 𝑥𝑐𝑜𝑚 = 1

𝑀
∑𝑚𝑖𝑥𝑖 , and similar for 𝑦𝑐𝑜𝑚 and 𝑧𝑐𝑜𝑚, where 

𝑀 =  ∑𝑚𝑖  is the combined mass of the system, 𝑥𝑖 is the location of the COM of 
element 𝑖 , etc.  

o If the object can be described by continuous functions, the COM can be obtained 
by integration 𝑥𝑐𝑜𝑚 = 1

𝑀 ∫ 𝑥𝑚(𝑥)𝑑𝑥, where 𝑚(𝑥) is the mass per unit length in the 
x dimension as a function of 𝑥. And similar for 𝑦𝑐𝑜𝑚 and 𝑧𝑐𝑜𝑚. 
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